def expand(self): """ EXAMPLES:: sage: X = SchubertPolynomialRing(ZZ) sage: X([2,1,3]).expand() x0 sage: map(lambda x: x.expand(), [X(p) for p in Permutations(3)]) [1, x0 + x1, x0, x0*x1, x0^2, x0^2*x1] TESTS: Calling .expand() should always return an element of an MPolynomialRing :: sage: X = SchubertPolynomialRing(ZZ) sage: f = X([1]); f X[1] sage: type(f.expand()) <type 'sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular'> sage: f.expand() 1 sage: f = X([1,2]) sage: type(f.expand()) <type 'sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular'> sage: f = X([1,3,2,4]) sage: type(f.expand()) <type 'sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular'> """ p = symmetrica.t_SCHUBERT_POLYNOM(self) if not is_MPolynomial(p): R = PolynomialRing(self.parent().base_ring(), 1, 'x') p = R(p) return p
def __init__(self, poly, ambient=None): """ Return the affine hypersurface in the space ambient defined by the polynomial poly. If ambient is not given, it will be constructed based on poly. EXAMPLES:: sage: A.<x, y, z> = AffineSpace(ZZ, 3) sage: AffineHypersurface(x*y-z^3, A) Affine hypersurface defined by -z^3 + x*y in Affine Space of dimension 3 over Integer Ring :: sage: A.<x, y, z> = QQ[] sage: AffineHypersurface(x*y-z^3) Affine hypersurface defined by -z^3 + x*y in Affine Space of dimension 3 over Rational Field TESTS:: sage: H = AffineHypersurface(x*y-z^3) sage: H == loads(dumps(H)) True """ if not is_MPolynomial(poly): raise TypeError, "Defining polynomial (= %s) must be a multivariate polynomial" % poly if ambient == None: R = poly.parent() from affine_space import AffineSpace ambient = AffineSpace(R.base_ring(), R.ngens()) ambient._coordinate_ring = R AlgebraicScheme_subscheme_affine.__init__(self, ambient, [poly])
def _element_constructor_(self, x): """ Coerce x into self. EXAMPLES:: sage: X = SchubertPolynomialRing(QQ) sage: X._element_constructor_([2,1,3]) X[2, 1] sage: X._element_constructor_(Permutation([2,1,3])) X[2, 1] :: sage: R.<x1, x2, x3> = QQ[] sage: X(x1^2*x2) X[3, 2, 1] """ if isinstance(x, list): perm = permutation.Permutation_class(x).remove_extra_fixed_points() return self._from_dict({ perm: self.base_ring()(1) }) elif isinstance(x, permutation.Permutation_class): perm = x.remove_extra_fixed_points() return self._from_dict({ perm: self.base_ring()(1) }) elif is_MPolynomial(x): return symmetrica.t_POLYNOM_SCHUBERT(x) else: raise TypeError
def _element_constructor_(self, x): """ Coerce x into self. EXAMPLES:: sage: X = SchubertPolynomialRing(QQ) sage: X._element_constructor_([2,1,3]) X[2, 1] sage: X._element_constructor_(Permutation([2,1,3])) X[2, 1] :: sage: R.<x1, x2, x3> = QQ[] sage: X(x1^2*x2) X[3, 2, 1] """ if isinstance(x, list): perm = permutation.Permutation_class(x).remove_extra_fixed_points() return self._from_dict({perm: self.base_ring()(1)}) elif isinstance(x, permutation.Permutation_class): perm = x.remove_extra_fixed_points() return self._from_dict({perm: self.base_ring()(1)}) elif is_MPolynomial(x): return symmetrica.t_POLYNOM_SCHUBERT(x) else: raise TypeError
def __init__(self, poly, ambient=None): """ Return the affine hypersurface in the space ambient defined by the polynomial poly. If ambient is not given, it will be constructed based on poly. EXAMPLES:: sage: A.<x, y, z> = AffineSpace(ZZ, 3) sage: AffineHypersurface(x*y-z^3, A) Affine hypersurface defined by -z^3 + x*y in Affine Space of dimension 3 over Integer Ring :: sage: A.<x, y, z> = QQ[] sage: AffineHypersurface(x*y-z^3) Affine hypersurface defined by -z^3 + x*y in Affine Space of dimension 3 over Rational Field TESTS:: sage: H = AffineHypersurface(x*y-z^3) sage: H == loads(dumps(H)) True """ if not is_MPolynomial(poly): raise TypeError, "Defining polynomial (= %s) must be a multivariate polynomial"%poly if ambient == None: R = poly.parent() from affine_space import AffineSpace ambient = AffineSpace(R.base_ring(), R.ngens()) ambient._coordinate_ring = R AlgebraicScheme_subscheme_affine.__init__(self, ambient, [poly])
def Jacobian(X, **kwds): """ Return the Jacobian. INPUT: - ``X`` -- polynomial, algebraic variety, or anything else that has a Jacobian elliptic curve. - ``kwds`` -- optional keyword arguments. The input ``X`` can be one of the following: * A polynomial, see :func:`Jacobian_of_equation` for details. * A curve, see :func:`Jacobian_of_curve` for details. EXAMPLES:: sage: R.<u,v,w> = QQ[] sage: Jacobian(u^3+v^3+w^3) Elliptic Curve defined by y^2 = x^3 - 27/4 over Rational Field sage: C = Curve(u^3+v^3+w^3) sage: Jacobian(C) Elliptic Curve defined by y^2 = x^3 - 27/4 over Rational Field sage: P2.<u,v,w> = ProjectiveSpace(2, QQ) sage: C = P2.subscheme(u^3+v^3+w^3) sage: Jacobian(C) Elliptic Curve defined by y^2 = x^3 - 27/4 over Rational Field sage: Jacobian(C, morphism=True) Scheme morphism: From: Closed subscheme of Projective Space of dimension 2 over Rational Field defined by: u^3 + v^3 + w^3 To: Elliptic Curve defined by y^2 = x^3 - 27/4 over Rational Field Defn: Defined on coordinates by sending (u : v : w) to (u*v^7*w + u*v^4*w^4 + u*v*w^7 : v^9 + 3/2*v^6*w^3 - 3/2*v^3*w^6 - w^9 : -v^6*w^3 - v^3*w^6) """ try: return X.jacobian(**kwds) except AttributeError: pass morphism = kwds.pop('morphism', False) from sage.rings.all import is_MPolynomial if is_MPolynomial(X): if morphism: from sage.schemes.plane_curves.constructor import Curve return Jacobian_of_equation(X, curve=Curve(X), **kwds) else: return Jacobian_of_equation(X, **kwds) from sage.schemes.all import is_Scheme if is_Scheme(X) and X.dimension() == 1: return Jacobian_of_curve(X, morphism=morphism, **kwds)
def QuarticCurve(F, PP=None, check=False): """ Returns the quartic curve defined by the polynomial F. INPUT: - F -- a polynomial in three variables, homogeneous of degree 4 - PP -- a projective plane (default:None) - check -- whether to check for smoothness or not (default:False) EXAMPLES:: sage: x,y,z=PolynomialRing(QQ,['x','y','z']).gens() sage: QuarticCurve(x**4+y**4+z**4) Quartic Curve over Rational Field defined by x^4 + y^4 + z^4 TESTS:: sage: QuarticCurve(x**3+y**3) Traceback (most recent call last): ... ValueError: Argument F (=x^3 + y^3) must be a homogeneous polynomial of degree 4 sage: QuarticCurve(x**4+y**4+z**3) Traceback (most recent call last): ... ValueError: Argument F (=x^4 + y^4 + z^3) must be a homogeneous polynomial of degree 4 sage: x,y=PolynomialRing(QQ,['x','y']).gens() sage: QuarticCurve(x**4+y**4) Traceback (most recent call last): ... ValueError: Argument F (=x^4 + y^4) must be a polynomial in 3 variables """ if not is_MPolynomial(F): raise ValueError("Argument F (=%s) must be a multivariate polynomial"%F) P = F.parent() if not P.ngens() == 3: raise ValueError("Argument F (=%s) must be a polynomial in 3 variables"%F) if not(F.is_homogeneous() and F.degree()==4): raise ValueError("Argument F (=%s) must be a homogeneous polynomial of degree 4"%F) if not PP is None: if not is_ProjectiveSpace(PP) and PP.dimension == 2: raise ValueError("Argument PP (=%s) must be a projective plane"%PP) else: PP = ProjectiveSpace(P) if check: raise NotImplementedError("Argument checking (for nonsingularity) is not implemented.") return QuarticCurve_generic(PP, F)
def _element_constructor_(self, x): """ Coerce x into self. EXAMPLES:: sage: X = SchubertPolynomialRing(QQ) sage: X._element_constructor_([2,1,3]) X[2, 1] sage: X._element_constructor_(Permutation([2,1,3])) X[2, 1] sage: R.<x1, x2, x3> = QQ[] sage: X(x1^2*x2) X[3, 2, 1] TESTS: We check that :trac:`12924` is fixed:: sage: X = SchubertPolynomialRing(QQ) sage: X._element_constructor_([1,2,1]) Traceback (most recent call last): ... ValueError: The input [1, 2, 1] is not a valid permutation """ if isinstance(x, list): #checking the input to avoid symmetrica crashing Sage, see trac 12924 if not x in Permutations(): raise ValueError, "The input %s is not a valid permutation" % ( x) perm = permutation.Permutation_class(x).remove_extra_fixed_points() return self._from_dict({perm: self.base_ring()(1)}) elif isinstance(x, permutation.Permutation_class): if not list(x) in Permutations(): raise ValueError, "The input %s is not a valid permutation" % ( x) perm = x.remove_extra_fixed_points() return self._from_dict({perm: self.base_ring()(1)}) elif is_MPolynomial(x): return symmetrica.t_POLYNOM_SCHUBERT(x) else: raise TypeError
def QuarticCurve(F, PP=None, check=False): """ Returns the quartic curve defined by F. """ if not PP is None: if not is_ProjectiveSpace(PP) and PP.dimension == 2: raise TypeError, "Argument PP (=%s) must be a projective plane" % PP elif not is_MPolynomial(F): raise TypeError, \ "Argument F (=%s) must be a homogeneous multivariate polynomial"%F else: if not F.is_homogeneous(): "Argument F (=%s) must be a homogeneous polynomial" % F P = F.parent() if P.ngens() != 3: "Argument F (=%s) must be a homogeneous multivariate polynomial in 3 variables" % F PP = ProjectiveSpace(P) if check: raise TypeError, "Argument checking (for nonsingularity) is not implemented." return QuarticCurve_generic(PP, F)
def QuarticCurve(F,PP=None,check=False): """ Returns the quartic curve defined by F. """ if not PP is None: if not is_ProjectiveSpace(PP) and PP.dimension == 2: raise TypeError, "Argument PP (=%s) must be a projective plane"%PP elif not is_MPolynomial(F): raise TypeError, \ "Argument F (=%s) must be a homogeneous multivariate polynomial"%F else: if not F.is_homogeneous(): "Argument F (=%s) must be a homogeneous polynomial"%F P = F.parent() if P.ngens() != 3: "Argument F (=%s) must be a homogeneous multivariate polynomial in 3 variables"%F PP = ProjectiveSpace(P) if check: raise TypeError, "Argument checking (for nonsingularity) is not implemented." return QuarticCurve_generic(PP, F)
def _element_constructor_(self, x): """ Coerce x into self. EXAMPLES:: sage: X = SchubertPolynomialRing(QQ) sage: X._element_constructor_([2,1,3]) X[2, 1] sage: X._element_constructor_(Permutation([2,1,3])) X[2, 1] sage: R.<x1, x2, x3> = QQ[] sage: X(x1^2*x2) X[3, 2, 1] TESTS: We check that :trac:`12924` is fixed:: sage: X = SchubertPolynomialRing(QQ) sage: X._element_constructor_([1,2,1]) Traceback (most recent call last): ... ValueError: The input [1, 2, 1] is not a valid permutation """ if isinstance(x, list): #checking the input to avoid symmetrica crashing Sage, see trac 12924 if not x in Permutations(): raise ValueError, "The input %s is not a valid permutation"%(x) perm = permutation.Permutation(x).remove_extra_fixed_points() return self._from_dict({ perm: self.base_ring()(1) }) elif isinstance(x, permutation.Permutation): if not list(x) in Permutations(): raise ValueError, "The input %s is not a valid permutation"%(x) perm = x.remove_extra_fixed_points() return self._from_dict({ perm: self.base_ring()(1) }) elif is_MPolynomial(x): return symmetrica.t_POLYNOM_SCHUBERT(x) else: raise TypeError
def __init__(self, poly, ambient=None): """ Return the projective hypersurface in the space ambient defined by the polynomial poly. If ambient is not given, it will be constructed based on poly. EXAMPLES:: sage: P.<x, y, z> = ProjectiveSpace(ZZ, 2) sage: ProjectiveHypersurface(x-y, P) Projective hypersurface defined by x - y in Projective Space of dimension 2 over Integer Ring :: sage: R.<x, y, z> = QQ[] sage: ProjectiveHypersurface(x-y) Projective hypersurface defined by x - y in Projective Space of dimension 2 over Rational Field TESTS:: sage: H = ProjectiveHypersurface(x-y) sage: H == loads(dumps(H)) True """ if not is_MPolynomial(poly): raise TypeError, \ "Defining polynomial (=%s) must be a multivariate polynomial."%poly if not poly.is_homogeneous(): raise TypeError, "Defining polynomial (=%s) must be homogeneous."%poly if ambient == None: R = poly.parent() from projective_space import ProjectiveSpace ambient = ProjectiveSpace(R.base_ring(), R.ngens()-1) ambient._coordinate_ring = R AlgebraicScheme_subscheme_projective.__init__(self, ambient, [poly])
def __init__(self, poly, ambient=None): """ Return the projective hypersurface in the space ambient defined by the polynomial poly. If ambient is not given, it will be constructed based on poly. EXAMPLES:: sage: P.<x, y, z> = ProjectiveSpace(ZZ, 2) sage: ProjectiveHypersurface(x-y, P) Projective hypersurface defined by x - y in Projective Space of dimension 2 over Integer Ring :: sage: R.<x, y, z> = QQ[] sage: ProjectiveHypersurface(x-y) Projective hypersurface defined by x - y in Projective Space of dimension 2 over Rational Field TESTS:: sage: H = ProjectiveHypersurface(x-y) sage: H == loads(dumps(H)) True """ if not is_MPolynomial(poly): raise TypeError, \ "Defining polynomial (=%s) must be a multivariate polynomial."%poly if not poly.is_homogeneous(): raise TypeError, "Defining polynomial (=%s) must be homogeneous." % poly if ambient == None: R = poly.parent() from projective_space import ProjectiveSpace ambient = ProjectiveSpace(R.base_ring(), R.ngens() - 1) ambient._coordinate_ring = R AlgebraicScheme_subscheme_projective.__init__(self, ambient, [poly])
def EllipticCurve(x=None, y=None, j=None): r""" There are several ways to construct an elliptic curve: .. math:: y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6. - EllipticCurve([a1,a2,a3,a4,a6]): Elliptic curve with given a-invariants. The invariants are coerced into the parent of the first element. If all are integers, they are coerced into the rational numbers. - EllipticCurve([a4,a6]): Same as above, but a1=a2=a3=0. - EllipticCurve(label): Returns the elliptic curve over Q from the Cremona database with the given label. The label is a string, such as "11a" or "37b2". The letters in the label *must* be lower case (Cremona's new labeling). - EllipticCurve(R, [a1,a2,a3,a4,a6]): Create the elliptic curve over R with given a-invariants. Here R can be an arbitrary ring. Note that addition need not be defined. - EllipticCurve(j): Return an elliptic curve with j-invariant `j`. Warning: this is deprecated. Use ``EllipticCurve_from_j(j)`` or ``EllipticCurve(j=j)`` instead. In each case above where the input is a list of length 2 or 5, one can instead give a 2 or 5-tuple instead. EXAMPLES: We illustrate creating elliptic curves. :: sage: EllipticCurve([0,0,1,-1,0]) Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field We create a curve from a Cremona label:: sage: EllipticCurve('37b2') Elliptic Curve defined by y^2 + y = x^3 + x^2 - 1873*x - 31833 over Rational Field sage: EllipticCurve('5077a') Elliptic Curve defined by y^2 + y = x^3 - 7*x + 6 over Rational Field sage: EllipticCurve('389a') Elliptic Curve defined by y^2 + y = x^3 + x^2 - 2*x over Rational Field Unicode labels are allowed:: sage: EllipticCurve(u'389a') Elliptic Curve defined by y^2 + y = x^3 + x^2 - 2*x over Rational Field We create curves over a finite field as follows:: sage: EllipticCurve([GF(5)(0),0,1,-1,0]) Elliptic Curve defined by y^2 + y = x^3 + 4*x over Finite Field of size 5 sage: EllipticCurve(GF(5), [0, 0,1,-1,0]) Elliptic Curve defined by y^2 + y = x^3 + 4*x over Finite Field of size 5 Elliptic curves over `\ZZ/N\ZZ` with `N` prime are of type "elliptic curve over a finite field":: sage: F = Zmod(101) sage: EllipticCurve(F, [2, 3]) Elliptic Curve defined by y^2 = x^3 + 2*x + 3 over Ring of integers modulo 101 sage: E = EllipticCurve([F(2), F(3)]) sage: type(E) <class 'sage.schemes.elliptic_curves.ell_finite_field.EllipticCurve_finite_field_with_category'> sage: E.category() Category of schemes over Ring of integers modulo 101 In contrast, elliptic curves over `\ZZ/N\ZZ` with `N` composite are of type "generic elliptic curve":: sage: F = Zmod(95) sage: EllipticCurve(F, [2, 3]) Elliptic Curve defined by y^2 = x^3 + 2*x + 3 over Ring of integers modulo 95 sage: E = EllipticCurve([F(2), F(3)]) sage: type(E) <class 'sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic_with_category'> sage: E.category() Category of schemes over Ring of integers modulo 95 The following is a curve over the complex numbers:: sage: E = EllipticCurve(CC, [0,0,1,-1,0]) sage: E Elliptic Curve defined by y^2 + 1.00000000000000*y = x^3 + (-1.00000000000000)*x over Complex Field with 53 bits of precision sage: E.j_invariant() 2988.97297297297 We can also create elliptic curves by giving the Weierstrass equation:: sage: x, y = var('x,y') sage: EllipticCurve(y^2 + y == x^3 + x - 9) Elliptic Curve defined by y^2 + y = x^3 + x - 9 over Rational Field sage: R.<x,y> = GF(5)[] sage: EllipticCurve(x^3 + x^2 + 2 - y^2 - y*x) Elliptic Curve defined by y^2 + x*y = x^3 + x^2 + 2 over Finite Field of size 5 We can explicitly specify the `j`-invariant:: sage: E = EllipticCurve(j=1728); E; E.j_invariant(); E.label() Elliptic Curve defined by y^2 = x^3 - x over Rational Field 1728 '32a2' sage: E = EllipticCurve(j=GF(5)(2)); E; E.j_invariant() Elliptic Curve defined by y^2 = x^3 + x + 1 over Finite Field of size 5 2 See trac #6657:: sage: EllipticCurve(GF(144169),j=1728) Elliptic Curve defined by y^2 = x^3 + x over Finite Field of size 144169 TESTS:: sage: R = ZZ['u', 'v'] sage: EllipticCurve(R, [1,1]) Elliptic Curve defined by y^2 = x^3 + x + 1 over Multivariate Polynomial Ring in u, v over Integer Ring We create a curve and a point over QQbar (see #6879):: sage: E = EllipticCurve(QQbar,[0,1]) sage: E(0) (0 : 1 : 0) sage: E.base_field() Algebraic Field sage: E = EllipticCurve(RR,[1,2]); E; E.base_field() Elliptic Curve defined by y^2 = x^3 + 1.00000000000000*x + 2.00000000000000 over Real Field with 53 bits of precision Real Field with 53 bits of precision sage: EllipticCurve(CC,[3,4]); E; E.base_field() Elliptic Curve defined by y^2 = x^3 + 3.00000000000000*x + 4.00000000000000 over Complex Field with 53 bits of precision Elliptic Curve defined by y^2 = x^3 + 1.00000000000000*x + 2.00000000000000 over Real Field with 53 bits of precision Real Field with 53 bits of precision sage: E = EllipticCurve(QQbar,[5,6]); E; E.base_field() Elliptic Curve defined by y^2 = x^3 + 5*x + 6 over Algebraic Field Algebraic Field See trac #6657:: sage: EllipticCurve(3,j=1728) Traceback (most recent call last): ... ValueError: First parameter (if present) must be a ring when j is specified sage: EllipticCurve(GF(5),j=3/5) Traceback (most recent call last): ... ValueError: First parameter must be a ring containing 3/5 If the universe of the coefficients is a general field, the object constructed has type EllipticCurve_field. Otherwise it is EllipticCurve_generic. See trac #9816:: sage: E = EllipticCurve([QQbar(1),3]); E Elliptic Curve defined by y^2 = x^3 + x + 3 over Algebraic Field sage: type(E) <class 'sage.schemes.elliptic_curves.ell_field.EllipticCurve_field_with_category'> sage: E = EllipticCurve([RR(1),3]); E Elliptic Curve defined by y^2 = x^3 + 1.00000000000000*x + 3.00000000000000 over Real Field with 53 bits of precision sage: type(E) <class 'sage.schemes.elliptic_curves.ell_field.EllipticCurve_field_with_category'> sage: E = EllipticCurve([i,i]); E Elliptic Curve defined by y^2 = x^3 + I*x + I over Symbolic Ring sage: type(E) <class 'sage.schemes.elliptic_curves.ell_field.EllipticCurve_field_with_category'> sage: E.category() Category of schemes over Symbolic Ring sage: is_field(SR) True sage: F = FractionField(PolynomialRing(QQ,'t')) sage: t = F.gen() sage: E = EllipticCurve([t,0]); E Elliptic Curve defined by y^2 = x^3 + t*x over Fraction Field of Univariate Polynomial Ring in t over Rational Field sage: type(E) <class 'sage.schemes.elliptic_curves.ell_field.EllipticCurve_field_with_category'> sage: E.category() Category of schemes over Fraction Field of Univariate Polynomial Ring in t over Rational Field See :trac:`12517`:: sage: E = EllipticCurve([1..5]) sage: EllipticCurve(E.a_invariants()) Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 4*x + 5 over Rational Field """ import ell_generic, ell_field, ell_finite_field, ell_number_field, ell_rational_field, ell_padic_field # here to avoid circular includes if j is not None: if not x is None: if rings.is_Ring(x): try: j = x(j) except (ZeroDivisionError, ValueError, TypeError): raise ValueError, "First parameter must be a ring containing %s"%j else: raise ValueError, "First parameter (if present) must be a ring when j is specified" return EllipticCurve_from_j(j) assert x is not None if is_SymbolicEquation(x): x = x.lhs() - x.rhs() if parent(x) is SR: x = x._polynomial_(rings.QQ['x', 'y']) if rings.is_MPolynomial(x) and y is None: f = x if f.degree() != 3: raise ValueError, "Elliptic curves must be defined by a cubic polynomial." if f.degrees() == (3,2): x, y = f.parent().gens() elif f.degree() == (2,3): y, x = f.parent().gens() elif len(f.parent().gens()) == 2 or len(f.parent().gens()) == 3 and f.is_homogeneous(): # We'd need a point too... raise NotImplementedError, "Construction of an elliptic curve from a generic cubic not yet implemented." else: raise ValueError, "Defining polynomial must be a cubic polynomial in two variables." try: if f.coefficient(x**3) < 0: f = -f # is there a nicer way to extract the coefficients? a1 = a2 = a3 = a4 = a6 = 0 for coeff, mon in f: if mon == x**3: assert coeff == 1 elif mon == x**2: a2 = coeff elif mon == x: a4 = coeff elif mon == 1: a6 = coeff elif mon == y**2: assert coeff == -1 elif mon == x*y: a1 = -coeff elif mon == y: a3 = -coeff else: assert False return EllipticCurve([a1, a2, a3, a4, a6]) except AssertionError: raise NotImplementedError, "Construction of an elliptic curve from a generic cubic not yet implemented." if rings.is_Ring(x): if rings.is_RationalField(x): return ell_rational_field.EllipticCurve_rational_field(x, y) elif rings.is_FiniteField(x) or (rings.is_IntegerModRing(x) and x.characteristic().is_prime()): return ell_finite_field.EllipticCurve_finite_field(x, y) elif rings.is_pAdicField(x): return ell_padic_field.EllipticCurve_padic_field(x, y) elif rings.is_NumberField(x): return ell_number_field.EllipticCurve_number_field(x, y) elif rings.is_Field(x): return ell_field.EllipticCurve_field(x, y) return ell_generic.EllipticCurve_generic(x, y) if isinstance(x, unicode): x = str(x) if isinstance(x, str): return ell_rational_field.EllipticCurve_rational_field(x) if rings.is_RingElement(x) and y is None: from sage.misc.misc import deprecation deprecation("'EllipticCurve(j)' is deprecated; use 'EllipticCurve_from_j(j)' or 'EllipticCurve(j=j)' instead.") # Fixed for all characteristics and cases by John Cremona j=x F=j.parent().fraction_field() char=F.characteristic() if char==2: if j==0: return EllipticCurve(F, [ 0, 0, 1, 0, 0 ]) else: return EllipticCurve(F, [ 1, 0, 0, 0, 1/j ]) if char==3: if j==0: return EllipticCurve(F, [ 0, 0, 0, 1, 0 ]) else: return EllipticCurve(F, [ 0, j, 0, 0, -j**2 ]) if j == 0: return EllipticCurve(F, [ 0, 0, 0, 0, 1 ]) if j == 1728: return EllipticCurve(F, [ 0, 0, 0, 1, 0 ]) k=j-1728 return EllipticCurve(F, [0,0,0,-3*j*k, -2*j*k**2]) if not isinstance(x, (list, tuple)): raise TypeError, "invalid input to EllipticCurve constructor" x = Sequence(x) if not (len(x) in [2,5]): raise ValueError, "sequence of coefficients must have length 2 or 5" R = x.universe() if isinstance(x[0], (rings.Rational, rings.Integer, int, long)): return ell_rational_field.EllipticCurve_rational_field(x, y) elif rings.is_NumberField(R): return ell_number_field.EllipticCurve_number_field(x, y) elif rings.is_pAdicField(R): return ell_padic_field.EllipticCurve_padic_field(x, y) elif rings.is_FiniteField(R) or (rings.is_IntegerModRing(R) and R.characteristic().is_prime()): return ell_finite_field.EllipticCurve_finite_field(x, y) elif rings.is_Field(R): return ell_field.EllipticCurve_field(x, y) return ell_generic.EllipticCurve_generic(x, y)
def Conic(base_field, F=None, names=None, unique=True): r""" Return the plane projective conic curve defined by ``F`` over ``base_field``. The input form ``Conic(F, names=None)`` is also accepted, in which case the fraction field of the base ring of ``F`` is used as base field. INPUT: - ``base_field`` -- The base field of the conic. - ``names`` -- a list, tuple, or comma separated string of three variable names specifying the names of the coordinate functions of the ambient space `\Bold{P}^3`. If not specified or read off from ``F``, then this defaults to ``'x,y,z'``. - ``F`` -- a polynomial, list, matrix, ternary quadratic form, or list or tuple of 5 points in the plane. If ``F`` is a polynomial or quadratic form, then the output is the curve in the projective plane defined by ``F = 0``. If ``F`` is a polynomial, then it must be a polynomial of degree at most 2 in 2 variables, or a homogeneous polynomial in of degree 2 in 3 variables. If ``F`` is a matrix, then the output is the zero locus of `(x,y,z) F (x,y,z)^t`. If ``F`` is a list of coefficients, then it has length 3 or 6 and gives the coefficients of the monomials `x^2, y^2, z^2` or all 6 monomials `x^2, xy, xz, y^2, yz, z^2` in lexicographic order. If ``F`` is a list of 5 points in the plane, then the output is a conic through those points. - ``unique`` -- Used only if ``F`` is a list of points in the plane. If the conic through the points is not unique, then raise ``ValueError`` if and only if ``unique`` is True OUTPUT: A plane projective conic curve defined by ``F`` over a field. EXAMPLES: Conic curves given by polynomials :: sage: X,Y,Z = QQ['X,Y,Z'].gens() sage: Conic(X^2 - X*Y + Y^2 - Z^2) Projective Conic Curve over Rational Field defined by X^2 - X*Y + Y^2 - Z^2 sage: x,y = GF(7)['x,y'].gens() sage: Conic(x^2 - x + 2*y^2 - 3, 'U,V,W') Projective Conic Curve over Finite Field of size 7 defined by U^2 + 2*V^2 - U*W - 3*W^2 Conic curves given by matrices :: sage: Conic(matrix(QQ, [[1, 2, 0], [4, 0, 0], [7, 0, 9]]), 'x,y,z') Projective Conic Curve over Rational Field defined by x^2 + 6*x*y + 7*x*z + 9*z^2 sage: x,y,z = GF(11)['x,y,z'].gens() sage: C = Conic(x^2+y^2-2*z^2); C Projective Conic Curve over Finite Field of size 11 defined by x^2 + y^2 - 2*z^2 sage: Conic(C.symmetric_matrix(), 'x,y,z') Projective Conic Curve over Finite Field of size 11 defined by x^2 + y^2 - 2*z^2 Conics given by coefficients :: sage: Conic(QQ, [1,2,3]) Projective Conic Curve over Rational Field defined by x^2 + 2*y^2 + 3*z^2 sage: Conic(GF(7), [1,2,3,4,5,6], 'X') Projective Conic Curve over Finite Field of size 7 defined by X0^2 + 2*X0*X1 - 3*X1^2 + 3*X0*X2 - 2*X1*X2 - X2^2 The conic through a set of points :: sage: C = Conic(QQ, [[10,2],[3,4],[-7,6],[7,8],[9,10]]); C Projective Conic Curve over Rational Field defined by x^2 + 13/4*x*y - 17/4*y^2 - 35/2*x*z + 91/4*y*z - 37/2*z^2 sage: C.rational_point() (10 : 2 : 1) sage: C.point([3,4]) (3 : 4 : 1) sage: a=AffineSpace(GF(13),2) sage: Conic([a([x,x^2]) for x in range(5)]) Projective Conic Curve over Finite Field of size 13 defined by x^2 - y*z """ if not (is_IntegralDomain(base_field) or base_field == None): if names is None: names = F F = base_field base_field = None if isinstance(F, (list,tuple)): if len(F) == 1: return Conic(base_field, F[0], names) if names == None: names = 'x,y,z' if len(F) == 5: L=[] for f in F: if isinstance(f, SchemeMorphism_point_affine): C = Sequence(f, universe = base_field) if len(C) != 2: raise TypeError, "points in F (=%s) must be planar"%F C.append(1) elif isinstance(f, SchemeMorphism_point_projective_field): C = Sequence(f, universe = base_field) elif isinstance(f, (list, tuple)): C = Sequence(f, universe = base_field) if len(C) == 2: C.append(1) else: raise TypeError, "F (=%s) must be a sequence of planar " \ "points" % F if len(C) != 3: raise TypeError, "points in F (=%s) must be planar" % F P = C.universe() if not is_IntegralDomain(P): raise TypeError, "coordinates of points in F (=%s) must " \ "be in an integral domain" % F L.append(Sequence([C[0]**2, C[0]*C[1], C[0]*C[2], C[1]**2, C[1]*C[2], C[2]**2], P.fraction_field())) M=Matrix(L) if unique and M.rank() != 5: raise ValueError, "points in F (=%s) do not define a unique " \ "conic" % F con = Conic(base_field, Sequence(M.right_kernel().gen()), names) con.point(F[0]) return con F = Sequence(F, universe = base_field) base_field = F.universe().fraction_field() temp_ring = PolynomialRing(base_field, 3, names) (x,y,z) = temp_ring.gens() if len(F) == 3: return Conic(F[0]*x**2 + F[1]*y**2 + F[2]*z**2) if len(F) == 6: return Conic(F[0]*x**2 + F[1]*x*y + F[2]*x*z + F[3]*y**2 + \ F[4]*y*z + F[5]*z**2) raise TypeError, "F (=%s) must be a sequence of 3 or 6" \ "coefficients" % F if is_QuadraticForm(F): F = F.matrix() if is_Matrix(F) and F.is_square() and F.ncols() == 3: if names == None: names = 'x,y,z' temp_ring = PolynomialRing(F.base_ring(), 3, names) F = vector(temp_ring.gens()) * F * vector(temp_ring.gens()) if not is_MPolynomial(F): raise TypeError, "F (=%s) must be a three-variable polynomial or " \ "a sequence of points or coefficients" % F if F.total_degree() != 2: raise TypeError, "F (=%s) must have degree 2" % F if base_field == None: base_field = F.base_ring() if not is_IntegralDomain(base_field): raise ValueError, "Base field (=%s) must be a field" % base_field base_field = base_field.fraction_field() if names == None: names = F.parent().variable_names() pol_ring = PolynomialRing(base_field, 3, names) if F.parent().ngens() == 2: (x,y,z) = pol_ring.gens() F = pol_ring(F(x/z,y/z)*z**2) if F == 0: raise ValueError, "F must be nonzero over base field %s" % base_field if F.total_degree() != 2: raise TypeError, "F (=%s) must have degree 2 over base field %s" % \ (F, base_field) if F.parent().ngens() == 3: P2 = ProjectiveSpace(2, base_field, names) if is_PrimeFiniteField(base_field): return ProjectiveConic_prime_finite_field(P2, F) if is_FiniteField(base_field): return ProjectiveConic_finite_field(P2, F) if is_RationalField(base_field): return ProjectiveConic_rational_field(P2, F) if is_NumberField(base_field): return ProjectiveConic_number_field(P2, F) return ProjectiveConic_field(P2, F) raise TypeError, "Number of variables of F (=%s) must be 2 or 3" % F
def Curve(F): """ Return the plane or space curve defined by `F`, where `F` can be either a multivariate polynomial, a list or tuple of polynomials, or an algebraic scheme. If `F` is in two variables the curve is affine, and if it is homogenous in `3` variables, then the curve is projective. EXAMPLE: A projective plane curve :: sage: x,y,z = QQ['x,y,z'].gens() sage: C = Curve(x^3 + y^3 + z^3); C Projective Curve over Rational Field defined by x^3 + y^3 + z^3 sage: C.genus() 1 EXAMPLE: Affine plane curves :: sage: x,y = GF(7)['x,y'].gens() sage: C = Curve(y^2 + x^3 + x^10); C Affine Curve over Finite Field of size 7 defined by x^10 + x^3 + y^2 sage: C.genus() 0 sage: x, y = QQ['x,y'].gens() sage: Curve(x^3 + y^3 + 1) Affine Curve over Rational Field defined by x^3 + y^3 + 1 EXAMPLE: A projective space curve :: sage: x,y,z,w = QQ['x,y,z,w'].gens() sage: C = Curve([x^3 + y^3 - z^3 - w^3, x^5 - y*z^4]); C Projective Space Curve over Rational Field defined by x^3 + y^3 - z^3 - w^3, x^5 - y*z^4 sage: C.genus() 13 EXAMPLE: An affine space curve :: sage: x,y,z = QQ['x,y,z'].gens() sage: C = Curve([y^2 + x^3 + x^10 + z^7, x^2 + y^2]); C Affine Space Curve over Rational Field defined by x^10 + z^7 + x^3 + y^2, x^2 + y^2 sage: C.genus() 47 EXAMPLE: We can also make non-reduced non-irreducible curves. :: sage: x,y,z = QQ['x,y,z'].gens() sage: Curve((x-y)*(x+y)) Projective Conic Curve over Rational Field defined by x^2 - y^2 sage: Curve((x-y)^2*(x+y)^2) Projective Curve over Rational Field defined by x^4 - 2*x^2*y^2 + y^4 EXAMPLE: A union of curves is a curve. :: sage: x,y,z = QQ['x,y,z'].gens() sage: C = Curve(x^3 + y^3 + z^3) sage: D = Curve(x^4 + y^4 + z^4) sage: C.union(D) Projective Curve over Rational Field defined by x^7 + x^4*y^3 + x^3*y^4 + y^7 + x^4*z^3 + y^4*z^3 + x^3*z^4 + y^3*z^4 + z^7 The intersection is not a curve, though it is a scheme. :: sage: X = C.intersection(D); X Closed subscheme of Projective Space of dimension 2 over Rational Field defined by: x^3 + y^3 + z^3, x^4 + y^4 + z^4 Note that the intersection has dimension `0`. :: sage: X.dimension() 0 sage: I = X.defining_ideal(); I Ideal (x^3 + y^3 + z^3, x^4 + y^4 + z^4) of Multivariate Polynomial Ring in x, y, z over Rational Field EXAMPLE: In three variables, the defining equation must be homogeneous. If the parent polynomial ring is in three variables, then the defining ideal must be homogeneous. :: sage: x,y,z = QQ['x,y,z'].gens() sage: Curve(x^2+y^2) Projective Conic Curve over Rational Field defined by x^2 + y^2 sage: Curve(x^2+y^2+z) Traceback (most recent call last): ... TypeError: x^2 + y^2 + z is not a homogeneous polynomial! The defining polynomial must always be nonzero:: sage: P1.<x,y> = ProjectiveSpace(1,GF(5)) sage: Curve(0*x) Traceback (most recent call last): ... ValueError: defining polynomial of curve must be nonzero """ if is_AlgebraicScheme(F): return Curve(F.defining_polynomials()) if isinstance(F, (list, tuple)): if len(F) == 1: return Curve(F[0]) F = Sequence(F) P = F.universe() if not is_MPolynomialRing(P): raise TypeError, "universe of F must be a multivariate polynomial ring" for f in F: if not f.is_homogeneous(): A = AffineSpace(P.ngens(), P.base_ring()) A._coordinate_ring = P return AffineSpaceCurve_generic(A, F) A = ProjectiveSpace(P.ngens() - 1, P.base_ring()) A._coordinate_ring = P return ProjectiveSpaceCurve_generic(A, F) if not is_MPolynomial(F): raise TypeError, "F (=%s) must be a multivariate polynomial" % F P = F.parent() k = F.base_ring() if F.parent().ngens() == 2: if F == 0: raise ValueError, "defining polynomial of curve must be nonzero" A2 = AffineSpace(2, P.base_ring()) A2._coordinate_ring = P if is_FiniteField(k): if k.is_prime_field(): return AffineCurve_prime_finite_field(A2, F) else: return AffineCurve_finite_field(A2, F) else: return AffineCurve_generic(A2, F) elif F.parent().ngens() == 3: if F == 0: raise ValueError, "defining polynomial of curve must be nonzero" P2 = ProjectiveSpace(2, P.base_ring()) P2._coordinate_ring = P if F.total_degree() == 2 and k.is_field(): return Conic(F) if is_FiniteField(k): if k.is_prime_field(): return ProjectiveCurve_prime_finite_field(P2, F) else: return ProjectiveCurve_finite_field(P2, F) else: return ProjectiveCurve_generic(P2, F) else: raise TypeError, "Number of variables of F (=%s) must be 2 or 3" % F
def Curve(F): """ Return the plane or space curve defined by `F`, where `F` can be either a multivariate polynomial, a list or tuple of polynomials, or an algebraic scheme. If `F` is in two variables the curve is affine, and if it is homogenous in `3` variables, then the curve is projective. EXAMPLE: A projective plane curve :: sage: x,y,z = QQ['x,y,z'].gens() sage: C = Curve(x^3 + y^3 + z^3); C Projective Curve over Rational Field defined by x^3 + y^3 + z^3 sage: C.genus() 1 EXAMPLE: Affine plane curves :: sage: x,y = GF(7)['x,y'].gens() sage: C = Curve(y^2 + x^3 + x^10); C Affine Curve over Finite Field of size 7 defined by x^10 + x^3 + y^2 sage: C.genus() 0 sage: x, y = QQ['x,y'].gens() sage: Curve(x^3 + y^3 + 1) Affine Curve over Rational Field defined by x^3 + y^3 + 1 EXAMPLE: A projective space curve :: sage: x,y,z,w = QQ['x,y,z,w'].gens() sage: C = Curve([x^3 + y^3 - z^3 - w^3, x^5 - y*z^4]); C Projective Space Curve over Rational Field defined by x^3 + y^3 - z^3 - w^3, x^5 - y*z^4 sage: C.genus() 13 EXAMPLE: An affine space curve :: sage: x,y,z = QQ['x,y,z'].gens() sage: C = Curve([y^2 + x^3 + x^10 + z^7, x^2 + y^2]); C Affine Space Curve over Rational Field defined by x^10 + z^7 + x^3 + y^2, x^2 + y^2 sage: C.genus() 47 EXAMPLE: We can also make non-reduced non-irreducible curves. :: sage: x,y,z = QQ['x,y,z'].gens() sage: Curve((x-y)*(x+y)) Projective Conic Curve over Rational Field defined by x^2 - y^2 sage: Curve((x-y)^2*(x+y)^2) Projective Curve over Rational Field defined by x^4 - 2*x^2*y^2 + y^4 EXAMPLE: A union of curves is a curve. :: sage: x,y,z = QQ['x,y,z'].gens() sage: C = Curve(x^3 + y^3 + z^3) sage: D = Curve(x^4 + y^4 + z^4) sage: C.union(D) Projective Curve over Rational Field defined by x^7 + x^4*y^3 + x^3*y^4 + y^7 + x^4*z^3 + y^4*z^3 + x^3*z^4 + y^3*z^4 + z^7 The intersection is not a curve, though it is a scheme. :: sage: X = C.intersection(D); X Closed subscheme of Projective Space of dimension 2 over Rational Field defined by: x^3 + y^3 + z^3, x^4 + y^4 + z^4 Note that the intersection has dimension `0`. :: sage: X.dimension() 0 sage: I = X.defining_ideal(); I Ideal (x^3 + y^3 + z^3, x^4 + y^4 + z^4) of Multivariate Polynomial Ring in x, y, z over Rational Field EXAMPLE: In three variables, the defining equation must be homogeneous. If the parent polynomial ring is in three variables, then the defining ideal must be homogeneous. :: sage: x,y,z = QQ['x,y,z'].gens() sage: Curve(x^2+y^2) Projective Conic Curve over Rational Field defined by x^2 + y^2 sage: Curve(x^2+y^2+z) Traceback (most recent call last): ... TypeError: x^2 + y^2 + z is not a homogeneous polynomial! The defining polynomial must always be nonzero:: sage: P1.<x,y> = ProjectiveSpace(1,GF(5)) sage: Curve(0*x) Traceback (most recent call last): ... ValueError: defining polynomial of curve must be nonzero """ if is_AlgebraicScheme(F): return Curve(F.defining_polynomials()) if isinstance(F, (list, tuple)): if len(F) == 1: return Curve(F[0]) F = Sequence(F) P = F.universe() if not is_MPolynomialRing(P): raise TypeError, "universe of F must be a multivariate polynomial ring" for f in F: if not f.is_homogeneous(): A = AffineSpace(P.ngens(), P.base_ring()) A._coordinate_ring = P return AffineSpaceCurve_generic(A, F) A = ProjectiveSpace(P.ngens()-1, P.base_ring()) A._coordinate_ring = P return ProjectiveSpaceCurve_generic(A, F) if not is_MPolynomial(F): raise TypeError, "F (=%s) must be a multivariate polynomial"%F P = F.parent() k = F.base_ring() if F.parent().ngens() == 2: if F == 0: raise ValueError, "defining polynomial of curve must be nonzero" A2 = AffineSpace(2, P.base_ring()) A2._coordinate_ring = P if is_FiniteField(k): if k.is_prime_field(): return AffineCurve_prime_finite_field(A2, F) else: return AffineCurve_finite_field(A2, F) else: return AffineCurve_generic(A2, F) elif F.parent().ngens() == 3: if F == 0: raise ValueError, "defining polynomial of curve must be nonzero" P2 = ProjectiveSpace(2, P.base_ring()) P2._coordinate_ring = P if F.total_degree() == 2 and k.is_field(): return Conic(F) if is_FiniteField(k): if k.is_prime_field(): return ProjectiveCurve_prime_finite_field(P2, F) else: return ProjectiveCurve_finite_field(P2, F) else: return ProjectiveCurve_generic(P2, F) else: raise TypeError, "Number of variables of F (=%s) must be 2 or 3"%F
def EllipticCurve(x=None, y=None, j=None, minimal_twist=True): r""" Construct an elliptic curve. In Sage, an elliptic curve is always specified by its a-invariants .. math:: y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6. INPUT: There are several ways to construct an elliptic curve: - ``EllipticCurve([a1,a2,a3,a4,a6])``: Elliptic curve with given a-invariants. The invariants are coerced into the parent of the first element. If all are integers, they are coerced into the rational numbers. - ``EllipticCurve([a4,a6])``: Same as above, but `a_1=a_2=a_3=0`. - ``EllipticCurve(label)``: Returns the elliptic curve over Q from the Cremona database with the given label. The label is a string, such as ``"11a"`` or ``"37b2"``. The letters in the label *must* be lower case (Cremona's new labeling). - ``EllipticCurve(R, [a1,a2,a3,a4,a6])``: Create the elliptic curve over ``R`` with given a-invariants. Here ``R`` can be an arbitrary ring. Note that addition need not be defined. - ``EllipticCurve(j=j0)`` or ``EllipticCurve_from_j(j0)``: Return an elliptic curve with j-invariant ``j0``. - ``EllipticCurve(polynomial)``: Read off the a-invariants from the polynomial coefficients, see :func:`EllipticCurve_from_Weierstrass_polynomial`. In each case above where the input is a list of length 2 or 5, one can instead give a 2 or 5-tuple instead. EXAMPLES: We illustrate creating elliptic curves:: sage: EllipticCurve([0,0,1,-1,0]) Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field We create a curve from a Cremona label:: sage: EllipticCurve('37b2') Elliptic Curve defined by y^2 + y = x^3 + x^2 - 1873*x - 31833 over Rational Field sage: EllipticCurve('5077a') Elliptic Curve defined by y^2 + y = x^3 - 7*x + 6 over Rational Field sage: EllipticCurve('389a') Elliptic Curve defined by y^2 + y = x^3 + x^2 - 2*x over Rational Field Old Cremona labels are allowed:: sage: EllipticCurve('2400FF') Elliptic Curve defined by y^2 = x^3 + x^2 + 2*x + 8 over Rational Field Unicode labels are allowed:: sage: EllipticCurve(u'389a') Elliptic Curve defined by y^2 + y = x^3 + x^2 - 2*x over Rational Field We create curves over a finite field as follows:: sage: EllipticCurve([GF(5)(0),0,1,-1,0]) Elliptic Curve defined by y^2 + y = x^3 + 4*x over Finite Field of size 5 sage: EllipticCurve(GF(5), [0, 0,1,-1,0]) Elliptic Curve defined by y^2 + y = x^3 + 4*x over Finite Field of size 5 Elliptic curves over `\ZZ/N\ZZ` with `N` prime are of type "elliptic curve over a finite field":: sage: F = Zmod(101) sage: EllipticCurve(F, [2, 3]) Elliptic Curve defined by y^2 = x^3 + 2*x + 3 over Ring of integers modulo 101 sage: E = EllipticCurve([F(2), F(3)]) sage: type(E) <class 'sage.schemes.elliptic_curves.ell_finite_field.EllipticCurve_finite_field_with_category'> sage: E.category() Category of schemes over Ring of integers modulo 101 In contrast, elliptic curves over `\ZZ/N\ZZ` with `N` composite are of type "generic elliptic curve":: sage: F = Zmod(95) sage: EllipticCurve(F, [2, 3]) Elliptic Curve defined by y^2 = x^3 + 2*x + 3 over Ring of integers modulo 95 sage: E = EllipticCurve([F(2), F(3)]) sage: type(E) <class 'sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic_with_category'> sage: E.category() Category of schemes over Ring of integers modulo 95 The following is a curve over the complex numbers:: sage: E = EllipticCurve(CC, [0,0,1,-1,0]) sage: E Elliptic Curve defined by y^2 + 1.00000000000000*y = x^3 + (-1.00000000000000)*x over Complex Field with 53 bits of precision sage: E.j_invariant() 2988.97297297297 We can also create elliptic curves by giving the Weierstrass equation:: sage: x, y = var('x,y') sage: EllipticCurve(y^2 + y == x^3 + x - 9) Elliptic Curve defined by y^2 + y = x^3 + x - 9 over Rational Field sage: R.<x,y> = GF(5)[] sage: EllipticCurve(x^3 + x^2 + 2 - y^2 - y*x) Elliptic Curve defined by y^2 + x*y = x^3 + x^2 + 2 over Finite Field of size 5 We can explicitly specify the `j`-invariant:: sage: E = EllipticCurve(j=1728); E; E.j_invariant(); E.label() Elliptic Curve defined by y^2 = x^3 - x over Rational Field 1728 '32a2' sage: E = EllipticCurve(j=GF(5)(2)); E; E.j_invariant() Elliptic Curve defined by y^2 = x^3 + x + 1 over Finite Field of size 5 2 See :trac:`6657` :: sage: EllipticCurve(GF(144169),j=1728) Elliptic Curve defined by y^2 = x^3 + x over Finite Field of size 144169 By default, when a rational value of `j` is given, the constructed curve is a minimal twist (minimal conductor for curves with that `j`-invariant). This can be changed by setting the optional parameter ``minimal_twist``, which is True by default, to False:: sage: EllipticCurve(j=100) Elliptic Curve defined by y^2 = x^3 + x^2 + 3392*x + 307888 over Rational Field sage: E =EllipticCurve(j=100); E Elliptic Curve defined by y^2 = x^3 + x^2 + 3392*x + 307888 over Rational Field sage: E.conductor() 33129800 sage: E.j_invariant() 100 sage: E =EllipticCurve(j=100, minimal_twist=False); E Elliptic Curve defined by y^2 = x^3 + 488400*x - 530076800 over Rational Field sage: E.conductor() 298168200 sage: E.j_invariant() 100 Without this option, constructing the curve could take a long time since both `j` and `j-1728` have to be factored to compute the minimal twist (see :trac:`13100`):: sage: E = EllipticCurve_from_j(2^256+1,minimal_twist=False) sage: E.j_invariant() == 2^256+1 True TESTS:: sage: R = ZZ['u', 'v'] sage: EllipticCurve(R, [1,1]) Elliptic Curve defined by y^2 = x^3 + x + 1 over Multivariate Polynomial Ring in u, v over Integer Ring We create a curve and a point over QQbar (see #6879):: sage: E = EllipticCurve(QQbar,[0,1]) sage: E(0) (0 : 1 : 0) sage: E.base_field() Algebraic Field sage: E = EllipticCurve(RR,[1,2]); E; E.base_field() Elliptic Curve defined by y^2 = x^3 + 1.00000000000000*x + 2.00000000000000 over Real Field with 53 bits of precision Real Field with 53 bits of precision sage: EllipticCurve(CC,[3,4]); E; E.base_field() Elliptic Curve defined by y^2 = x^3 + 3.00000000000000*x + 4.00000000000000 over Complex Field with 53 bits of precision Elliptic Curve defined by y^2 = x^3 + 1.00000000000000*x + 2.00000000000000 over Real Field with 53 bits of precision Real Field with 53 bits of precision sage: E = EllipticCurve(QQbar,[5,6]); E; E.base_field() Elliptic Curve defined by y^2 = x^3 + 5*x + 6 over Algebraic Field Algebraic Field See :trac:`6657` :: sage: EllipticCurve(3,j=1728) Traceback (most recent call last): ... ValueError: First parameter (if present) must be a ring when j is specified sage: EllipticCurve(GF(5),j=3/5) Traceback (most recent call last): ... ValueError: First parameter must be a ring containing 3/5 If the universe of the coefficients is a general field, the object constructed has type EllipticCurve_field. Otherwise it is EllipticCurve_generic. See :trac:`9816` :: sage: E = EllipticCurve([QQbar(1),3]); E Elliptic Curve defined by y^2 = x^3 + x + 3 over Algebraic Field sage: type(E) <class 'sage.schemes.elliptic_curves.ell_field.EllipticCurve_field_with_category'> sage: E = EllipticCurve([RR(1),3]); E Elliptic Curve defined by y^2 = x^3 + 1.00000000000000*x + 3.00000000000000 over Real Field with 53 bits of precision sage: type(E) <class 'sage.schemes.elliptic_curves.ell_field.EllipticCurve_field_with_category'> sage: E = EllipticCurve([i,i]); E Elliptic Curve defined by y^2 = x^3 + I*x + I over Symbolic Ring sage: type(E) <class 'sage.schemes.elliptic_curves.ell_field.EllipticCurve_field_with_category'> sage: E.category() Category of schemes over Symbolic Ring sage: SR in Fields() True sage: F = FractionField(PolynomialRing(QQ,'t')) sage: t = F.gen() sage: E = EllipticCurve([t,0]); E Elliptic Curve defined by y^2 = x^3 + t*x over Fraction Field of Univariate Polynomial Ring in t over Rational Field sage: type(E) <class 'sage.schemes.elliptic_curves.ell_field.EllipticCurve_field_with_category'> sage: E.category() Category of schemes over Fraction Field of Univariate Polynomial Ring in t over Rational Field See :trac:`12517`:: sage: E = EllipticCurve([1..5]) sage: EllipticCurve(E.a_invariants()) Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 4*x + 5 over Rational Field See :trac:`11773`:: sage: E = EllipticCurve() Traceback (most recent call last): ... TypeError: invalid input to EllipticCurve constructor """ import ell_generic, ell_field, ell_finite_field, ell_number_field, ell_rational_field, ell_padic_field # here to avoid circular includes if j is not None: if not x is None: if rings.is_Ring(x): try: j = x(j) except (ZeroDivisionError, ValueError, TypeError): raise ValueError, "First parameter must be a ring containing %s"%j else: raise ValueError, "First parameter (if present) must be a ring when j is specified" return EllipticCurve_from_j(j, minimal_twist) if x is None: raise TypeError, "invalid input to EllipticCurve constructor" if is_SymbolicEquation(x): x = x.lhs() - x.rhs() if parent(x) is SR: x = x._polynomial_(rings.QQ['x', 'y']) if rings.is_MPolynomial(x): if y is None: return EllipticCurve_from_Weierstrass_polynomial(x) else: return EllipticCurve_from_cubic(x, y, morphism=False) if rings.is_Ring(x): if rings.is_RationalField(x): return ell_rational_field.EllipticCurve_rational_field(x, y) elif rings.is_FiniteField(x) or (rings.is_IntegerModRing(x) and x.characteristic().is_prime()): return ell_finite_field.EllipticCurve_finite_field(x, y) elif rings.is_pAdicField(x): return ell_padic_field.EllipticCurve_padic_field(x, y) elif rings.is_NumberField(x): return ell_number_field.EllipticCurve_number_field(x, y) elif x in _Fields: return ell_field.EllipticCurve_field(x, y) return ell_generic.EllipticCurve_generic(x, y) if isinstance(x, unicode): x = str(x) if isinstance(x, basestring): return ell_rational_field.EllipticCurve_rational_field(x) if rings.is_RingElement(x) and y is None: raise TypeError, "invalid input to EllipticCurve constructor" if not isinstance(x, (list, tuple)): raise TypeError, "invalid input to EllipticCurve constructor" x = Sequence(x) if not (len(x) in [2,5]): raise ValueError, "sequence of coefficients must have length 2 or 5" R = x.universe() if isinstance(x[0], (rings.Rational, rings.Integer, int, long)): return ell_rational_field.EllipticCurve_rational_field(x, y) elif rings.is_NumberField(R): return ell_number_field.EllipticCurve_number_field(x, y) elif rings.is_pAdicField(R): return ell_padic_field.EllipticCurve_padic_field(x, y) elif rings.is_FiniteField(R) or (rings.is_IntegerModRing(R) and R.characteristic().is_prime()): return ell_finite_field.EllipticCurve_finite_field(x, y) elif R in _Fields: return ell_field.EllipticCurve_field(x, y) return ell_generic.EllipticCurve_generic(x, y)
def EllipticCurve(x=None, y=None, j=None, minimal_twist=True): r""" There are several ways to construct an elliptic curve: .. math:: y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6. - EllipticCurve([a1,a2,a3,a4,a6]): Elliptic curve with given a-invariants. The invariants are coerced into the parent of the first element. If all are integers, they are coerced into the rational numbers. - EllipticCurve([a4,a6]): Same as above, but a1=a2=a3=0. - EllipticCurve(label): Returns the elliptic curve over Q from the Cremona database with the given label. The label is a string, such as "11a" or "37b2". The letters in the label *must* be lower case (Cremona's new labeling). - EllipticCurve(R, [a1,a2,a3,a4,a6]): Create the elliptic curve over R with given a-invariants. Here R can be an arbitrary ring. Note that addition need not be defined. - EllipticCurve(j=j0) or EllipticCurve_from_j(j0): Return an elliptic curve with j-invariant `j0`. In each case above where the input is a list of length 2 or 5, one can instead give a 2 or 5-tuple instead. EXAMPLES: We illustrate creating elliptic curves. :: sage: EllipticCurve([0,0,1,-1,0]) Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field We create a curve from a Cremona label:: sage: EllipticCurve('37b2') Elliptic Curve defined by y^2 + y = x^3 + x^2 - 1873*x - 31833 over Rational Field sage: EllipticCurve('5077a') Elliptic Curve defined by y^2 + y = x^3 - 7*x + 6 over Rational Field sage: EllipticCurve('389a') Elliptic Curve defined by y^2 + y = x^3 + x^2 - 2*x over Rational Field Old Cremona labels are allowed:: sage: EllipticCurve('2400FF') Elliptic Curve defined by y^2 = x^3 + x^2 + 2*x + 8 over Rational Field Unicode labels are allowed:: sage: EllipticCurve(u'389a') Elliptic Curve defined by y^2 + y = x^3 + x^2 - 2*x over Rational Field We create curves over a finite field as follows:: sage: EllipticCurve([GF(5)(0),0,1,-1,0]) Elliptic Curve defined by y^2 + y = x^3 + 4*x over Finite Field of size 5 sage: EllipticCurve(GF(5), [0, 0,1,-1,0]) Elliptic Curve defined by y^2 + y = x^3 + 4*x over Finite Field of size 5 Elliptic curves over `\ZZ/N\ZZ` with `N` prime are of type "elliptic curve over a finite field":: sage: F = Zmod(101) sage: EllipticCurve(F, [2, 3]) Elliptic Curve defined by y^2 = x^3 + 2*x + 3 over Ring of integers modulo 101 sage: E = EllipticCurve([F(2), F(3)]) sage: type(E) <class 'sage.schemes.elliptic_curves.ell_finite_field.EllipticCurve_finite_field_with_category'> sage: E.category() Category of schemes over Ring of integers modulo 101 In contrast, elliptic curves over `\ZZ/N\ZZ` with `N` composite are of type "generic elliptic curve":: sage: F = Zmod(95) sage: EllipticCurve(F, [2, 3]) Elliptic Curve defined by y^2 = x^3 + 2*x + 3 over Ring of integers modulo 95 sage: E = EllipticCurve([F(2), F(3)]) sage: type(E) <class 'sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic_with_category'> sage: E.category() Category of schemes over Ring of integers modulo 95 The following is a curve over the complex numbers:: sage: E = EllipticCurve(CC, [0,0,1,-1,0]) sage: E Elliptic Curve defined by y^2 + 1.00000000000000*y = x^3 + (-1.00000000000000)*x over Complex Field with 53 bits of precision sage: E.j_invariant() 2988.97297297297 We can also create elliptic curves by giving the Weierstrass equation:: sage: x, y = var('x,y') sage: EllipticCurve(y^2 + y == x^3 + x - 9) Elliptic Curve defined by y^2 + y = x^3 + x - 9 over Rational Field sage: R.<x,y> = GF(5)[] sage: EllipticCurve(x^3 + x^2 + 2 - y^2 - y*x) Elliptic Curve defined by y^2 + x*y = x^3 + x^2 + 2 over Finite Field of size 5 We can explicitly specify the `j`-invariant:: sage: E = EllipticCurve(j=1728); E; E.j_invariant(); E.label() Elliptic Curve defined by y^2 = x^3 - x over Rational Field 1728 '32a2' sage: E = EllipticCurve(j=GF(5)(2)); E; E.j_invariant() Elliptic Curve defined by y^2 = x^3 + x + 1 over Finite Field of size 5 2 See trac #6657:: sage: EllipticCurve(GF(144169),j=1728) Elliptic Curve defined by y^2 = x^3 + x over Finite Field of size 144169 By default, when a rational value of `j` is given, the constructed curve is a minimal twist (minimal conductor for curves with that `j`-invariant). This can be changed by setting the optional parameter ``minimal_twist``, which is True by default, to False:: sage: EllipticCurve(j=100) Elliptic Curve defined by y^2 = x^3 + x^2 + 3392*x + 307888 over Rational Field sage: E =EllipticCurve(j=100); E Elliptic Curve defined by y^2 = x^3 + x^2 + 3392*x + 307888 over Rational Field sage: E.conductor() 33129800 sage: E.j_invariant() 100 sage: E =EllipticCurve(j=100, minimal_twist=False); E Elliptic Curve defined by y^2 = x^3 + 488400*x - 530076800 over Rational Field sage: E.conductor() 298168200 sage: E.j_invariant() 100 Without this option, constructing the curve could take a long time since both `j` and `j-1728` have to be factored to compute the minimal twist (see :trac:`13100`):: sage: E = EllipticCurve_from_j(2^256+1,minimal_twist=False) sage: E.j_invariant() == 2^256+1 True TESTS:: sage: R = ZZ['u', 'v'] sage: EllipticCurve(R, [1,1]) Elliptic Curve defined by y^2 = x^3 + x + 1 over Multivariate Polynomial Ring in u, v over Integer Ring We create a curve and a point over QQbar (see #6879):: sage: E = EllipticCurve(QQbar,[0,1]) sage: E(0) (0 : 1 : 0) sage: E.base_field() Algebraic Field sage: E = EllipticCurve(RR,[1,2]); E; E.base_field() Elliptic Curve defined by y^2 = x^3 + 1.00000000000000*x + 2.00000000000000 over Real Field with 53 bits of precision Real Field with 53 bits of precision sage: EllipticCurve(CC,[3,4]); E; E.base_field() Elliptic Curve defined by y^2 = x^3 + 3.00000000000000*x + 4.00000000000000 over Complex Field with 53 bits of precision Elliptic Curve defined by y^2 = x^3 + 1.00000000000000*x + 2.00000000000000 over Real Field with 53 bits of precision Real Field with 53 bits of precision sage: E = EllipticCurve(QQbar,[5,6]); E; E.base_field() Elliptic Curve defined by y^2 = x^3 + 5*x + 6 over Algebraic Field Algebraic Field See trac #6657:: sage: EllipticCurve(3,j=1728) Traceback (most recent call last): ... ValueError: First parameter (if present) must be a ring when j is specified sage: EllipticCurve(GF(5),j=3/5) Traceback (most recent call last): ... ValueError: First parameter must be a ring containing 3/5 If the universe of the coefficients is a general field, the object constructed has type EllipticCurve_field. Otherwise it is EllipticCurve_generic. See trac #9816:: sage: E = EllipticCurve([QQbar(1),3]); E Elliptic Curve defined by y^2 = x^3 + x + 3 over Algebraic Field sage: type(E) <class 'sage.schemes.elliptic_curves.ell_field.EllipticCurve_field_with_category'> sage: E = EllipticCurve([RR(1),3]); E Elliptic Curve defined by y^2 = x^3 + 1.00000000000000*x + 3.00000000000000 over Real Field with 53 bits of precision sage: type(E) <class 'sage.schemes.elliptic_curves.ell_field.EllipticCurve_field_with_category'> sage: E = EllipticCurve([i,i]); E Elliptic Curve defined by y^2 = x^3 + I*x + I over Symbolic Ring sage: type(E) <class 'sage.schemes.elliptic_curves.ell_field.EllipticCurve_field_with_category'> sage: E.category() Category of schemes over Symbolic Ring sage: SR in Fields() True sage: F = FractionField(PolynomialRing(QQ,'t')) sage: t = F.gen() sage: E = EllipticCurve([t,0]); E Elliptic Curve defined by y^2 = x^3 + t*x over Fraction Field of Univariate Polynomial Ring in t over Rational Field sage: type(E) <class 'sage.schemes.elliptic_curves.ell_field.EllipticCurve_field_with_category'> sage: E.category() Category of schemes over Fraction Field of Univariate Polynomial Ring in t over Rational Field See :trac:`12517`:: sage: E = EllipticCurve([1..5]) sage: EllipticCurve(E.a_invariants()) Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 4*x + 5 over Rational Field See :trac:`11773`:: sage: E = EllipticCurve() Traceback (most recent call last): ... TypeError: invalid input to EllipticCurve constructor """ import ell_generic, ell_field, ell_finite_field, ell_number_field, ell_rational_field, ell_padic_field # here to avoid circular includes if j is not None: if not x is None: if rings.is_Ring(x): try: j = x(j) except (ZeroDivisionError, ValueError, TypeError): raise ValueError, "First parameter must be a ring containing %s"%j else: raise ValueError, "First parameter (if present) must be a ring when j is specified" return EllipticCurve_from_j(j, minimal_twist) if x is None: raise TypeError, "invalid input to EllipticCurve constructor" if is_SymbolicEquation(x): x = x.lhs() - x.rhs() if parent(x) is SR: x = x._polynomial_(rings.QQ['x', 'y']) if rings.is_MPolynomial(x) and y is None: f = x if f.degree() != 3: raise ValueError, "Elliptic curves must be defined by a cubic polynomial." if f.degrees() == (3,2): x, y = f.parent().gens() elif f.degree() == (2,3): y, x = f.parent().gens() elif len(f.parent().gens()) == 2 or len(f.parent().gens()) == 3 and f.is_homogeneous(): # We'd need a point too... raise NotImplementedError, "Construction of an elliptic curve from a generic cubic not yet implemented." else: raise ValueError, "Defining polynomial must be a cubic polynomial in two variables." try: if f.coefficient(x**3) < 0: f = -f # is there a nicer way to extract the coefficients? a1 = a2 = a3 = a4 = a6 = 0 for coeff, mon in f: if mon == x**3: assert coeff == 1 elif mon == x**2: a2 = coeff elif mon == x: a4 = coeff elif mon == 1: a6 = coeff elif mon == y**2: assert coeff == -1 elif mon == x*y: a1 = -coeff elif mon == y: a3 = -coeff else: assert False return EllipticCurve([a1, a2, a3, a4, a6]) except AssertionError: raise NotImplementedError, "Construction of an elliptic curve from a generic cubic not yet implemented." if rings.is_Ring(x): if rings.is_RationalField(x): return ell_rational_field.EllipticCurve_rational_field(x, y) elif rings.is_FiniteField(x) or (rings.is_IntegerModRing(x) and x.characteristic().is_prime()): return ell_finite_field.EllipticCurve_finite_field(x, y) elif rings.is_pAdicField(x): return ell_padic_field.EllipticCurve_padic_field(x, y) elif rings.is_NumberField(x): return ell_number_field.EllipticCurve_number_field(x, y) elif x in _Fields: return ell_field.EllipticCurve_field(x, y) return ell_generic.EllipticCurve_generic(x, y) if isinstance(x, unicode): x = str(x) if isinstance(x, str): return ell_rational_field.EllipticCurve_rational_field(x) if rings.is_RingElement(x) and y is None: raise TypeError, "invalid input to EllipticCurve constructor" if not isinstance(x, (list, tuple)): raise TypeError, "invalid input to EllipticCurve constructor" x = Sequence(x) if not (len(x) in [2,5]): raise ValueError, "sequence of coefficients must have length 2 or 5" R = x.universe() if isinstance(x[0], (rings.Rational, rings.Integer, int, long)): return ell_rational_field.EllipticCurve_rational_field(x, y) elif rings.is_NumberField(R): return ell_number_field.EllipticCurve_number_field(x, y) elif rings.is_pAdicField(R): return ell_padic_field.EllipticCurve_padic_field(x, y) elif rings.is_FiniteField(R) or (rings.is_IntegerModRing(R) and R.characteristic().is_prime()): return ell_finite_field.EllipticCurve_finite_field(x, y) elif R in _Fields: return ell_field.EllipticCurve_field(x, y) return ell_generic.EllipticCurve_generic(x, y)
def EllipticCurve(x=None, y=None, j=None): r""" There are several ways to construct an elliptic curve: .. math:: y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6. - EllipticCurve([a1,a2,a3,a4,a6]): Elliptic curve with given a-invariants. The invariants are coerced into the parent of the first element. If all are integers, they are coerced into the rational numbers. - EllipticCurve([a4,a6]): Same as above, but a1=a2=a3=0. - EllipticCurve(label): Returns the elliptic curve over Q from the Cremona database with the given label. The label is a string, such as "11a" or "37b2". The letters in the label *must* be lower case (Cremona's new labeling). - EllipticCurve(R, [a1,a2,a3,a4,a6]): Create the elliptic curve over R with given a-invariants. Here R can be an arbitrary ring. Note that addition need not be defined. - EllipticCurve(j): Return an elliptic curve with j-invariant `j`. Warning: this is deprecated. Use ``EllipticCurve_from_j(j)`` or ``EllipticCurve(j=j)`` instead. EXAMPLES: We illustrate creating elliptic curves. :: sage: EllipticCurve([0,0,1,-1,0]) Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field We create a curve from a Cremona label:: sage: EllipticCurve('37b2') Elliptic Curve defined by y^2 + y = x^3 + x^2 - 1873*x - 31833 over Rational Field sage: EllipticCurve('5077a') Elliptic Curve defined by y^2 + y = x^3 - 7*x + 6 over Rational Field sage: EllipticCurve('389a') Elliptic Curve defined by y^2 + y = x^3 + x^2 - 2*x over Rational Field Unicode labels are allowed:: sage: EllipticCurve(u'389a') Elliptic Curve defined by y^2 + y = x^3 + x^2 - 2*x over Rational Field We create curves over a finite field as follows:: sage: EllipticCurve([GF(5)(0),0,1,-1,0]) Elliptic Curve defined by y^2 + y = x^3 + 4*x over Finite Field of size 5 sage: EllipticCurve(GF(5), [0, 0,1,-1,0]) Elliptic Curve defined by y^2 + y = x^3 + 4*x over Finite Field of size 5 Elliptic curves over `\ZZ/N\ZZ` with `N` prime are of type "elliptic curve over a finite field":: sage: F = Zmod(101) sage: EllipticCurve(F, [2, 3]) Elliptic Curve defined by y^2 = x^3 + 2*x + 3 over Ring of integers modulo 101 sage: E = EllipticCurve([F(2), F(3)]) sage: type(E) <class 'sage.schemes.elliptic_curves.ell_finite_field.EllipticCurve_finite_field'> In contrast, elliptic curves over `\ZZ/N\ZZ` with `N` composite are of type "generic elliptic curve":: sage: F = Zmod(95) sage: EllipticCurve(F, [2, 3]) Elliptic Curve defined by y^2 = x^3 + 2*x + 3 over Ring of integers modulo 95 sage: E = EllipticCurve([F(2), F(3)]) sage: type(E) <class 'sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic'> The following is a curve over the complex numbers:: sage: E = EllipticCurve(CC, [0,0,1,-1,0]) sage: E Elliptic Curve defined by y^2 + 1.00000000000000*y = x^3 + (-1.00000000000000)*x over Complex Field with 53 bits of precision sage: E.j_invariant() 2988.97297297297 We can also create elliptic curves by giving the Weierstrass equation:: sage: x, y = var('x,y') sage: EllipticCurve(y^2 + y == x^3 + x - 9) Elliptic Curve defined by y^2 + y = x^3 + x - 9 over Rational Field sage: R.<x,y> = GF(5)[] sage: EllipticCurve(x^3 + x^2 + 2 - y^2 - y*x) Elliptic Curve defined by y^2 + x*y = x^3 + x^2 + 2 over Finite Field of size 5 We can explicitly specify the `j`-invariant:: sage: E = EllipticCurve(j=1728); E; E.j_invariant(); E.label() Elliptic Curve defined by y^2 = x^3 - x over Rational Field 1728 '32a2' sage: E = EllipticCurve(j=GF(5)(2)); E; E.j_invariant() Elliptic Curve defined by y^2 = x^3 + x + 1 over Finite Field of size 5 2 See trac #6657:: sage: EllipticCurve(GF(144169),j=1728) Elliptic Curve defined by y^2 = x^3 + x over Finite Field of size 144169 TESTS:: sage: R = ZZ['u', 'v'] sage: EllipticCurve(R, [1,1]) Elliptic Curve defined by y^2 = x^3 + x + 1 over Multivariate Polynomial Ring in u, v over Integer Ring We create a curve and a point over QQbar (see #6879):: sage: E = EllipticCurve(QQbar,[0,1]) sage: E(0) (0 : 1 : 0) sage: E.base_field() Algebraic Field sage: E = EllipticCurve(RR,[1,2]); E; E.base_field() Elliptic Curve defined by y^2 = x^3 + 1.00000000000000*x + 2.00000000000000 over Real Field with 53 bits of precision Real Field with 53 bits of precision sage: EllipticCurve(CC,[3,4]); E; E.base_field() Elliptic Curve defined by y^2 = x^3 + 3.00000000000000*x + 4.00000000000000 over Complex Field with 53 bits of precision Elliptic Curve defined by y^2 = x^3 + 1.00000000000000*x + 2.00000000000000 over Real Field with 53 bits of precision Real Field with 53 bits of precision sage: E = EllipticCurve(QQbar,[5,6]); E; E.base_field() Elliptic Curve defined by y^2 = x^3 + 5*x + 6 over Algebraic Field Algebraic Field See trac #6657:: sage: EllipticCurve(3,j=1728) Traceback (most recent call last): ... ValueError: First parameter (if present) must be a ring when j is specified sage: EllipticCurve(GF(5),j=3/5) Traceback (most recent call last): ... ValueError: First parameter must be a ring containing 3/5 If the universe of the coefficients is a general field, the object constructed has type EllipticCurve_field. Otherwise it is EllipticCurve_generic. See trac #9816:: sage: E = EllipticCurve([QQbar(1),3]); E Elliptic Curve defined by y^2 = x^3 + x + 3 over Algebraic Field sage: type(E) <class 'sage.schemes.elliptic_curves.ell_field.EllipticCurve_field'> sage: E = EllipticCurve([RR(1),3]); E Elliptic Curve defined by y^2 = x^3 + 1.00000000000000*x + 3.00000000000000 over Real Field with 53 bits of precision sage: type(E) <class 'sage.schemes.elliptic_curves.ell_field.EllipticCurve_field'> sage: E = EllipticCurve([i,i]); E Elliptic Curve defined by y^2 = x^3 + I*x + I over Symbolic Ring sage: type(E) <class 'sage.schemes.elliptic_curves.ell_field.EllipticCurve_field'> sage: is_field(SR) True sage: F = FractionField(PolynomialRing(QQ,'t')) sage: t = F.gen() sage: E = EllipticCurve([t,0]); E Elliptic Curve defined by y^2 = x^3 + t*x over Fraction Field of Univariate Polynomial Ring in t over Rational Field sage: type(E) <class 'sage.schemes.elliptic_curves.ell_field.EllipticCurve_field'> """ import ell_generic, ell_field, ell_finite_field, ell_number_field, ell_rational_field, ell_padic_field # here to avoid circular includes if j is not None: if not x is None: if rings.is_Ring(x): try: j = x(j) except (ZeroDivisionError, ValueError, TypeError): raise ValueError, "First parameter must be a ring containing %s"%j else: raise ValueError, "First parameter (if present) must be a ring when j is specified" return EllipticCurve_from_j(j) assert x is not None if is_SymbolicEquation(x): x = x.lhs() - x.rhs() if parent(x) is SR: x = x._polynomial_(rings.QQ['x', 'y']) if rings.is_MPolynomial(x) and y is None: f = x if f.degree() != 3: raise ValueError, "Elliptic curves must be defined by a cubic polynomial." if f.degrees() == (3,2): x, y = f.parent().gens() elif f.degree() == (2,3): y, x = f.parent().gens() elif len(f.parent().gens()) == 2 or len(f.parent().gens()) == 3 and f.is_homogeneous(): # We'd need a point too... raise NotImplementedError, "Construction of an elliptic curve from a generic cubic not yet implemented." else: raise ValueError, "Defining polynomial must be a cubic polynomial in two variables." try: if f.coefficient(x**3) < 0: f = -f # is there a nicer way to extract the coefficients? a1 = a2 = a3 = a4 = a6 = 0 for coeff, mon in f: if mon == x**3: assert coeff == 1 elif mon == x**2: a2 = coeff elif mon == x: a4 = coeff elif mon == 1: a6 = coeff elif mon == y**2: assert coeff == -1 elif mon == x*y: a1 = -coeff elif mon == y: a3 = -coeff else: assert False return EllipticCurve([a1, a2, a3, a4, a6]) except AssertionError: raise NotImplementedError, "Construction of an elliptic curve from a generic cubic not yet implemented." if rings.is_Ring(x): if rings.is_RationalField(x): return ell_rational_field.EllipticCurve_rational_field(x, y) elif rings.is_FiniteField(x) or (rings.is_IntegerModRing(x) and x.characteristic().is_prime()): return ell_finite_field.EllipticCurve_finite_field(x, y) elif rings.is_pAdicField(x): return ell_padic_field.EllipticCurve_padic_field(x, y) elif rings.is_NumberField(x): return ell_number_field.EllipticCurve_number_field(x, y) elif rings.is_Field(x): return ell_field.EllipticCurve_field(x, y) return ell_generic.EllipticCurve_generic(x, y) if isinstance(x, unicode): x = str(x) if isinstance(x, str): return ell_rational_field.EllipticCurve_rational_field(x) if rings.is_RingElement(x) and y is None: from sage.misc.misc import deprecation deprecation("'EllipticCurve(j)' is deprecated; use 'EllipticCurve_from_j(j)' or 'EllipticCurve(j=j)' instead.") # Fixed for all characteristics and cases by John Cremona j=x F=j.parent().fraction_field() char=F.characteristic() if char==2: if j==0: return EllipticCurve(F, [ 0, 0, 1, 0, 0 ]) else: return EllipticCurve(F, [ 1, 0, 0, 0, 1/j ]) if char==3: if j==0: return EllipticCurve(F, [ 0, 0, 0, 1, 0 ]) else: return EllipticCurve(F, [ 0, j, 0, 0, -j**2 ]) if j == 0: return EllipticCurve(F, [ 0, 0, 0, 0, 1 ]) if j == 1728: return EllipticCurve(F, [ 0, 0, 0, 1, 0 ]) k=j-1728 return EllipticCurve(F, [0,0,0,-3*j*k, -2*j*k**2]) if not isinstance(x,list): raise TypeError, "invalid input to EllipticCurve constructor" x = Sequence(x) if not (len(x) in [2,5]): raise ValueError, "sequence of coefficients must have length 2 or 5" R = x.universe() if isinstance(x[0], (rings.Rational, rings.Integer, int, long)): return ell_rational_field.EllipticCurve_rational_field(x, y) elif rings.is_NumberField(R): return ell_number_field.EllipticCurve_number_field(x, y) elif rings.is_pAdicField(R): return ell_padic_field.EllipticCurve_padic_field(x, y) elif rings.is_FiniteField(R) or (rings.is_IntegerModRing(R) and R.characteristic().is_prime()): return ell_finite_field.EllipticCurve_finite_field(x, y) elif rings.is_Field(R): return ell_field.EllipticCurve_field(x, y) return ell_generic.EllipticCurve_generic(x, y)