Example #1
0
class Polynomial_padic_capped_relative_dense(Polynomial_generic_domain, Polynomial_padic):
    def __init__(self, parent, x=None, check=True, is_gen=False, construct = False, absprec = infinity, relprec = infinity):
        """
        TESTS::

            sage: K = Qp(13,7)
            sage: R.<t> = K[]
            sage: R([K(13), K(1)])
            (1 + O(13^7))*t + (13 + O(13^8))
            sage: T.<t> = ZZ[]
            sage: R(t + 2)
            (1 + O(13^7))*t + (2 + O(13^7))

        Check that :trac:`13620` has been fixed::

            sage: f = R.zero()
            sage: R(f.dict())
            0

        """
        Polynomial.__init__(self, parent, is_gen=is_gen)
        parentbr = parent.base_ring()
        from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing
        if construct:
            (self._poly, self._valbase, self._relprecs, self._normalized, self._valaddeds, self._list) = x #the last two of these may be None
            return
        elif is_gen:
            self._poly = PolynomialRing(ZZ, parent.variable_name()).gen()
            self._valbase = 0
            self._valaddeds = [infinity, 0]
            self._relprecs = [infinity, parentbr.precision_cap()]
            self._normalized = True
            self._list = None
            return

        #First we list the types that are turned into Polynomials
        if isinstance(x, ZZX):
            x = Polynomial_integer_dense(PolynomialRing(ZZ, parent.variable_name()), x, construct = True)
        elif isinstance(x, fraction_field_element.FractionFieldElement) and \
               x.denominator() == 1:
            #Currently we ignore precision information in the denominator.  This should be changed eventually
            x = x.numerator()

        #We now coerce various types into lists of coefficients.  There are fast pathways for some types of polynomials
        if isinstance(x, Polynomial):
            if x.parent() is self.parent():
                if not absprec is infinity or not relprec is infinity:
                    x._normalize()
                self._poly = x._poly
                self._valbase = x._valbase
                self._valaddeds = x._valaddeds
                self._relprecs = x._relprecs
                self._normalized = x._normalized
                self._list = x._list
                if not absprec is infinity or not relprec is infinity:
                    self._adjust_prec_info(absprec, relprec)
                return
            elif x.base_ring() is ZZ:
                self._poly = x
                self._valbase = Integer(0)
                p = parentbr.prime()
                self._relprecs = [c.valuation(p) + parentbr.precision_cap() for c in x.list()]
                self._comp_valaddeds()
                self._normalized = len(self._valaddeds) == 0 or (min(self._valaddeds) == 0)
                self._list = None
                if not absprec is infinity or not relprec is infinity:
                    self._adjust_prec_info(absprec, relprec)
                return
            else:
                x = [parentbr(a) for a in x.list()]
                check = False
        elif isinstance(x, dict):
            zero = parentbr.zero()
            n = max(x.keys()) if x else 0
            v = [zero for _ in xrange(n + 1)]
            for i, z in x.iteritems():
                v[i] = z
            x = v
        elif isinstance(x, pari_gen):
            x = [parentbr(w) for w in x.list()]
            check = False
        #The default behavior if we haven't already figured out what the type is is to assume it coerces into the base_ring as a constant polynomial
        elif not isinstance(x, list):
            x = [x] # constant polynomial

        # In contrast to other polynomials, the zero element is not distinguished
        # by having its list empty. Instead, it has list [0]
        if not x:
            x = [parentbr.zero()]
        if check:
            x = [parentbr(z) for z in x]

        # Remove this -- for p-adics this is terrible, since it kills any non exact zero.
        #if len(x) == 1 and not x[0]:
        #    x = []

        self._list = x
        self._valaddeds = [a.valuation() for a in x]
        self._valbase = sage.rings.padics.misc.min(self._valaddeds)
        if self._valbase is infinity:
            self._valaddeds = []
            self._relprecs = []
            self._poly = PolynomialRing(ZZ, parent.variable_name())()
            self._normalized = True
            if not absprec is infinity or not relprec is infinity:
                self._adjust_prec_info(absprec, relprec)
        else:
            self._valaddeds = [c - self._valbase for c in self._valaddeds]
            self._relprecs = [a.precision_absolute() - self._valbase for a in x]
            self._poly = PolynomialRing(ZZ, parent.variable_name())([a >> self._valbase for a in x])
            self._normalized = True
            if not absprec is infinity or not relprec is infinity:
                self._adjust_prec_info(absprec, relprec)

    def _new_constant_poly(self, a, P):
        """
        Create a new constant polynomial in parent P with value a.

        ASSUMPTION:

        The value a must be an element of the base ring of P. That
        assumption is not verified.

        EXAMPLE::

            sage: R.<t> = Zp(5)[]
            sage: t._new_constant_poly(O(5),R)
            (O(5))

        """
        return self.__class__(P,[a], check=False)

    def _normalize(self):
        # Currently slow: need to optimize
        if not self._normalized:
            if self._valaddeds is None:
                self._comp_valaddeds()
            val = sage.rings.padics.misc.min(self._valaddeds)
            prime_pow = self.base_ring().prime_pow
            selflist = self._poly.list()
            if val is infinity:
                pass
            elif val != 0:
                self._relprecs = [max(prec - val,0) for prec in self._relprecs]
                v = [Integer(0) if (e is infinity) else ((c // prime_pow(val)) % prime_pow(e)) for (c,e) in zip(selflist, self._relprecs)]
                self._poly = self._poly.parent()(v, check=False)
                self._valbase += val
                self._valaddeds = [c - val for c in self._valaddeds]
            else:
                self._poly = self._poly.parent()([Integer(0) if (e is infinity) else (c % prime_pow(e)) for (c,e) in zip(selflist, self._relprecs)], check=False)
            self._normalized = True

    def _reduce_poly(self):
        selflist = self._poly.list()
        prime_pow = self.base_ring().prime_pow
        self._poly = self._poly.parent()([Integer(0) if (e is infinity) else (c % prime_pow(e)) for (c, e) in zip(selflist, self._relprecs)], check=False)

    def __reduce__(self):
        """
        For pickling.  This function is here because the relative precisions were getting screwed up for some reason.
        """
        return make_padic_poly, (self.parent(), (self._poly, self._valbase, self._relprecs, self._normalized, self._valaddeds, self._list), 0)

    def _comp_list(self):
        """
        Recomputes the list of coefficients.

        EXAMPLES::

            sage: K = Qp(13,7)
            sage: R.<t> = K[]
            sage: a = t[0:1]
            sage: a._comp_list()
            sage: a
            0
        """
        if self.degree() == -1 and self._valbase == infinity:
            self._list = []
            return self._list
        polylist = self._poly.list()
        polylen = len(polylist)
        self._list = [self.base_ring()(polylist[i], absprec = self._relprecs[i]) << self._valbase for i in range(polylen)] \
                     + [self.base_ring()(0, absprec = self._relprecs[i] + self._valbase) for i in range(polylen, len(self._relprecs))]
        while len(self._list) > 0 and self._list[-1]._is_exact_zero():
            self._list.pop()

    def _comp_valaddeds(self):
        self._valaddeds = []
        for i in range(self._poly.degree() + 1):
            tmp = self._poly.list()[i].valuation(self.parent().base_ring().prime())
            if tmp is infinity or tmp > self._relprecs[i]:
                self._valaddeds.append(self._relprecs[i])
            else:
                self._valaddeds.append(tmp)
        for i in range(self._poly.degree() + 1, len(self._relprecs)):
            self._valaddeds.append(self._relprecs[i])

    def _adjust_prec_info(self, absprec=infinity, relprec=infinity):
        r"""
        Assumes that self._poly, self._val and self._relprec are set initially and adjusts self._val and self._relprec to the termwise minimum of absprec and relprec.
        """
        return

#         min = sage.rings.padics.misc.min
#         slen = len(self._relprec)
#         if isinstance(absprec, list):
#             alen = len(absprec)
#         elif absprec is infinity:
#             alen = 0
#             absprec = []
#         else:
#             alen = 1
#         if isinstance(relprec, list):
#             rlen = len(relprec)
#         elif relprec is infinity:
#             rlen = 0
#             relprec = []
#         else:
#             rlen = 1
#         preclen = max(slen, rlen, alen)
#         if not isinstance(absprec, list):
#             absprec = [absprec] * preclen
#         if not isinstance(relprec, list):
#             relprec = [relprec] * preclen
#         vallist = [c.valuation(self.base_ring().prime()) + self._val for c in self._poly.list()] #######
#         vmin = min(vallist)
#         amin = min(absprec)
#         if amin < vmin:
#             vmin = amin
#         if vmin < self._val:
#             vadjust =

#         if not isinstance(absprec, list):
#             self._val = min(vallist + [absprec])
#             absprec = [absprec] * preclen
#         else:
#             self._val = padics.misc.min(vallist + absprec)
#             absprec = absprec + [infinity] * (preclen - len(absprec))
#         if self._val is infinity:
#             self._relprec = []
#             return
#         if not isinstance(relprec, list):
#             relprec = [relprec] * preclen
#         else:
#             relprec = relprec + [parent.base_ring().precision_cap()] * (preclen - len(relprec))
#         self._relprec = [min(a, v + r) - self._val for (a, r, v) in zip(absprec, relprec, vallist)]
#Remember to normalize at the end if self._normalized is true because you need to reduce mod p^n

    def _getprecpoly(self, n):
        one = Integer(1)
        return self._poly.parent()([(0 if (c is infinity) else (one << (n * c))) for c in self._relprecs])

    def _getvalpoly(self, n):
        one = Integer(1)
        if self._valaddeds is None:
            self._comp_valaddeds()
        return self._poly.parent()([(0 if (c is infinity) else (one << (n * c))) for c in self._valaddeds] + \
                                   [(0 if (c is infinity) else (one << (n * c))) for c in self._relprecs[len(self._valaddeds):]])

    def list(self):
        """
        Returns a list of coefficients of self.

        NOTE:
        The length of the list returned may be greater
        than expected since it includes any leading zeros
        that have finite absolute precision.

        EXAMPLES::

            sage: K = Qp(13,7)
            sage: R.<t> = K[]
            sage: a = 2*t^3 + 169*t - 1
            sage: a
            (2 + O(13^7))*t^3 + (13^2 + O(13^9))*t + (12 + 12*13 + 12*13^2 + 12*13^3 + 12*13^4 + 12*13^5 + 12*13^6 + O(13^7))
            sage: a.list()
            [12 + 12*13 + 12*13^2 + 12*13^3 + 12*13^4 + 12*13^5 + 12*13^6 + O(13^7),
             13^2 + O(13^9),
             0,
             2 + O(13^7)]
         """

        if self._list is None:
            self._comp_list()
        return list(self._list)

    def content(self):
        """
        Returns the content of self.

        The content is returned to maximum precision: since it's only
        defined up to a unit, we can choose p^k as the representative.

        Returns an error if the base ring is actually a field: this is
        probably not a function you want to be using then, since any
        nonzero answer will be correct.

        The content of the exact zero polynomial is zero.

        EXAMPLES::

            sage: K = Zp(13,7)
            sage: R.<t> = K[]
            sage: a = 13^7*t^3 + K(169,4)*t - 13^4
            sage: a.content()
            13^2 + O(13^9)
            sage: R(0).content()
            0
            sage: P.<x> = ZZ[]
            sage: f = x + 2
            sage: f.content()
            1
            sage: fp = f.change_ring(pAdicRing(2, 10))
            sage: fp
            (1 + O(2^10))*x + (2 + O(2^11))
            sage: fp.content()
            1 + O(2^10)
            sage: (2*fp).content()
            2 + O(2^11)
        """
        if self.base_ring().is_field():
            raise TypeError("ground ring is a field.  Answer is only defined up to units.")
        if self._normalized:
            return self.base_ring()(self.base_ring().prime_pow(self._valbase))
        if self._valaddeds is None:
            self._comp_valaddeds()
        return self.base_ring()(self.base_ring().prime_pow(min(self._valaddeds) + self._valbase))

    def lift(self):
        """
        Returns an integer polynomial congruent to this one modulo the precision of each coefficient.

        NOTE: The lift that is returned will not necessarily be the same for polynomials with
              the same coefficients (ie same values and precisions): it will depend on how
              the polynomials are created.

        EXAMPLES::

            sage: K = Qp(13,7)
            sage: R.<t> = K[]
            sage: a = 13^7*t^3 + K(169,4)*t - 13^4
            sage: a.lift()
            62748517*t^3 + 169*t - 28561
        """
        return self.base_ring().prime_pow(self._valbase) * self._poly

    def __getitem__(self, n):
        """
        Returns the coefficient of x^n if `n` is an integer,
        returns the monomials of self of degree in slice `n` if `n` is a slice.

        EXAMPLES::

            sage: K = Qp(13,7)
            sage: R.<t> = K[]
            sage: a = 13^7*t^3 + K(169,4)*t - 13^4
            sage: a[1]
            13^2 + O(13^4)
            sage: a[1:2]
            (13^2 + O(13^4))*t
        """
        if isinstance(n, slice):
            start, stop = n.start, n.stop
            if start is None:
                start = 0
            elif start < 0:
                start = len(self._relprecs) + start
                if start < 0:
                    raise IndexError("list index out of range")
            if stop > len(self._relprecs) or stop is None:
                stop = len(self._relprecs)
            elif stop < 0:
                stop = len(self._relprecs) + stop
                if stop < 0:
                    raise IndexError("list index out of range")
            if start >= stop:
                return Polynomial_padic_capped_relative_dense(self.parent(), [])
            else:
                return Polynomial_padic_capped_relative_dense(self.parent(),
                    (self._poly[start:stop], self._valbase,
                    [infinity]*start + self._relprecs[start:stop], False,
                    None if self._valaddeds is None else [infinity]*start
                    + self._valaddeds[start:stop],
                    None if self._list is None else [self.base_ring()(0)]
                    * start + self._list[start:stop]), construct = True)
        else:
            if n >= len(self._relprecs):
                return self.base_ring()(0)
            if not self._list is None:
                return self._list[n]
            return self.base_ring()(self.base_ring().prime_pow(self._valbase)
                * self._poly[n], absprec = self._valbase + self._relprecs[n])

    def _add_(self, right):
        """
        Returns the sum of self and right.

        EXAMPLES::

            sage: K = Qp(13,7)
            sage: R.<t> = K[]
            sage: a = t^4 + 17*t^2 + 1
            sage: b = -t^4 + 9*t^2 + 13*t - 1
            sage: c = a + b; c
            (O(13^7))*t^4 + (2*13 + O(13^7))*t^2 + (13 + O(13^8))*t + (O(13^7))
            sage: c.list()
            [O(13^7), 13 + O(13^8), 2*13 + O(13^7), 0, O(13^7)]
        """
        selfpoly = self._poly
        rightpoly = right._poly
        if self._valbase > right._valbase:
            selfpoly = selfpoly * self.base_ring().prime_pow(self._valbase - right._valbase)
            baseval = right._valbase
        elif self._valbase < right._valbase:
            rightpoly = rightpoly * self.base_ring().prime_pow(right._valbase - self._valbase)
            baseval = self._valbase
        else:
            baseval = self._valbase
        # Currently we don't reduce the coefficients of the answer modulo the appropriate power of p or normalize
        return Polynomial_padic_capped_relative_dense(self.parent(), \
                                                      (selfpoly + rightpoly, \
                                                       baseval, \
                                                       [min(a + self._valbase - baseval, b + right._valbase - baseval) for (a, b) in
                                                              zip(_extend_by_infinity(self._relprecs, max(len(self._relprecs), len(right._relprecs))), \
                                                                  _extend_by_infinity(right._relprecs, max(len(self._relprecs), len(right._relprecs))))], \
                                                       False, None, None), construct = True)

    def _sub_(self, right):
        """
        Returns the sum of self and right.

        EXAMPLES::

            sage: K = Qp(13,7)
            sage: R.<t> = K[]
            sage: a = t^4 + 17*t^2 + 1
            sage: b = t^4 - 9*t^2 - 13*t + 1
            sage: c = a - b; c
            (O(13^7))*t^4 + (2*13 + O(13^7))*t^2 + (13 + O(13^8))*t + (O(13^7))
            sage: c.list()
            [O(13^7), 13 + O(13^8), 2*13 + O(13^7), 0, O(13^7)]
        """
        selfpoly = self._poly
        rightpoly = right._poly
        if self._valbase > right._valbase:
            selfpoly = selfpoly * self.base_ring().prime_pow(self._valbase - right._valbase)
            baseval = right._valbase
        elif self._valbase < right._valbase:
            rightpoly = rightpoly * self.base_ring().prime_pow(right._valbase - self._valbase)
            baseval = self._valbase
        else:
            baseval = self._valbase
        # Currently we don't reduce the coefficients of the answer modulo the appropriate power of p or normalize
        return Polynomial_padic_capped_relative_dense(self.parent(), \
                                                      (selfpoly - rightpoly, \
                                                       baseval, \
                                                       [min(a + self._valbase - baseval, b + right._valbase - baseval) for (a, b) in
                                                              zip(_extend_by_infinity(self._relprecs, max(len(self._relprecs), len(right._relprecs))), \
                                                                  _extend_by_infinity(right._relprecs, max(len(self._relprecs), len(right._relprecs))))], \
                                                       False, None, None), construct = True)

    def _mul_(self, right):
        r"""
        Multiplies self and right.

        ALGORITHM: We use an algorithm thought up by Joe Wetherell to
        find the precisions of the product.  It works as follows:
        Suppose $f = \sum_i a_i x^i$ and $g = \sum_j b_j x^j$. Let $N
        = \max(\deg f, \deg g) + 1$ (in the actual implementation we
        use $N = 2^{\lfloor \log_2\max(\deg f, \deg g)\rfloor + 1}$).
        The valuations and absolute precisions of each coefficient
        contribute to the absolute precision of the kth coefficient of
        the product in the following way: for each $i + j = k$, you
        take the valuation of $a_i$ plus the absolute precision of
        $b_j$, and then take the valuation of $b_j$ plus the absolute
        precision of $a_i$, take the minimum of those two, and then
        take the minimum over all $i$, $j$ summing to $k$.

        You can simulate this as follows. Construct new polynomials of
        degree $N$:

        \begin{align*}
        A &= \sum_i N^{\mbox{valuation of $a_i$}} x^i \\
        B &= \sum_j N^{\mbox{absolute precision of $b_j$}} x^j \\
        C &= \sum_i N^{\mbox{absolute precision of $a_i$}} x^i \\
        D &= \sum_j N^{\mbox{valuation of $b_j$}} x^j \\
        \end{align*}

        Now you compute AB and CD. Because you're representing things
        'N-adically', you don't get any 'overflow', and you can just
        read off what the precisions of the product are. In fact it
        tells you more, it tells you exactly how many terms of each
        combination of valuation modulus contribute to each term of
        the product (though this feature is not currently exposed in
        our implementation.

        Since we're working 'N-adically' we can just consider
        $N^{\infty} = 0$.

        NOTE: The timing of normalization in arithmetic operations
        may very well change as we do more tests on the relative time
        requirements of these operations.

        EXAMPLES::

            sage: K = Qp(13,7)
            sage: R.<t> = K[]
            sage: a = t^4 + 17*t^2 + 1
            sage: b = -t^4 + 9*t^2 + 13*t - 1
            sage: c = a + b; c
            (O(13^7))*t^4 + (2*13 + O(13^7))*t^2 + (13 + O(13^8))*t + (O(13^7))
            sage: d = R([K(1,4), K(2, 6), K(1, 5)]); d
            (1 + O(13^5))*t^2 + (2 + O(13^6))*t + (1 + O(13^4))
            sage: e = c * d; e
            (O(13^7))*t^6 + (O(13^7))*t^5 + (2*13 + O(13^6))*t^4 + (5*13 + O(13^6))*t^3 + (4*13 + O(13^5))*t^2 + (13 + O(13^5))*t + (O(13^7))
            sage: e.list()
            [O(13^7),
             13 + O(13^5),
             4*13 + O(13^5),
             5*13 + O(13^6),
             2*13 + O(13^6),
             O(13^7),
             O(13^7)]
        """
        self._normalize()
        right._normalize()
        zzpoly = self._poly * right._poly
        if len(self._relprecs) == 0 or len(right._relprecs) == 0:
            return self.parent()(0)
        n = Integer(len(self._relprecs) + len(right._relprecs) - 1).exact_log(2) + 1
        precpoly1 = self._getprecpoly(n) * right._getvalpoly(n)
        precpoly2 = self._getvalpoly(n) * right._getprecpoly(n)
        # These two will be the same length
        tn = Integer(1) << n
        preclist = [min(a.valuation(tn), b.valuation(tn)) for (a, b) in zip(precpoly1.list(), precpoly2.list())]
        answer = Polynomial_padic_capped_relative_dense(self.parent(), (zzpoly, self._valbase + right._valbase, preclist, False, None, None), construct = True)
        answer._reduce_poly()
        return answer

    def _lmul_(self, right):
        return self._rmul_(right)

    def _rmul_(self, left):
        """
        Returns self multiplied by a constant

        EXAMPLES::

            sage: K = Qp(13,7)
            sage: R.<t> = K[]
            sage: a = t^4 + K(13,5)*t^2 + 13
            sage: K(13,7) * a
            (13 + O(13^7))*t^4 + (13^2 + O(13^6))*t^2 + (13^2 + O(13^8))
        """
        return None
        # The code below has never been tested and is somehow subtly broken.

        if self._valaddeds is None:
            self._comp_valaddeds()
        if left != 0:
            val, unit = left.val_unit()
            left_rprec = left.precision_relative()
            relprecs = [min(left_rprec + self._valaddeds[i], self._relprecs[i]) for i in range(len(self._relprecs))]
        elif left._is_exact_zero():
            return Polynomial_padic_capped_relative_dense(self.parent(), [])
        else:
            return Polynomial_padic_capped_relative_dense(self.parent(), (self._poly.parent()(0), self._valbase + left.valuation(), self._valaddeds, False, self._valaddeds, None), construct = True)
        return Polynomial_padic_capped_relative_dense(self.parent(), (self._poly._rmul_(unit), self._valbase + val, relprecs, False, self._valaddeds, None), construct = True)

    def _neg_(self):
        """
        Returns the negation of self.

        EXAMPLES::

            sage: K = Qp(13,2)
            sage: R.<t> = K[]
            sage: a = t^4 + 13*t^2 + 4
            sage: -a
            (12 + 12*13 + O(13^2))*t^4 + (12*13 + 12*13^2 + O(13^3))*t^2 + (9 + 12*13 + O(13^2))
        """
        return Polynomial_padic_capped_relative_dense(self.parent(), (-self._poly, self._valbase, self._relprecs, False, self._valaddeds, None), construct = True)

    def lshift_coeffs(self, shift, no_list = False):
        """
        Returns a new polynomials whose coefficients are multiplied by p^shift.

        EXAMPLES::

            sage: K = Qp(13, 4)
            sage: R.<t> = K[]
            sage: a = t + 52
            sage: a.lshift_coeffs(3)
            (13^3 + O(13^7))*t + (4*13^4 + O(13^8))
        """
        if shift < 0:
            return self.rshift_coeffs(-shift, no_list)
        if no_list or self._list is None:
            return Polynomial_padic_capped_relative_dense(self.parent(), (self._poly, self._valbase + shift, self._relprecs, False, self._valaddeds, None), construct = True)
        else:
            return Polynomial_padic_capped_relative_dense(self.parent(), (self._poly, self._valbase + shift, self._relprecs, False, self._valaddeds, [c.__lshift__(shift) for c in self._list]), construct = True)

    def rshift_coeffs(self, shift, no_list = False):
        """
        Returns a new polynomial whose coefficients are p-adiclly
        shifted to the right by shift.

        NOTES: Type Qp(5)(0).__rshift__? for more information.

        EXAMPLES::

            sage: K = Zp(13, 4)
            sage: R.<t> = K[]
            sage: a = t^2 + K(13,3)*t + 169; a
            (1 + O(13^4))*t^2 + (13 + O(13^3))*t + (13^2 + O(13^6))
            sage: b = a.rshift_coeffs(1); b
            (O(13^3))*t^2 + (1 + O(13^2))*t + (13 + O(13^5))
            sage: b.list()
            [13 + O(13^5), 1 + O(13^2), O(13^3)]
            sage: b = a.rshift_coeffs(2); b
            (O(13^2))*t^2 + (O(13))*t + (1 + O(13^4))
            sage: b.list()
            [1 + O(13^4), O(13), O(13^2)]
        """
        if shift < 0:
            return self.lshift_coeffs(-shift, no_list) # We can't just absorb this into the next if statement because we allow rshift to preserve _normalized
        if self.base_ring().is_field() or shift <= self._valbase:
            if no_list or self._list is None:
                return Polynomial_padic_capped_relative_dense(self.parent(), (self._poly, self._valbase - shift, self._relprecs, self._normalized, self._valaddeds, None), construct = True)
            else:
                return Polynomial_padic_capped_relative_dense(self.parent(), (self._poly, self._valbase - shift, self._relprecs, self._normalized, self._valaddeds, [c.__rshift__(shift) for c in self._list]), construct = True)
        else:
            shift = shift - self._valbase
            fdiv = self.base_ring().prime_pow(shift)
            return Polynomial_padic_capped_relative_dense(self.parent(), (self._poly // fdiv, 0, [0 if a <= shift else a - shift for a in self._relprecs], False, None, None), construct = True)

    #def __floordiv__(self, right):
    #    if is_Polynomial(right) and right.is_constant() and right[0] in self.base_ring():
    #        d = self.base_ring()(right[0])
    #    elif (right in self.base_ring()):
    #        d = self.base_ring()(right)
    #    else:
    #        raise NotImplementedError
    #    return self._rmul_(self.base_ring()(~d.unit_part())).rshift_coeffs(d.valuation())

    def _unsafe_mutate(self, n, value):
        """
        It's a really bad idea to use this function for p-adic polynomials.  There are speed issues, and it may not be bug-free currently.
        """
        n = int(n)
        value = self.base_ring()(value)
        if self.is_gen():
            raise ValueError("cannot modify generator")
        if n < 0:
            raise IndexError("n must be >= 0")
        if self._valbase is infinity:
            if value._is_exact_zero():
                return
            self._valbase = value.valuation()
            if value != 0:
                self._poly._unsafe_mutate(self, n, value.unit_part().lift())
                self._relprecs = [infinity] * n + [value.precision_relative()]
            else:
                self._relprecs = [infinity] * n + [0]
            self._valaddeds = [infinity] * n + [0]
            zero = self.base_ring()(0)
            self._list = [zero] * n + [value]
            self._normalized = True
        elif value.valuation() >= self._valbase:
            # _valbase and _normalized stay the same
            if value != 0:
                self._poly._unsafe_mutate(self, n, (value.__rshift__(self._valbase)).lift())
            else:
                self._poly._unsafe_mutate(self, n, 0)
            if n < len(self._relprecs):
                self._relprecs[n] = value.precision_absolute() - self._valbase
                if not self._valaddeds is None:
                    self._valaddeds[n] = value.valuation() - self._valbase
                if not self._list is None:
                    self._list[n] = value
            else:
                self._relprecs.extend([infinity] * (n - len(self._relprecs)) + [value.precision_absolute() - self._valbase])
                if not self._valaddeds is None:
                    self._valaddeds.extend([infinity] * (n - len(self._relprecs)) + [value.valuation() - self._valbase])
                if not self._list is None:
                    zero = self.base_ring()(0)
                    self._list.extend([zero] * (n - len(self._relprecs)) + [value])
        else:
            basediff = self._valbase - value.valuation()
            self._valbase = value.valuation()
            if not self._valaddeds is None:
                self._valaddeds = [c + basediff for c in self._valaddeds]
            self._poly = self._poly * self.base_ring().prime_pow(basediff)
            if value != 0:
                self._poly._unsafe_mutate(self, n, value.unit_part().lift())
            else:
                self._poly._unsafe_mutate(self, n, 0)
            if n < len(self._relprecs):
                self._relprecs[n] = value.precision_relative()
            else:
                self._relprecs.extend([infinity] * (n - len(self._relprecs)) + [value.precision_relative()])
            self._normalized = False
            if not self._list is None:
                if n < len(self._list):
                    self._list[n] = value
                else:
                    zero = self._base_ring()(0)
                    self._list.extend([zero] * (n - len(self._list)) + [value])

    def _pari_(self, variable = None):
        if variable is None:
            variable = self.parent().variable_name()
        return pari(self.list()).Polrev(variable)

    def __copy__(self):
        return Polynomial_padic_capped_relative_dense(self.parent(), (copy.copy(self._poly), self._valbase, copy.copy(self._relprecs), self._normalized, copy.copy(self._valaddeds), copy.copy(self._list)), construct = True)

    def degree(self):
        """
        Returns the degree of self, i.e., the largest $n$ so that the
        coefficient of $x^n$ does not compare equal to $0$.

        EXAMPLES::

            sage: K = Qp(3,10)
            sage: x = O(3^5)
            sage: li =[3^i * x for i in range(0,5)]; li
            [O(3^5), O(3^6), O(3^7), O(3^8), O(3^9)]
            sage: R.<T> = K[]
            sage: f = R(li); f
            (O(3^9))*T^4 + (O(3^8))*T^3 + (O(3^7))*T^2 + (O(3^6))*T + (O(3^5))
            sage: f.degree()
            -1
        """
        self._normalize()
        return Integer(self._poly.degree())

    def prec_degree(self):
        """
        Returns the largest $n$ so that precision information is
        stored about the coefficient of $x^n$.

        Always greater than or equal to degree.
        """
        return len(self._relprecs) - 1

    def precision_absolute(self, n = None):
        """
        Returns absolute precision information about self.

        INPUT:
        self -- a p-adic polynomial
        n -- None or an integer (default None).

        OUTPUT:
        If n == None, returns a list of absolute precisions of coefficients.  Otherwise,
        returns the absolute precision of the coefficient of x^n.
        """
        if n is None:
            return [c + self._valbase for c in self._relprecs]
        return self._relprecs[n] + self._valbase

    def precision_relative(self, n = None):
        """
        Returns relative precision information about self.

        INPUT:
        self -- a p-adic polynomial
        n -- None or an integer (default None).

        OUTPUT:
        If n == None, returns a list of relative precisions of coefficients.  Otherwise,
        returns the relative precision of the coefficient of x^n.
        """
        if n is None:
            self._normalize()
            return copy.copy(self._relprecs)
        n = int(n)
        if n < 0 or n >= len(self._relprecs) or self._relprecs[n] is infinity:
            return Integer(0)
        if self._valaddeds is None:
            return self._relprecs[n] - self._poly[n].valuation(self.base_ring().prime())
        else:
            return self._relprecs[n] - self._valaddeds[n]

    def valuation_of_coefficient(self, n = None):
        """
        Returns valuation information about self's coefficients.

        INPUT:
        self -- a p-adic polynomial
        n -- None or an integer (default None).

        OUTPUT:
        If n == None, returns a list of valuations of coefficients.  Otherwise,
        returns the valuation of the coefficient of x^n.
        """
        if n is None:
            self._normalize()
            return [c + self._valbase for c in self._valadded]
        n = int(n)
        if n < 0 or n >= len(self._relprecs):
            return infinity
        if self._valaddeds is None:
            return self._valbase + self._poly[n].valuation(self.base_ring().prime())
        else:
            return self._valbase + self._valaddeds[n]

    def valuation(self, val_of_var = None):
        """
        Returns the valuation of self

        INPUT:
        self -- a p-adic polynomial
        val_of_var -- None or a rational (default None).

        OUTPUT:
        If val_of_var == None, returns the largest power of the variable dividing self.  Otherwise,
        returns the valuation of self where the variable is assigned valuation val_of_var
        """
        if val_of_var is None:
            return self._poly.valuation()
        if self._valaddeds is None:
            self._comp_valaddeds()
        return self._valbase + min([self._valaddeds[i] + val_of_var * i for i in range(len(self._valaddeds))])

    def reverse(self, n = None):
        """
        Returns a new polynomial whose coefficients are the reversed coefficients of self, where self is considered as a polynomial of degree n.

        If n is None, defaults to the degree of self.
        If n is smaller than the degree of self, some coefficients will be discarded.

        EXAMPLES::

            sage: K = Qp(13,7)
            sage: R.<t> = K[]
            sage: f = t^3 + 4*t; f
            (1 + O(13^7))*t^3 + (4 + O(13^7))*t
            sage: f.reverse()
            (4 + O(13^7))*t^2 + (1 + O(13^7))
            sage: f.reverse(3)
            (4 + O(13^7))*t^2 + (1 + O(13^7))
            sage: f.reverse(2)
            (4 + O(13^7))*t
            sage: f.reverse(4)
            (4 + O(13^7))*t^3 + (1 + O(13^7))*t
            sage: f.reverse(6)
            (4 + O(13^7))*t^5 + (1 + O(13^7))*t^3
        """
        if n is None:
            n = self._poly.degree()
        zzlist = self._poly.list()[:(n+1)] + [0] * (n - self._poly.degree())
        zzlist.reverse()
        relprec = self._relprecs[:(n+1)] + [infinity] * (n - self.prec_degree())
        relprec.reverse()
        if self._valaddeds is None:
            valadded = None
        else:
            valadded = self._valaddeds[:(n+1)] + [infinity] * (n - self.prec_degree())
            valadded.reverse()
        if self._list is None:
            L = None
        else:
            L = self._list[:(n+1)] + [self.base_ring()(0)] * (n - self.prec_degree())
            L.reverse()
        return Polynomial_padic_capped_relative_dense(self.parent(), (self._poly.parent()(zzlist), self._valbase, relprec, self._normalized, valadded, L), construct = True)

    def rescale(self, a):
        r"""
        Return f(a*X)

        NOTE:  Need to write this function for integer polynomials before this works.

        EXAMPLES::

            sage: K = Zp(13, 5)
            sage: R.<t> = K[]
            sage: f = t^3 + K(13, 3) * t
            sage: f.rescale(2)  # not implemented
        """
        negval = False
        try:
            a = self.base_ring()(a)
        except ValueError as msg:
            if msg == "element has negative valuation.":
                negval = True
            else:
                raise ValueError(msg)
        if negval:
            return self.parent().base_extend(self.base_ring().fraction_field())(self).rescale(a)
        if self.base_ring().is_field() and a.valuation() < 0:
            D = self.prec_degree()
            return a**D * self.reverse(D).rescale(~a).reverse(D)
        aval = a.valuation()
        arprec = a.precision_relative()
        if self._valaddeds is None:
            self._comp_valaddeds()
        valadded = [self._valaddeds[i] + aval * i for i in range(len(self._valaddeds))]
        relprec = [infinity if (self._relprecs[i] is infinity) else (min(self._relprecs[i] - self._valaddeds[i], arprec) + aval * i + self._valaddeds[i]) for i in range(len(self._relprecs))]
        relprec[0] = self._relprecs[0]
        if a == 0:
            zzpoly = self._poly.parent()(0)
        else:
            zzpoly = self._poly.rescale(Integer(a))
        return Polynomial_padic_capped_relative_dense(self.parent(), (zzpoly, self._valbase, relprec, False, valadded, None), construct = True)

    def quo_rem(self, right):
        return self._quo_rem_naive(right)

    def _quo_rem_naive(self, right):
        """
        An implementation of quo_rem that doesn't have good run-time or precision characteristics.
        """
        K = self.base_ring().fraction_field()
        f = self.base_extend(K)
        g = right.base_extend(K)
        if g == 0:
            raise ZeroDivisionError("cannot divide by a polynomial indistinguishable from 0")
        x = f.parent().gen()
        quo = f.parent()(0)
        while f.degree() >= g.degree():
            a = f.leading_coefficient() / g.leading_coefficient()
            quo = quo + a * (x ** (f.degree() - g.degree()))
            f = f - a * (x ** (f.degree() - g.degree())) * g
        return (quo, f)

    #def gcd(self, right):
    #    raise NotImplementedError

    #def lcm(self, right):
    #    raise NotImplementedError

    @coerce_binop
    def xgcd(self, right):
        """
        Extended gcd of ``self`` and ``other``.

        INPUT:

        - ``other`` -- an element with the same parent as ``self``

        OUTPUT:

        Polynomials ``g``, ``u``, and ``v`` such that ``g = u*self + v*other``

        .. WARNING::

            The computations are performed using the standard Euclidean
            algorithm which might produce mathematically incorrect results in
            some cases. See :trac:`13439`.

        EXAMPLES::

            sage: R.<x> = Qp(3,3)[]
            sage: f = x + 1
            sage: f.xgcd(f^2)
            ((1 + O(3^3))*x + (1 + O(3^3)), (1 + O(3^3)), 0)

        In these examples the results are incorrect, see :trac:`13439`::

            sage: R.<x> = Qp(3,3)[]
            sage: f = 3*x + 7
            sage: g = 5*x + 9
            sage: f.xgcd(f*g)  # known bug
            ((3 + O(3^4))*x + (1 + 2*3 + O(3^3)), (1 + O(3^3)), 0)

            sage: R.<x> = Qp(3)[]
            sage: f = 490473657*x + 257392844/729
            sage: g = 225227399/59049*x - 8669753175
            sage: f.xgcd(f*g)  # known bug
            ((3^3 + 3^5 + 2*3^6 + 2*3^7 + 3^8 + 2*3^10 + 2*3^11 + 3^12 + 3^13 + 3^15 + 2*3^16 + 3^18 + O(3^23))*x + (2*3^-6 + 2*3^-5 + 3^-3 + 2*3^-2 + 3^-1 + 2*3 + 2*3^2 + 2*3^3 + 2*3^4 + 3^6 + 2*3^7 + 2*3^8 + 2*3^9 + 2*3^10 + 3^11 + O(3^14)), (1 + O(3^20)), 0)

        """
        from sage.misc.stopgap import stopgap
        stopgap("Extended gcd computations over p-adic fields are performed using the standard Euclidean algorithm which might produce mathematically incorrect results in some cases.", 13439)

        from sage.rings.polynomial.polynomial_element_generic import Polynomial_generic_field
        return Polynomial_generic_field.xgcd(self,right)

    #def discriminant(self):
    #    raise NotImplementedError

    def disc(self):
        return self.discriminant()

    #def resultant(self):
    #    raise NotImplementedError

    def newton_polygon(self):
        r"""
        Returns the Newton polygon of this polynomial.

        .. NOTE::

            If some coefficients have not enough precision an error is raised.

        OUTPUT:

        - a Newton polygon

        EXAMPLES::

            sage: K = Qp(2, prec=5)
            sage: P.<x> = K[]
            sage: f = x^4 + 2^3*x^3 + 2^13*x^2 + 2^21*x + 2^37
            sage: f.newton_polygon()
            Finite Newton polygon with 4 vertices: (0, 37), (1, 21), (3, 3), (4, 0)

            sage: K = Qp(5)
            sage: R.<t> = K[]
            sage: f = 5 + 3*t + t^4 + 25*t^10
            sage: f.newton_polygon()
            Finite Newton polygon with 4 vertices: (0, 1), (1, 0), (4, 0), (10, 2)

        Here is an example where the computation fails because precision is
        not sufficient::

            sage: g = f + K(0,0)*t^4; g
            (5^2 + O(5^22))*t^10 + (O(5^0))*t^4 + (3 + O(5^20))*t + (5 + O(5^21))
            sage: g.newton_polygon()
            Traceback (most recent call last):
            ...
            PrecisionError: The coefficient of t^4 has not enough precision

        TESTS::

            sage: (5*f).newton_polygon()
            Finite Newton polygon with 4 vertices: (0, 2), (1, 1), (4, 1), (10, 3)

        AUTHOR:

        - Xavier Caruso (2013-03-20)
        """
        if self._valaddeds is None:
            self._comp_valaddeds()
        from sage.geometry.newton_polygon import NewtonPolygon
        valbase = self._valbase
        polygon = NewtonPolygon([(x, val + valbase)
                                 for x, val in enumerate(self._valaddeds)])
        polygon_prec = NewtonPolygon([(x, val + valbase)
                                      for x, val in enumerate(self._relprecs)])
        vertices = polygon.vertices(copy=False)
        vertices_prec = polygon_prec.vertices(copy=False)

        # The two following tests should always fail (i.e. the corresponding errors
        # should never be raised). However, it's probably safer to keep them.
        if vertices[0][0] > vertices_prec[0][0]:
            raise PrecisionError("The constant coefficient has not enough precision")
        if vertices[-1][0] < vertices_prec[-1][0]:
            raise PrecisionError("The leading coefficient has not enough precision")

        for (x, y) in vertices:
            if polygon_prec(x) <= y:
                raise PrecisionError("The coefficient of %s^%s has not enough precision" % (self.parent().variable_name(), x))
        return polygon

    def newton_slopes(self, repetition=True):
        """
        Returns a list of the Newton slopes of this polynomial.

        These are the valuations of the roots of this polynomial.

        If ``repetition`` is ``True``, each slope is repeated a number of
        times equal to its multiplicity. Otherwise it appears only one time.

        INPUT:

        - ``repetition`` -- boolean (default ``True``)

        OUTPUT:

        - a list of rationals

        EXAMPLES::

            sage: K = Qp(5)
            sage: R.<t> = K[]
            sage: f = 5 + 3*t + t^4 + 25*t^10
            sage: f.newton_polygon()
            Finite Newton polygon with 4 vertices: (0, 1), (1, 0), (4, 0), (10, 2)
            sage: f.newton_slopes()
            [1, 0, 0, 0, -1/3, -1/3, -1/3, -1/3, -1/3, -1/3]

            sage: f.newton_slopes(repetition=False)
            [1, 0, -1/3]

        AUTHOR:

        - Xavier Caruso (2013-03-20)
        """
        polygon = self.newton_polygon()
        return [-s for s in polygon.slopes(repetition=repetition)]

    def hensel_lift(self, a):
        raise NotImplementedError

    def factor_mod(self):
        r"""
        Returns the factorization of self modulo p.
        """
        self._normalize()
        if self._valbase < 0:
            raise ValueError("Polynomial does not have integral coefficients")
        elif self._valbase > 0:
            raise ValueError("Factorization of the zero polynomial not defined")
        elif min(self._relprecs) <= 0:
            raise PrecisionError("Polynomial is not known to high enough precision")
        return self._poly.factor_mod(self.base_ring().prime())