def test_lda(sagemaker_session): with timeout(minutes=15): data_path = os.path.join(DATA_DIR, 'lda') data_filename = 'nips-train_1.pbr' with open(os.path.join(data_path, data_filename), 'rb') as f: all_records = read_records(f) # all records must be same feature_num = int(all_records[0].features['values'].float32_tensor.shape[0]) lda = LDA(role='SageMakerRole', train_instance_type='ml.c4.xlarge', num_topics=10, sagemaker_session=sagemaker_session, base_job_name='test-lda') record_set = prepare_record_set_from_local_files(data_path, lda.data_location, len(all_records), feature_num, sagemaker_session) lda.fit(record_set, 100) endpoint_name = name_from_base('lda') with timeout_and_delete_endpoint_by_name(endpoint_name, sagemaker_session): model = LDAModel(lda.model_data, role='SageMakerRole', sagemaker_session=sagemaker_session) predictor = model.deploy(1, 'ml.c4.xlarge', endpoint_name=endpoint_name) predict_input = np.random.rand(1, feature_num) result = predictor.predict(predict_input) assert len(result) == 1 for record in result: assert record.label["topic_mixture"] is not None
def test_lda(sagemaker_session, cpu_instance_type): job_name = unique_name_from_base("lda") with timeout(minutes=TRAINING_DEFAULT_TIMEOUT_MINUTES): data_path = os.path.join(DATA_DIR, "lda") data_filename = "nips-train_1.pbr" with open(os.path.join(data_path, data_filename), "rb") as f: all_records = read_records(f) # all records must be same feature_num = int(all_records[0].features["values"].float32_tensor.shape[0]) lda = LDA( role="SageMakerRole", instance_type=cpu_instance_type, num_topics=10, sagemaker_session=sagemaker_session, ) record_set = prepare_record_set_from_local_files( data_path, lda.data_location, len(all_records), feature_num, sagemaker_session ) lda.fit(records=record_set, mini_batch_size=100, job_name=job_name) with timeout_and_delete_endpoint_by_name(job_name, sagemaker_session): model = LDAModel(lda.model_data, role="SageMakerRole", sagemaker_session=sagemaker_session) predictor = model.deploy(1, cpu_instance_type, endpoint_name=job_name) predict_input = np.random.rand(1, feature_num) result = predictor.predict(predict_input) assert len(result) == 1 for record in result: assert record.label["topic_mixture"] is not None