def _get_java_obj(self, **kwargs): return self._new_java_obj( PCASageMakerEstimator._wrapped_class, kwargs['sagemakerRole'], kwargs['trainingInstanceType'], kwargs['trainingInstanceCount'], kwargs['endpointInstanceType'], kwargs['endpointInitialInstanceCount'], kwargs['requestRowSerializer'], kwargs['responseRowDeserializer'], kwargs['trainingInputS3DataPath'], kwargs['trainingOutputS3DataPath'], kwargs['trainingInstanceVolumeSizeInGB'], Option(kwargs['trainingProjectedColumns']), kwargs['trainingChannelName'], Option( kwargs['trainingContentType']), kwargs['trainingS3DataDistribution'], kwargs['trainingSparkDataFormat'], kwargs['trainingSparkDataFormatOptions'], kwargs['trainingInputMode'], Option(kwargs['trainingCompressionCodec']), kwargs['trainingMaxRuntimeInSeconds'], Option(kwargs['trainingKmsKeyId']), kwargs['modelEnvironmentVariables'], kwargs['endpointCreationPolicy'], kwargs['sagemakerClient'], Option(kwargs['region']), kwargs['s3Client'], kwargs['stsClient'], kwargs['modelPrependInputRowsToTransformationRows'], kwargs['deleteStagingDataAfterTraining'], kwargs['namePolicyFactory'], kwargs['uid'])
def _to_java(self): if self._java_obj is None: self._java_obj = self._new_java_obj( self._wrapped_class, Option(self.model_name), Option(self.endpoint_config_name), Option(self.endpoint_name)) return self._java_obj
def _to_java(self): if self._java_obj is None: self._java_obj = self._new_java_obj( ProtobufRequestRowSerializer._wrapped_class, Option(self.schema), self.featuresColumnName) return self._java_obj
def __init__(self, endpointInstanceType, endpointInitialInstanceCount, requestRowSerializer, responseRowDeserializer, existingEndpointName=None, modelImage=None, modelPath=None, modelEnvironmentVariables=None, modelExecutionRoleARN=None, endpointCreationPolicy=EndpointCreationPolicy.CREATE_ON_CONSTRUCT, sagemakerClient=SageMakerClients.create_sagemaker_client(), prependResultRows=True, namePolicy=RandomNamePolicy(), uid=None, javaObject=None): super(SageMakerModel, self).__init__() if modelEnvironmentVariables is None: modelEnvironmentVariables = {} if javaObject: self._java_obj = javaObject else: if uid is None: uid = Identifiable._randomUID() self._java_obj = self._new_java_obj( SageMakerModel._wrapped_class, Option(endpointInstanceType), Option(endpointInitialInstanceCount), requestRowSerializer, responseRowDeserializer, Option(existingEndpointName), Option(modelImage), Option(modelPath), modelEnvironmentVariables, Option(modelExecutionRoleARN), endpointCreationPolicy, sagemakerClient, prependResultRows, namePolicy, uid ) self._resetUid(self._call_java("uid"))