Example #1
0
    def _coerce_map_from_(self, other):
        """
        TESTS::
            sage: from psage.modform.fourier_expansion_framework.monoidpowerseries.monoidpowerseries_basicmonoids import *
            sage: from psage.modform.fourier_expansion_framework.monoidpowerseries.monoidpowerseries_module import *
            sage: from psage.modform.fourier_expansion_framework.monoidpowerseries.monoidpowerseries_element import *
            sage: from psage.modform.fourier_expansion_framework.gradedexpansions.gradedexpansion_grading import DegreeGrading
            sage: from psage.modform.fourier_expansion_framework.gradedexpansions.gradedexpansion_module import *
            sage: m = FreeModule(QQ, 3)
            sage: mpsm = MonoidPowerSeriesModule(m, NNMonoid(False))
            sage: mps = mpsm.base_ring()
            sage: ger = GradedExpansionModule_class(Sequence([MonoidPowerSeries(mps, {1: 1}, mps.monoid().filter(4))]), Sequence([MonoidPowerSeries(mpsm, {1: m([1,1,1]), 2: m([1,3,-3])}, mpsm.monoid().filter(4))]), PolynomialRing(QQ, ['a', 'b']).ideal(0), DegreeGrading((1,2)))
            sage: ger._coerce_map_from_(ZZ)
        """
        if other is self.relations().ring():
            from sage.structure.coerce_maps import CallableConvertMap

            return CallableConvertMap(other, self, self._element_constructor_)

        if isinstance(other, GradedExpansionSubmodule_abstract):
            if other.graded_ambient() is self \
              or self.has_coerce_map_from(other.graded_ambient()) :
                from sage.structure.coerce_maps import CallableConvertMap

                return CallableConvertMap(
                    other, self,
                    other._graded_expansion_submodule_to_graded_ambient_)

        return Module._coerce_map_from_(self, other)
Example #2
0
    def _coerce_map_from_(self, R):
        """
        EXAMPLES::

            sage: L.<x,y> = LaurentPolynomialRing(QQ)
            sage: L.coerce_map_from(QQ)
            Composite map:
              From: Rational Field
              To:   Multivariate Laurent Polynomial Ring in x, y over Rational Field
              Defn:   Polynomial base injection morphism:
                      From: Rational Field
                      To:   Multivariate Polynomial Ring in x, y over Rational Field
                    then
                      Call morphism:
                      From: Multivariate Polynomial Ring in x, y over Rational Field
                      To:   Multivariate Laurent Polynomial Ring in x, y over Rational Field
        """

        if R is self._R:
            from sage.structure.coerce_maps import CallableConvertMap
            return CallableConvertMap(R,
                                      self,
                                      self._element_constructor_,
                                      parent_as_first_arg=False)
        else:
            f = self._R.coerce_map_from(R)
            if f is not None:
                from sage.categories.homset import Hom
                from sage.categories.morphism import CallMorphism
                return CallMorphism(Hom(self._R, self)) * f
Example #3
0
    def _coerce_map_from_(self, S):
        """
        Return a coerce map from ``S``.

        EXAMPLES::

            sage: f = QQ.coerce_map_from(ZZ); f # indirect doctest
            Natural morphism:
              From: Integer Ring
              To:   Rational Field
            sage: f(3)
            3
            sage: f(3^99) - 3^99
            0
            sage: f = QQ.coerce_map_from(int); f # indirect doctest
            Native morphism:
              From: Set of Python objects of class 'int'
              To:   Rational Field
            sage: f(44)
            44

        ::

            sage: QQ.coerce_map_from(long) # indirect doctest py2
            Native morphism:
              From: Set of Python objects of class 'long'
              To:   Rational Field

        ::

            sage: L = Localization(ZZ, (3,5))
            sage: 1/45 in L  # indirect doctest
            True
            sage: 1/43 in L  # indirect doctest
            False
        """
        global ZZ
        from . import rational
        if ZZ is None:
            from . import integer_ring
            ZZ = integer_ring.ZZ
        if S is ZZ:
            return rational.Z_to_Q()
        elif S is _long_type:
            return rational.long_to_Q()
        elif S is int:
            return rational.int_to_Q()
        elif ZZ.has_coerce_map_from(S):
            return rational.Z_to_Q() * ZZ._internal_coerce_map_from(S)
        from sage.rings.localization import Localization
        if isinstance(S, Localization):
            if S.fraction_field() is self:
                from sage.structure.coerce_maps import CallableConvertMap
                return CallableConvertMap(S,
                                          self,
                                          lambda x: x._value,
                                          parent_as_first_arg=False)
Example #4
0
 def _coerce_map_from_(self, other):
     r"""
     TESTS::
         sage: from psage.modform.fourier_expansion_framework.monoidpowerseries.monoidpowerseries_basicmonoids import *
         sage: from psage.modform.fourier_expansion_framework.monoidpowerseries.monoidpowerseries_ring import MonoidPowerSeriesRing
         sage: mps = MonoidPowerSeriesRing(QQ, NNMonoid(False))
         sage: mps.has_coerce_map_from( MonoidPowerSeriesRing(ZZ, NNMonoid(False)) ) # indirect doctest
         True
     """
     if isinstance(other, MonoidPowerSeriesAmbient_abstract):
         if self.monoid() == other.monoid() and \
            self.coefficient_domain().has_coerce_map_from(other.coefficient_domain()) :
             from sage.structure.coerce_maps import CallableConvertMap
             return CallableConvertMap(other, self,
                                       self._element_constructor_)
Example #5
0
    def _coerce_map_from_(self, R):
        """
        EXAMPLES::

            sage: L.<x,y> = LaurentPolynomialRing(QQ)
            sage: L.coerce_map_from(QQ)
            Composite map:
              From: Rational Field
              To:   Multivariate Laurent Polynomial Ring in x, y over Rational Field
              Defn:   Polynomial base injection morphism:
                      From: Rational Field
                      To:   Multivariate Polynomial Ring in x, y over Rational Field
                    then
                      Call morphism:
                      From: Multivariate Polynomial Ring in x, y over Rational Field
                      To:   Multivariate Laurent Polynomial Ring in x, y over Rational Field

        Let us check that coercion between Laurent Polynomials over
        different base rings works (:trac:`15345`)::

            sage: R = LaurentPolynomialRing(ZZ, 'x')
            sage: T = LaurentPolynomialRing(QQ, 'x')
            sage: R.gen() + 3*T.gen()
            4*x
        """
        if R is self._R or (isinstance(R, LaurentPolynomialRing_generic)
                            and self._R.has_coerce_map_from(R._R)):
            from sage.structure.coerce_maps import CallableConvertMap
            return CallableConvertMap(R,
                                      self,
                                      self._element_constructor_,
                                      parent_as_first_arg=False)
        elif isinstance(R, LaurentPolynomialRing_generic) and \
             R.variable_names() == self.variable_names() and \
             self.base_ring().has_coerce_map_from(R.base_ring()):
            return True

        f = self._R.coerce_map_from(R)
        if f is not None:
            from sage.categories.homset import Hom
            from sage.categories.morphism import CallMorphism
            return CallMorphism(Hom(self._R, self)) * f
Example #6
0
 def _coerce_map_from_(self, other):
     """
     TESTS::
         sage: from psage.modform.fourier_expansion_framework.modularforms.modularform_ambient import *
         sage: from psage.modform.fourier_expansion_framework.modularforms.modularform_testtype import *
         sage: from psage.modform.fourier_expansion_framework.monoidpowerseries.monoidpowerseries_basicmonoids import *
         sage: ma = ModularFormsAmbient( QQ, ModularFormTestType_scalar(), NNFilter(5) )
         sage: ma._coerce_map_from_(ma)
         Conversion via _element_constructor_ map:
           From: Graded expansion ring with generators g1, g2, g3, g4, g5
           To:   Graded expansion ring with generators g1, g2, g3, g4, g5
     """
     from sage.structure.coerce_maps import CallableConvertMap
     
     if isinstance(other, ModularFormsRing_generic) and \
        self.base_ring().has_coerce_map_from(other.base_ring()) and \
        self.type().is_vector_valued() and \
        self.type().non_vector_valued() == other.type() :
         return CallableConvertMap(other, self, self._element_constructor_)
     
     return ModularFormsAmbient_abstract._coerce_map_from_(self, other)
Example #7
0
    def _coerce_map_from_(self, other):
        r"""
        TODO:
          This is a stub. The dream is that representations know about
          compatible coercions and so would actions and characters. Then
          every equivariant monoid power series ring would be a functorial
          construction in all three parameters (The functor would then be
          applied to a representation within a universe of representations).

        TESTS::
            sage: from psage.modform.fourier_expansion_framework.monoidpowerseries.monoidpowerseries_basicmonoids import *
            sage: from psage.modform.fourier_expansion_framework.monoidpowerseries.monoidpowerseries_ring import EquivariantMonoidPowerSeriesRing
            sage: emps = EquivariantMonoidPowerSeriesRing(NNMonoid(True), TrivialCharacterMonoid("1", QQ), TrivialRepresentation("1", QQ))
            sage: emps.has_coerce_map_from( EquivariantMonoidPowerSeriesRing(NNMonoid(True), TrivialCharacterMonoid("1", QQ), TrivialRepresentation("1", ZZ)) ) # indirect doctest
            True
        """
        if isinstance(other, EquivariantMonoidPowerSeriesAmbient_abstract):
            if self.action() == other.action() and \
               self.characters() == other.characters() :
                if self.representation().extends(other.representation()):
                    from sage.structure.coerce_maps import CallableConvertMap
                    return CallableConvertMap(other, self,
                                              self._element_constructor_)
Example #8
0
    def _coerce_map_from_(self, S):
        """
        Return ``True`` if elements of ``S`` can be coerced into this
        fraction field.

        This fraction field has coercions from:

        - itself
        - any fraction field where the base ring coerces to the base
          ring of this fraction field
        - any ring that coerces to the base ring of this fraction field

        EXAMPLES::

            sage: F = QQ['x,y'].fraction_field()
            sage: F.has_coerce_map_from(F) # indirect doctest
            True

        ::

            sage: F.has_coerce_map_from(ZZ['x,y'].fraction_field())
            True

        ::

            sage: F.has_coerce_map_from(ZZ['x,y,z'].fraction_field())
            False

        ::

            sage: F.has_coerce_map_from(ZZ)
            True

        Test coercions::

            sage: F.coerce(1)
            1
            sage: F.coerce(int(1))
            1
            sage: F.coerce(1/2)
            1/2

        ::

            sage: K = ZZ['x,y'].fraction_field()
            sage: x,y = K.gens()
            sage: F.coerce(F.gen())
            x
            sage: F.coerce(x)
            x
            sage: F.coerce(x/y)
            x/y
            sage: L = ZZ['x'].fraction_field()
            sage: K.coerce(L.gen())
            x

        We demonstrate that :trac:`7958` is resolved in the case of
        number fields::

            sage: _.<x> = ZZ[]
            sage: K.<a> = NumberField(x^5-3*x^4+2424*x^3+2*x-232)
            sage: R.<b> = K.ring_of_integers()
            sage: S.<y> = R[]
            sage: F = FractionField(S)
            sage: F(1/a)
            (a^4 - 3*a^3 + 2424*a^2 + 2)/232

        Some corner cases have been known to fail in the past (:trac:`5917`)::

            sage: F1 = FractionField( QQ['a'] )
            sage: R12 = F1['x','y']
            sage: R12('a')
            a
            sage: F1(R12(F1('a')))
            a

            sage: F2 = FractionField( QQ['a','b'] )
            sage: R22 = F2['x','y']
            sage: R22('a')
            a
            sage: F2(R22(F2('a')))
            a

        Coercion from Laurent polynomials now works (:trac:`15345`)::

            sage: R = LaurentPolynomialRing(ZZ, 'x')
            sage: T = PolynomialRing(ZZ, 'x')
            sage: R.gen() + FractionField(T).gen()
            2*x
            sage: 1/(R.gen() + 1)
            1/(x + 1)

            sage: R = LaurentPolynomialRing(ZZ, 'x,y')
            sage: FF = FractionField(PolynomialRing(ZZ, 'x,y'))
            sage: prod(R.gens()) + prod(FF.gens())
            2*x*y
            sage: 1/(R.gen(0) + R.gen(1))
            1/(x + y)
        """
        from sage.rings.integer_ring import ZZ
        from sage.rings.rational_field import QQ
        from sage.rings.number_field.number_field_base import NumberField
        from sage.rings.polynomial.laurent_polynomial_ring import \
            LaurentPolynomialRing_generic

        # The case ``S`` being `\QQ` requires special handling since `\QQ` is
        # not implemented as a ``FractionField_generic``.
        if S is QQ and self._R.has_coerce_map_from(ZZ):
            return CallableConvertMap(S, self, \
                lambda x: self._element_class(self, x.numerator(),
                x.denominator()), parent_as_first_arg=False)

        # Number fields also need to be handled separately.
        if isinstance(S, NumberField):
            return CallableConvertMap(S, self, \
                self._number_field_to_frac_of_ring_of_integers, \
                parent_as_first_arg=False)

        # special treatment for LaurentPolynomialRings
        if isinstance(S, LaurentPolynomialRing_generic):

            def converter(x, y=None):
                if y is None:
                    return self._element_class(self, *x._fraction_pair())
                xnum, xden = x._fraction_pair()
                ynum, yden = y._fraction_pair()
                return self._element_class(self, xnum * yden, xden * ynum)

            return CallableConvertMap(S,
                                      self,
                                      converter,
                                      parent_as_first_arg=False)

        if isinstance(S, FractionField_generic) and \
            self._R.has_coerce_map_from(S.ring()):
            return CallableConvertMap(S, self, \
                lambda x: self._element_class(self, x.numerator(),
                x.denominator()), parent_as_first_arg=False)

        if self._R.has_coerce_map_from(S):
            return CallableConvertMap(S,
                                      self,
                                      self._element_class,
                                      parent_as_first_arg=True)

        return None
Example #9
0
    def _coerce_map_from_(self, S):
        """
        Return ``True`` if elements of ``S`` can be coerced into this
        fraction field.

        This fraction field has coercions from:

        - itself
        - any fraction field where the base ring coerces to the base
          ring of this fraction field
        - any ring that coerces to the base ring of this fraction field

        EXAMPLES::

            sage: F = QQ['x,y'].fraction_field()
            sage: F.has_coerce_map_from(F) # indirect doctest
            True

        ::

            sage: F.has_coerce_map_from(ZZ['x,y'].fraction_field())
            True

        ::

            sage: F.has_coerce_map_from(ZZ['x,y,z'].fraction_field())
            False

        ::

            sage: F.has_coerce_map_from(ZZ)
            True

        Test coercions::

            sage: F.coerce(1)
            1
            sage: F.coerce(int(1))
            1
            sage: F.coerce(1/2)
            1/2

        ::

            sage: K = ZZ['x,y'].fraction_field()
            sage: x,y = K.gens()
            sage: F.coerce(F.gen())
            x
            sage: F.coerce(x)
            x
            sage: F.coerce(x/y)
            x/y
            sage: L = ZZ['x'].fraction_field()
            sage: K.coerce(L.gen())
            x

        We demonstrate that :trac:`7958` is resolved in the case of
        number fields::

            sage: _.<x> = ZZ[]
            sage: K.<a> = NumberField(x^5-3*x^4+2424*x^3+2*x-232)
            sage: R.<b> = K.ring_of_integers()
            sage: S.<y> = R[]
            sage: F = FractionField(S)
            sage: F(1/a)
            (a^4 - 3*a^3 + 2424*a^2 + 2)/232

        Some corner cases have been known to fail in the past (:trac:`5917`)::

            sage: F1 = FractionField( QQ['a'] )
            sage: R12 = F1['x','y']
            sage: R12('a')
            a
            sage: F1(R12(F1('a')))
            a

            sage: F2 = FractionField( QQ['a','b'] )
            sage: R22 = F2['x','y']
            sage: R22('a')
            a
            sage: F2(R22(F2('a')))
            a

        """
        from sage.rings.integer_ring import ZZ
        from sage.rings.rational_field import QQ
        from sage.rings.number_field.number_field_base import NumberField

        # The case ``S`` being `\QQ` requires special handling since `\QQ` is
        # not implemented as a ``FractionField_generic``.
        if S is QQ and self._R.has_coerce_map_from(ZZ):
            return CallableConvertMap(S, self, \
                lambda x: self._element_class(self, x.numerator(),
                x.denominator()), parent_as_first_arg=False)

        # Number fields also need to be handled separately.
        if isinstance(S, NumberField):
            return CallableConvertMap(S, self, \
                self._number_field_to_frac_of_ring_of_integers, \
                parent_as_first_arg=False)

        if isinstance(S, FractionField_generic) and \
            self._R.has_coerce_map_from(S.ring()):
            return CallableConvertMap(S, self, \
                lambda x: self._element_class(self, x.numerator(),
                x.denominator()), parent_as_first_arg=False)

        if self._R.has_coerce_map_from(S):
            return CallableConvertMap(S,
                                      self,
                                      self._element_class,
                                      parent_as_first_arg=True)

        return None