Example #1
0
def evaluateTotalError(f, g, h, a, b, n):
    '''
	args: f - function being interpolated
	      g - equally spaced polynomial 
		  h - Chebyshev polynomial 
		  a - left endpoint of integral
		  b - right endpoint of integral
		  n - number of 

	returns: total error 
	
			 Numerically integrates |f(x)-g(x)|
			 from a to b

			 This is exactly the "difference" 
			 between the original function and 
			 the interpolation polynomial that
			 is currently being analyzed. 

	'''

    g_error = definite_integral(f - g, x, a, b)
    h_error = definite_integral(f - h, x, a, b)

    print("|f(x)-g(x)| from " + a + " to " + b + ": " + g_error)
    print("|f(x)-h(x)| from " + a + " to " + b + ": " + h_error)

    return total_error
Example #2
0
def I4_GST(C_in, b):
    """ 
    This function calculates the 4th invariant (a.k.a., GST invariant)
    # Input:
    #    C_in -- Right Cauchy-Green deformation tensor
    #    b -- controlling parameter for fiber dispersion
    # The mean fiber direciton is assumed to be aligned along the x direction
    # The fiber distribution rho=e^(b*(cos(2theta)+1))
    """

    from sage.symbolic.integration.integral import definite_integral

    var('theta, phi')
    wlambda=(lambda_f(C_in, theta=theta, phi=phi)
        *rhom(theta, phi, b=b)).simplify_full()

    e_int_phi=definite_integral(wlambda, phi, 0, 2*pi)

    # KKK here actually equals to 4*pi*K
    kkk=numerical_integral(rhom(theta, phi=0, b=b)
        *sin(theta), 0, pi)[0]*2*pi

    ops=e_int_phi.expand().operands()
    E_i=0
    for iop in ops:
        # separate each term into a part that can be numerically integrated and a part that can't be numerically integrated
        (fun_wvar, fun_wovar)=separate(iop, theta)

        tobeitgd=sin(theta)*fun_wvar

        itgd=numerical_integral(tobeitgd, 0, pi)[0]/kkk * fun_wovar
        E_i+=itgd

    return (E_i-1.)
Example #3
0
def I4_CH(C_in, b):
    r"""
    This function calculates the characteristic invariant
    Lazy bone version -- using numerical integral :)
    """
    from sage.symbolic.integration.integral import definite_integral

    var('theta, phi')
    wlambda=((lambda_f(C_in, theta=theta, phi=phi)-1)**2
        *rhom(theta, phi, b=b))

    e_int_phi=definite_integral(wlambda, phi, 0, 2*pi)

    # KKK here actually equals to 4*pi*K
    kkk=numerical_integral(rhom(theta, phi=0, b=b)
        *sin(theta), 0, pi)[0]*2*pi

    ops=e_int_phi.expand().operands()
    Lambda_i=0
    for iop in ops:
        # separate each term into a part that can be numerically integrated and a part that can't be numerically integrated
        (fun_wvar, fun_wovar)=separate(iop, theta)

        tobeitgd=sin(theta)*fun_wvar
        itgd=numerical_integral(tobeitgd, 0, pi)[0]/kkk * fun_wovar
        Lambda_i+=itgd

    return Lambda_i
def thomson():
    var("theta,phi,beta,S0,S1,S2,S3,a", domain="real")

    S = vector([S0, S1, S2, S3])

    M1 = MuellerMatrixRotation(beta)
    M2 = jones_to_mueller(JonesMatrixThomson(theta))
    # print mueller_to_jones(M2)

    M2 = M2.substitute(theta=acos(sqrt(_sage_const_2 * a -
                                       _sage_const_1))).simplify()
    M = (M2 * M1).simplify()
    print "\nMueller matrix:"
    print M
    S_scat = (M * S).simplify()

    I_scat = S_scat[_sage_const_0].substitute(beta=pi / _sage_const_2 -
                                              phi).simplify()
    print "\nScattered intensity:"
    print I_scat

    It_scat = I_scat.substitute(a=(_sage_const_1 + cos(theta)**_sage_const_2) /
                                _sage_const_2)

    print "\nScattered intensity (unpol):"
    print It_scat.substitute(S1=_sage_const_0).substitute(
        S2=_sage_const_0).simplify_full()

    print "\nScattered intensity (horizontal linear pol.):"
    print It_scat.substitute(S1=S0).substitute(
        S2=_sage_const_0).simplify_full()

    It_scat = definite_integral(It_scat * sin(theta), theta, _sage_const_0, pi)
    It_scat = definite_integral(It_scat, phi, _sage_const_0,
                                _sage_const_2 * pi)
    print "\nThomson cross-section (units of r_e^2):"
    print It_scat / S0
Example #5
0
        def convolution(cls, self, parameters, variable, other):
            """
            Return the convolution function,
            `f*g(t)=\int_{-\infty}^\infty f(u)g(t-u)du`, for compactly
            supported `f,g`.

            EXAMPLES::

                sage: x = PolynomialRing(QQ,'x').gen()
                sage: f = piecewise([[[0,1],1]])  ## example 0
                sage: g = f.convolution(f); g
                piecewise(x|-->x on (0, 1], x|-->-x + 2 on (1, 2]; x)
                sage: h = f.convolution(g); h
                piecewise(x|-->1/2*x^2 on (0, 1], x|-->-x^2 + 3*x - 3/2 on (1, 2], x|-->1/2*x^2 - 3*x + 9/2 on (2, 3]; x)
                sage: f = piecewise([[(0,1),1],[(1,2),2],[(2,3),1]])  ## example 1
                sage: g = f.convolution(f)
                sage: h = f.convolution(g); h
                piecewise(x|-->1/2*x^2 on (0, 1], x|-->2*x^2 - 3*x + 3/2 on (1, 3], x|-->-2*x^2 + 21*x - 69/2 on (3, 4], x|-->-5*x^2 + 45*x - 165/2 on (4, 5], x|-->-2*x^2 + 15*x - 15/2 on (5, 6], x|-->2*x^2 - 33*x + 273/2 on (6, 8], x|-->1/2*x^2 - 9*x + 81/2 on (8, 9]; x)
                sage: f = piecewise([[(-1,1),1]])                             ## example 2
                sage: g = piecewise([[(0,3),x]])
                sage: f.convolution(g)
                piecewise(x|-->1/2*x^2 + x + 1/2 on (-1, 1], x|-->2*x on (1, 2], x|-->-1/2*x^2 + x + 4 on (2, 4]; x)
                sage: g = piecewise([[(0,3),1],[(3,4),2]])
                sage: f.convolution(g)
                piecewise(x|-->x + 1 on (-1, 1], x|-->2 on (1, 2], x|-->x on (2, 3], x|-->-x + 6 on (3, 4], x|-->-2*x + 10 on (4, 5]; x)

            Check that the bugs raised in :trac:`12123` are fixed::

                sage: f = piecewise([[(-2, 2), 2]])
                sage: g = piecewise([[(0, 2), 3/4]])
                sage: f.convolution(g)
                piecewise(x|-->3/2*x + 3 on (-2, 0], x|-->3 on (0, 2], x|-->-3/2*x + 6 on (2, 4]; x)
                sage: f = piecewise([[(-1, 1), 1]])
                sage: g = piecewise([[(0, 1), x], [(1, 2), -x + 2]])
                sage: f.convolution(g)
                piecewise(x|-->1/2*x^2 + x + 1/2 on (-1, 0], x|-->-1/2*x^2 + x + 1/2 on (0, 2], x|-->1/2*x^2 - 3*x + 9/2 on (2, 3]; x)
            """
            from sage.symbolic.integration.integral import definite_integral
            f = self
            g = other
            if len(f.end_points())*len(g.end_points()) == 0:
                raise ValueError('one of the piecewise functions is nowhere defined')
            M = min(min(f.end_points()),min(g.end_points()))
            N = max(max(f.end_points()),max(g.end_points()))
            tt = SR.var('tt')
            uu = SR.var('uu')
            conv = 0
            fd,f0 = parameters[0]
            gd,g0 = next(other.items())
            if len(f)==1 and len(g)==1:
                f = f.unextend_zero()
                g = g.unextend_zero()
                a1 = fd[0].lower()
                a2 = fd[0].upper()
                b1 = gd[0].lower()
                b2 = gd[0].upper()
                i1 = f0.subs({variable: uu})
                i2 = g0.subs({variable: tt-uu})
                fg1 = definite_integral(i1*i2, uu, a1, tt-b1).subs(tt = variable)
                fg2 = definite_integral(i1*i2, uu, tt-b2, tt-b1).subs(tt = variable)
                fg3 = definite_integral(i1*i2, uu, tt-b2, a2).subs(tt = variable)
                fg4 = definite_integral(i1*i2, uu, a1, a2).subs(tt = variable)
                if a1-b1<a2-b2:
                    if a2+b1!=a1+b2:
                        h = piecewise([[(a1+b1,a1+b2),fg1],[(a1+b2,a2+b1),fg2],[(a2+b1,a2+b2),fg3]])
                    else:
                        h = piecewise([[(a1+b1,a1+b2),fg1],[(a1+b2,a2+b2),fg3]])
                else:
                    if a1+b2!=a2+b1:
                        h = piecewise([[(a1+b1,a2+b1),fg1],[(a2+b1,a1+b2),fg4],[(a1+b2,a2+b2),fg3]])
                    else:
                        h = piecewise([[(a1+b1,a2+b1),fg1],[(a2+b1,a2+b2),fg3]])
                return (piecewise([[(minus_infinity,infinity),0]]).piecewise_add(h)).unextend_zero()

            if len(f)>1 or len(g)>1:
                z = piecewise([[(0,0),0]])
                for fpiece in f.pieces():
                    for gpiece in g.pieces():
                        h = gpiece.convolution(fpiece)
                        z = z.piecewise_add(h)
                return z.unextend_zero()
def compton():
    var("theta,phi,beta,S0,S1,S2,S3,a,c,costheta,s,E,Esc", domain="real")
    assume(E > _sage_const_0)
    assume(Esc > _sage_const_0)

    S = vector([S0, S1, S2, S3])

    M1 = MuellerMatrixRotation(beta)
    M2 = (matrix(
        SR,
        _sage_const_4,
        _sage_const_4,
        [
            a + c,
            _sage_const_1 - a,
            _sage_const_0,
            _sage_const_0,
            _sage_const_1 - a,
            a,
            _sage_const_0,
            _sage_const_0,
            _sage_const_0,
            _sage_const_0,
            cos(theta),
            _sage_const_0,
            _sage_const_0,
            _sage_const_0,
            _sage_const_0,
            cos(theta) * (_sage_const_1 + c),
        ],
    ) * s)
    # print mueller_to_jones(M2)
    M2 = M2.substitute(theta=acos(sqrt(_sage_const_2 * a -
                                       _sage_const_1))).simplify()

    M = (M2 * M1).simplify()
    print "\nMueller matrix:"
    print M
    S_scat = (M * S).simplify()

    I_scat = S_scat[_sage_const_0].substitute(beta=pi / _sage_const_2 -
                                              phi).simplify()
    print "\nScattered intensity:"
    print I_scat

    # Energy in units of m_e*c^2
    It_scat = I_scat.substitute(a=(_sage_const_1 + cos(theta)**_sage_const_2) /
                                _sage_const_2)
    It_scat = It_scat.substitute(s=Esc**_sage_const_2 / E**_sage_const_2)
    It_scat = It_scat.substitute(c=(E - Esc) / _sage_const_2 *
                                 (_sage_const_1 - cos(theta)))
    It_scat = It_scat.simplify_full()

    print "\nScattered intensity (unpol):"
    print It_scat.substitute(S1=_sage_const_0).substitute(
        S2=_sage_const_0).simplify_full()

    It_scatu1 = It_scat.substitute(S1=_sage_const_0).substitute(
        S2=_sage_const_0)
    It_scatu2 = (Esc**_sage_const_2 / E**_sage_const_2 * S0 *
                 (E / Esc + Esc / E - sin(theta)**_sage_const_2) /
                 _sage_const_2)
    It_scatu1 = (It_scatu1.substitute(
        Esc=E /
        (_sage_const_1 + E *
         (_sage_const_1 - cos(theta)))).simplify_full().simplify_trig())
    It_scatu2 = (It_scatu2.substitute(
        Esc=E /
        (_sage_const_1 + E *
         (_sage_const_1 - cos(theta)))).simplify_full().simplify_trig())
    print bool(It_scatu1 == It_scatu2)

    It_scatu1 = It_scat.substitute(S1=S0).substitute(S2=_sage_const_0)
    It_scatu2 = (
        Esc**_sage_const_2 / E**_sage_const_2 * S0 *
        (E / Esc + Esc / E -
         _sage_const_2 * sin(theta)**_sage_const_2 * cos(phi)**_sage_const_2) /
        _sage_const_2)
    It_scatu1 = (It_scatu1.substitute(
        Esc=E /
        (_sage_const_1 + E *
         (_sage_const_1 - cos(theta)))).simplify_full().simplify_trig())
    It_scatu2 = (It_scatu2.substitute(
        Esc=E /
        (_sage_const_1 + E *
         (_sage_const_1 - cos(theta)))).simplify_full().simplify_trig())
    print bool(It_scatu1 == It_scatu2)

    print "\nScattered intensity (horizontal linear pol.):"
    print It_scat.substitute(S1=S0).substitute(
        S2=_sage_const_0).simplify_full()

    It_scat = It_scat.substitute(Esc=E / (_sage_const_1 + E *
                                          (_sage_const_1 - cos(theta))))
    It_scat = It_scat.simplify_full()
    It_scat = definite_integral(It_scat * sin(theta), theta, _sage_const_0, pi)
    It_scat = definite_integral(It_scat, phi, _sage_const_0,
                                _sage_const_2 * pi)
    print "\nKlein-Nishina cross-section (units of r_e^2):"
    print(It_scat / S0).simplify_full()
Example #7
0
        def convolution(cls, self, parameters, variable, other):
            """
            Return the convolution function,
            `f*g(t)=\int_{-\infty}^\infty f(u)g(t-u)du`, for compactly
            supported `f,g`.

            EXAMPLES::

                sage: x = PolynomialRing(QQ,'x').gen()
                sage: f = piecewise([[[0,1],1]])  ## example 0
                sage: g = f.convolution(f); g
                piecewise(x|-->x on (0, 1], x|-->-x + 2 on (1, 2]; x)
                sage: h = f.convolution(g); h
                piecewise(x|-->1/2*x^2 on (0, 1], x|-->-x^2 + 3*x - 3/2 on (1, 2], x|-->1/2*x^2 - 3*x + 9/2 on (2, 3]; x)
                sage: f = piecewise([[(0,1),1],[(1,2),2],[(2,3),1]])  ## example 1
                sage: g = f.convolution(f)
                sage: h = f.convolution(g); h
                piecewise(x|-->1/2*x^2 on (0, 1], x|-->2*x^2 - 3*x + 3/2 on (1, 3], x|-->-2*x^2 + 21*x - 69/2 on (3, 4], x|-->-5*x^2 + 45*x - 165/2 on (4, 5], x|-->-2*x^2 + 15*x - 15/2 on (5, 6], x|-->2*x^2 - 33*x + 273/2 on (6, 8], x|-->1/2*x^2 - 9*x + 81/2 on (8, 9]; x)
                sage: f = piecewise([[(-1,1),1]])                             ## example 2
                sage: g = piecewise([[(0,3),x]])
                sage: f.convolution(g)
                piecewise(x|-->1/2*x^2 + x + 1/2 on (-1, 1], x|-->2*x on (1, 2], x|-->-1/2*x^2 + x + 4 on (2, 4]; x)
                sage: g = piecewise([[(0,3),1],[(3,4),2]])
                sage: f.convolution(g)
                piecewise(x|-->x + 1 on (-1, 1], x|-->2 on (1, 2], x|-->x on (2, 3], x|-->-x + 6 on (3, 4], x|-->-2*x + 10 on (4, 5]; x)

            Check that the bugs raised in :trac:`12123` are fixed::

                sage: f = piecewise([[(-2, 2), 2]])
                sage: g = piecewise([[(0, 2), 3/4]])
                sage: f.convolution(g)
                piecewise(x|-->3/2*x + 3 on (-2, 0], x|-->3 on (0, 2], x|-->-3/2*x + 6 on (2, 4]; x)
                sage: f = piecewise([[(-1, 1), 1]])
                sage: g = piecewise([[(0, 1), x], [(1, 2), -x + 2]])
                sage: f.convolution(g)
                piecewise(x|-->1/2*x^2 + x + 1/2 on (-1, 0], x|-->-1/2*x^2 + x + 1/2 on (0, 2], x|-->1/2*x^2 - 3*x + 9/2 on (2, 3]; x)
            """
            from sage.symbolic.integration.integral import definite_integral
            f = self
            g = other
            if len(f.end_points()) * len(g.end_points()) == 0:
                raise ValueError(
                    'one of the piecewise functions is nowhere defined')
            M = min(min(f.end_points()), min(g.end_points()))
            N = max(max(f.end_points()), max(g.end_points()))
            tt = SR.var('tt')
            uu = SR.var('uu')
            conv = 0
            fd, f0 = parameters[0]
            gd, g0 = next(other.items())
            if len(f) == 1 and len(g) == 1:
                f = f.unextend_zero()
                g = g.unextend_zero()
                a1 = fd[0].lower()
                a2 = fd[0].upper()
                b1 = gd[0].lower()
                b2 = gd[0].upper()
                i1 = f0.subs({variable: uu})
                i2 = g0.subs({variable: tt - uu})
                fg1 = definite_integral(i1 * i2, uu, a1,
                                        tt - b1).subs(tt=variable)
                fg2 = definite_integral(i1 * i2, uu, tt - b2,
                                        tt - b1).subs(tt=variable)
                fg3 = definite_integral(i1 * i2, uu, tt - b2,
                                        a2).subs(tt=variable)
                fg4 = definite_integral(i1 * i2, uu, a1, a2).subs(tt=variable)
                if a1 - b1 < a2 - b2:
                    if a2 + b1 != a1 + b2:
                        h = piecewise([[(a1 + b1, a1 + b2), fg1],
                                       [(a1 + b2, a2 + b1), fg2],
                                       [(a2 + b1, a2 + b2), fg3]])
                    else:
                        h = piecewise([[(a1 + b1, a1 + b2), fg1],
                                       [(a1 + b2, a2 + b2), fg3]])
                else:
                    if a1 + b2 != a2 + b1:
                        h = piecewise([[(a1 + b1, a2 + b1), fg1],
                                       [(a2 + b1, a1 + b2), fg4],
                                       [(a1 + b2, a2 + b2), fg3]])
                    else:
                        h = piecewise([[(a1 + b1, a2 + b1), fg1],
                                       [(a2 + b1, a2 + b2), fg3]])
                return (piecewise([[(minus_infinity, infinity),
                                    0]]).piecewise_add(h)).unextend_zero()

            if len(f) > 1 or len(g) > 1:
                z = piecewise([[(0, 0), 0]])
                for fpiece in f.pieces():
                    for gpiece in g.pieces():
                        h = gpiece.convolution(fpiece)
                        z = z.piecewise_add(h)
                return z.unextend_zero()
 def cdf_from_pdf(self, x):
     return definite_integral(self.pdf(self.tmpvar), self.tmpvar, self.a,
                              x).simplify_full()
Example #9
0
var("R")
var("A")
var("B")
var("beta")
var("delta")

# Elastic scattering
Kunpol = (_sage_const_1 + (cos(theta))**_sage_const_2) / _sage_const_2
Kpol = Kunpol - (sin(theta))**_sage_const_2 / _sage_const_2 * (
    P * cos(_sage_const_2 * phi) + sqrt(_sage_const_1 - P**_sage_const_2) *
    cos(delta) * sin(_sage_const_2 * phi))
__tmp__ = var("theta,phi")
ElasticDiffPol2 = symbolic_expression(Kpol).function(theta, phi)
__tmp__ = var("theta")
ElasticDiffPol1 = symbolic_expression(
    definite_integral(ElasticDiffPol2(theta, phi), phi, _sage_const_0,
                      _sage_const_2 * pi)).function(theta)
__tmp__ = var("theta,phi")
ElasticDiffUnPol2 = symbolic_expression(Kunpol).function(theta, phi)
__tmp__ = var("theta")
ElasticDiffUnPol1 = symbolic_expression(
    definite_integral(ElasticDiffUnPol2(theta, phi), phi, _sage_const_0,
                      _sage_const_2 * pi)).function(theta)

assert ElasticDiffPol1(theta) == ElasticDiffUnPol1(theta)
assert (definite_integral(
    ElasticDiffUnPol1(theta) * sin(theta), theta, _sage_const_0,
    pi) == _sage_const_8 * pi / _sage_const_3)

# Inelastic scattering
__tmp__ = var("theta,phi")
InelasticDiffPol2 = symbolic_expression(