Example #1
0
def single_investigation(lang, distrib, h_layers, h_units, window, sample_size,
                         n_epochs, exp_num):
    acc_per_d = []
    loss_per_d = []

    generator = SampleGenerator(lang)
    ## If you would like to fix your training set during the entire course of investigation,
    ## you should uncomment the following line (and comment the same line in the subsequent "for" loop);
    ## otherwise, each training set will come from the same distribution and same window but be different.
    inputs, outputs, s_dst = generator.generate_sample(sample_size, window[0],
                                                       window[1], distrib,
                                                       False)
    for _ in range(exp_num):
        # inputs, outputs, s_dst = generator.generate_sample (sample_size, window[0], window[1], distrib, False)
        e_vals, loss_vals = train(generator, distrib, h_layers, h_units,
                                  inputs, outputs, n_epochs,
                                  1)  # each experiment is unique
        acc_per_d.append(e_vals)
        loss_per_d.append(loss_vals)

    filename = '{}_{}_{}_{}_{}_{}_{}'.format(lang, 'single', distrib, h_layers,
                                             h_units, window[0], window[1])

    ## Uncomment the following line if you would like to save the e_i and loss values.
    # np.savez('./results/result_{}.npz'.format(filename), errors = np.array(e_vals), losses = np.array (loss_vals))

    trials_label = [
        'Experiment {}'.format(elt) for elt in range(1, exp_num + 1)
    ]
    plot_graphs(lang, 'trials', trials_label, acc_per_d, loss_per_d, window,
                filename)

    return acc_per_d, loss_vals
Example #2
0
    def approx_rbfn_iterative(self):
        residuals = 0
        t = 0
        for i in range(100):
            max_iter = 500
            model = RBFN(nb_features=15)
            start = time.process_time()
            # Generate a batch of data and store it
            self.reset_batch()
            g = SampleGenerator()
            for i in range(max_iter):
                # Draw a random sample on the interval [0,1]
                x = np.random.random()
                y = g.generate_non_linear_samples(x)
                self.x_data.append(x)
                self.y_data.append(y)

                # Comment the ones you don't want to use
                # model.train_gd(x, y, alpha=0.5)
                # model.train_rls(x, y)
                model.train_rls_sherman_morrison(x, y)
                # if(i == 500):
                #     model.plot(self.x_data, self.y_data)
            print("RBFN Incr time:", time.process_time() - start)
            t += time.process_time() - start
            residuals += model.residuals(self.x_data, self.y_data)
        print(residuals / 100, t / 100)
        model.plot(self.x_data, self.y_data)
Example #3
0
def hidden_units_investigation(lang, distrib, h_layers, h_units, window,
                               sample_size, n_epochs, exp_num):
    acc_per_d = []
    loss_per_d = []

    generator = SampleGenerator(lang)
    ## If you would like to fix your training set during the entire course of investigation,
    ## you should uncomment the following line (and comment the same line in the subsequent "for" loop);
    ## otherwise, each training set will come from the same distribution and same window but be different.
    inputs, outputs, s_dst = generator.generate_sample(sample_size, window[0],
                                                       window[1], distrib,
                                                       False)
    for hidden_dim in h_units:
        # inputs, outputs, s_dst = generator.generate_sample (sample_size, window[0], window[1], distrib, False)
        e_vals, loss_vals = train(generator, distrib, h_layers, hidden_dim,
                                  inputs, outputs, n_epochs, exp_num)
        acc_per_d.append(e_vals)
        loss_per_d.append(loss_vals)

    filename = '{}_{}_{}_{}_{}_{}'.format(lang, 'hidden', distrib, h_layers,
                                          window[0], window[1])
    hunits_label = ['{} Hidden Units'.format(val) for val in h_units]
    plot_graphs(lang, 'hiddenunits', hunits_label, acc_per_d, loss_per_d,
                window, filename)

    return acc_per_d, loss_vals
Example #4
0
    def approx_rbfn_iterative_TestNB(self):
        idx = []
        res = np.zeros((10))
        for x in range(200):
            for i in range(10):
                max_iter = 100
                model = RBFN(15)
                start = time.process_time()
                # Generate a batch of data and store it
                self.reset_batch()
                g = SampleGenerator()
                for j in range(max_iter):
                    # Draw a random sample on the interval [0,1]
                    x = np.random.random()
                    y = g.generate_non_linear_samples(x)
                    self.x_data.append(x)
                    self.y_data.append(y)

                    # Comment the ones you don't want to use
                    model.train_gd(x, y, alpha=i * 0.02 + 1)
                    #model.train_rls(x, y)
                    # model.train_rls_sherman_morrison(x, y)
                res[i] += model.residuals(self.x_data, self.y_data)
        for i in range(10):
            idx.append(i * 0.02 + 1)
            res[i] /= 200
        plt.plot(idx, res, color="red")
        plt.show()
        print("RBFN Incr time:", time.process_time() - start)
Example #5
0
    def approx_rbfn_iterative_Test_Iter(self):
        model = RBFN(50)
        start = time.process_time()
        # Generate a batch of data and store it
        self.reset_batch()
        g = SampleGenerator()
        idx = []
        res = []
        for i in range(20, 1000):
            # Draw a random sample on the interval [0,1]
            x = np.random.random()
            y = g.generate_non_linear_samples(x)
            self.x_data.append(x)
            self.y_data.append(y)

            # Comment the ones you don't want to use
            # model.train_gd(x, y, alpha=0.5)
            model.train_rls(x, y)
            # model.train_rls_sherman_morrison(x, y)
            residuals = model.residuals(self.x_data, self.y_data)
            idx.append(i)
            print(residuals)
            res.append(residuals / i)
        plt.plot(idx, res)
        plt.show()
Example #6
0
def window_investigation(lang, distrib, h_layers, h_units, windows,
                         sample_size, n_epochs, exp_num, device):
    acc_per_d = []
    loss_per_d = []
    loss_vals = None

    generator = SampleGenerator(lang)
    for window in windows:
        print(window, flush=True)
        filename = 'results/{}_{}_{}_{}_{}.npz'.format(lang, window, distrib,
                                                       h_layers, h_units)
        if os.path.exists(filename):
            d = np.load(filename)
            e_vals = d["errors"]
            loss_vals = d["losses"]
        else:
            inputs, outputs, s_dst = generator.generate_sample(
                sample_size, window[0], window[1], distrib, False)
            e_vals, loss_vals = train(generator, distrib, h_layers, h_units,
                                      inputs, outputs, n_epochs, exp_num,
                                      device)
            np.savez(filename,
                     errors=np.array(e_vals),
                     losses=np.array(loss_vals))
        acc_per_d.append(e_vals)
        loss_per_d.append(loss_vals)

    filename = '{}_{}_{}_{}_{}'.format(lang, 'window', distrib, h_layers,
                                       h_units)
    window_label = [
        'Window [{}, {}]'.format(elt[0], elt[1]) for elt in windows
    ]
    plot_graphs(lang, window_label, acc_per_d, None, filename)

    return acc_per_d, loss_vals
Example #7
0
 def make_linear_batch_data(self):
     """ 
     Generate a batch of linear data and store it into numpy structures
     """
     self.reset_batch()
     g = SampleGenerator()
     for i in range(self.batch_size):
         # Draw a random sample on the interval [0,1]
         x = np.random.random()
         y = g.generate_linear_samples(x)
         self.x_data.append(x)
         self.y_data.append(y)
Example #8
0
def distribution_investigation(lang, distribution, h_layers, h_units, window,
                               sample_size, n_epochs, exp_num):
    acc_per_d = []
    loss_per_d = []

    generator = SampleGenerator(lang)
    for distrib in distribution:
        inputs, outputs, s_dst = generator.generate_sample(
            sample_size, window[0], window[1], distrib, False)
        e_vals, loss_vals = train(generator, distrib, h_layers, h_units,
                                  inputs, outputs, n_epochs, exp_num)
        acc_per_d.append(e_vals)
        loss_per_d.append(loss_vals)

    filename = '{}_{}_{}_{}_{}_{}'.format(lang, 'distrib', h_layers, h_units,
                                          window[0], window[1])
    distrib_label = [elt.capitalize() for elt in distribution]
    plot_graphs(lang, 'distrib', distrib_label, acc_per_d, loss_per_d, window,
                filename)

    return acc_per_d, loss_vals
Example #9
0
def window_investigation(lang, distrib, h_layers, h_units, windows,
                         sample_size, n_epochs, exp_num):
    acc_per_d = []
    loss_per_d = []

    generator = SampleGenerator(lang)
    for window in windows:
        inputs, outputs, s_dst = generator.generate_sample(
            sample_size, window[0], window[1], distrib, False)
        e_vals, loss_vals = train(generator, distrib, h_layers, h_units,
                                  inputs, outputs, n_epochs, exp_num)
        acc_per_d.append(e_vals)
        loss_per_d.append(loss_vals)

    filename = '{}_{}_{}_{}_{}'.format(lang, 'window', distrib, h_layers,
                                       h_units)
    window_label = [
        'Window [{}, {}]'.format(elt[0], elt[1]) for elt in windows
    ]
    plot_graphs(lang, 'window', window_label, acc_per_d, loss_per_d, [1, 30],
                filename)  # [1, 30] is a random window. We'll ignore it later.

    return acc_per_d, loss_vals
Example #10
0
def main():

    # Arguments to main
    parser = argparse.ArgumentParser()
    parser.add_argument("-t", "--train_type", type=str, required=True, \
                        help="Training data set type, options = \
                        single batch_ind, short num_data, full, load_from_ckp ckp_path"                                                                                       )

    parser.add_argument("-e", "--epochs", type=int, default=20, \
                        help="-e or --epochs number of epochs (default 20)")

    parser.add_argument("-bs", "--batch_size", type=int, default=10, \
     help="-bs or --batch_size training batch size (default 10)")

    parser.add_argument("-s", "--save_model", type=str, \
                        help="-s save_path or --save_model save_path (save_path is relative from current dir)")

    parser.add_argument("-cp", "--checkpoint", type=str, \
                        help="-cp or --checkpoint check_point_path to save checkpoints -- relative path")

    parser.add_argument("-pl", "--print_loss", type=str, \
            help="-pl or --print_loss plot_save_path (str) to save loss vs epochs")

    parser.add_argument("-load", type=str, \
            help="-load ckp_path (str) to load model from checkpoint before training")

    args = parser.parse_args()
    train_type, train_opts = " ", " "

    if (len(args.train_type.split()) == 2):
        train_type, train_opts = args.train_type.split()
    else:
        train_type = args.train_type.split()[0]

    logger = Logger('log')

    # Reading in data
    logger.log(
        'Reading in word: to word embedding -- mapping words to vectors...')
    data_folder = "data_folder/created_data"
    f = open(os.path.join(data_folder, "word_embed.pkl"), "rb")
    word_embed = pickle.load(f)
    f.close()

    logger.log(
        'Reading in raw text (tokenized) -- question ID maps to question (title + body)...'
    )

    f = open(os.path.join(data_folder, "question_id.pkl"), "rb")
    question_id = pickle.load(f)
    f.close()

    logger.log(
        'Reading in training data -- query question ID, similar questions ID (pos), random questions ID (neg)...'
    )

    train_q, train_pos, train_neg = read_question_data(
        'data_folder/data/train_random.txt')
    dev_q, dev_pos, dev_neg = read_question_data('data_folder/data/dev.txt')

    # Creating model
    logger.log('Creating Model ...')

    data_obj = DataStore(question_id, word_embed)
    n = 120  # number of sample questions per query question
    N = 100  # number of words per question
    opveclen = 100
    wlen = len(word_embed['the'])
    dims = n, N, wlen, opveclen
    model = create_model(dims, data_obj.embedding_matrix)
    print(model.summary())

    train_sample_generator = SampleGenerator(train_q, train_pos, train_neg,
                                             dims, data_obj)
    dev_sample_generator = SampleGenerator(dev_q, dev_pos, dev_neg, dims,
                                           data_obj)

    logger.log('Model inputs and outputs')
    loss_fn = loss_fn_wrap2(dims)
    opt = tf.keras.optimizers.Adam(learning_rate=0.001)
    model.compile(optimizer=opt, loss=loss_fn)
    if (args.load):

        model.load_weights(args.load)

    # Training
    cp_path = 0
    if (args.checkpoint):
        cp_path = args.checkpoint

    if (train_type == "load_from_ckp"):
        model.load_weights(train_opts)
        logger.log("Model loaded")
    elif train_type == "single":
        batch_ind = int(train_opts)
        model, loss_over_epochs = fit_model_single_data_point(
            model,
            train_sample_generator,
            epochs=args.epochs,
            batch_ind=batch_ind,
            dims=dims,
            logger=logger)
    elif train_type == "short":
        num_data = int(train_opts)
        model, loss_over_epochs = fit_model(model, train_sample_generator, dev_sample_generator,\
         batch_size=args.batch_size, epochs=args.epochs, dims=dims, \
         checkpoint_path=cp_path, num_data = num_data)
    elif train_type == "full":
        model, loss_over_epochs = fit_model(model, train_sample_generator, dev_sample_generator,\
         batch_size=args.batch_size, epochs=args.epochs, dims=dims, \
         checkpoint_path=cp_path, num_data=[])
    else:
        logger.error("Invalid train type entered.")

    # !mkdir -p saved_model
    if (args.save_model):
        model.save(args.save_model)

    if (args.print_loss):
        plt.plot(loss_over_epochs)
        plt.show()
        plt.savefig(args.print_loss, format='png')
Example #11
0
def run_(model,
         criterion,
         target,
         init_optimizer,
         img_files,
         init_rect,
         video,
         gt=None):
    # Init bbox
    box_ = np.array(init_rect)
    result = np.zeros((len(img_files), 4))
    result_bb = np.zeros((len(img_files), 4))
    result[0] = box_
    bbreg_bbox = box_
    result_bb[0] = bbreg_bbox

    tic = time.time()
    # Load first image
    image = Image.open(img_files[0]).convert('RGB')  #[W,H] RGB
    image_np = np.asarray(image)  #[H, W, 3]

    # Init bbox regressor
    # Give the cropped region
    # bbreg_examples_roi is [x_min,y_min,x_max,y_max]
    region, crop_region_sz, bbreg_examples_roi, bbreg_im_index, box__roi, box__crop, coe = acquire_rois_bb(
        SampleGenerator('uniform', 0.3, 1.5, 1.1, True), image_np, opts, box_,
        opts['n_bbreg'], opts['overlap_bbreg'], opts['scale_bbreg'])
    # bbreg_examples_reg is [x_min,y_min,w,h]
    bbreg_examples_reg = np.hstack(
        ((bbreg_examples_roi[:, 0]).reshape(-1, 1),
         (bbreg_examples_roi[:, 1]).reshape(-1, 1),
         (bbreg_examples_roi[:, 2:] - bbreg_examples_roi[:, :2])))
    bbreg_feats = extract_feat(model,
                               region,
                               bbreg_examples_roi,
                               bbreg_im_index,
                               fea_view=True)
    bbreg = BBRegressor((np.array(region.shape[2:])).reshape(-1, 2),
                        overlap=opts['overlap_bbreg'],
                        scale=opts['scale_bbreg'])
    bbreg.train(bbreg_feats, bbreg_examples_reg, box__roi)

    # Draw pos/neg samples
    pos_examples, pos_examples_roi, pos_im_index = acquire_roi_samples(
        SampleGenerator('gaussian', 0.1, 1.2, valid=True), coe, box__crop,
        crop_region_sz, opts['n_pos_init'], opts['overlap_pos_init'])

    neg_examples, neg_examples_roi, neg_im_index = acquire_roi_samples(
        SampleGenerator('uniform', 1, 2, 1.1, valid=True), coe, box__crop,
        crop_region_sz, opts['n_neg_init'] // 2, opts['overlap_neg_init'])

    neg_examples_whole, neg_examples_roi_whole, neg_im_index_whole = acquire_roi_samples(
        SampleGenerator('whole', 0, 1.2, 1.1, valid=True), coe, box__crop,
        crop_region_sz, opts['n_neg_init'] // 2, opts['overlap_neg_init'])

    neg_examples_roi = np.concatenate(
        (neg_examples_roi, neg_examples_roi_whole), axis=0)
    neg_examples_roi = np.random.permutation(neg_examples_roi)
    neg_im_index = np.concatenate((neg_im_index, neg_im_index_whole), axis=0)

    # Extract pos/neg features
    pos_feats = extract_feat(model, region, pos_examples_roi, pos_im_index)
    neg_feats = extract_feat(model, region, neg_examples_roi, neg_im_index)
    feat_dim = pos_feats.size(-1)
    channel_dim = pos_feats.size(-3)

    # Initial training
    train(model, criterion, target, init_optimizer, pos_feats, neg_feats,
          opts['maxiter_init'])
    model.stop_learnable_params(opts['stop_layers'])
    update_optimizer = set_optimizer(model, opts['lr_update'])

    # Init sample generators
    sample_generator = SampleGenerator('gaussian',
                                       opts['trans_f'],
                                       opts['scale_f'],
                                       valid=True)
    pos_generator = SampleGenerator('gaussian', 0.1, 1.2, valid=True)
    neg_generator = SampleGenerator('uniform', 1.5, 1.2, valid=True)

    # Init pos/neg features for update
    pos_feats_all = [pos_feats[:opts['n_pos_update']]]
    neg_feats_all = [neg_feats[:opts['n_neg_update']]]

    spf_total = time.time() - tic

    # Start tracking
    unsuccess_num = 0
    for i in range(1, len(img_files)):

        tic = time.time()
        # Load image
        image = Image.open(img_files[i]).convert('RGB')
        image_np = np.asarray(image)  #[H, W, 3]

        # Cropping
        region, crop_region_sz, coe, box__crop = acquire_region(
            image_np, box_, opts)
        samples, samples_roi, samples_im_index = acquire_roi_samples(
            sample_generator, coe, box__crop, crop_region_sz,
            opts['n_samples'])
        sample_scores, sta_g_weight, sta_penalty, atten_map, conv3_fea = extract_feat(
            model, region, samples_roi, samples_im_index, out_layer='capsule')
        top_scores, top_idx = sample_scores[:, 1].topk(5)
        top_idx = top_idx.cpu().numpy()
        target_score = top_scores.mean()
        samples_topk = samples[top_idx]
        samples_topk[:, :2] = samples_topk[:, :2] - box__crop[:2].reshape(
            -1, 2) + box_[:2].reshape(-1, 2)
        box__copy = box_.copy()
        box_ = samples_topk.mean(
            axis=0)  #Take the mean value of top 5 as the tracking result
        success = target_score > opts['success_thr']

        # Expand search area when failure occurs
        if success:
            unsuccess_num = 0
            sample_generator.set_trans_f(opts['trans_f'])
        else:
            unsuccess_num += 1
            sample_generator.set_trans_f(opts['trans_f_expand'])

        # Bbox regression
        if success:
            bbreg_samples_roi = samples_roi[top_idx]
            bbreg_samples_reg = np.hstack(
                ((bbreg_samples_roi[:, 0]).reshape(-1, 1),
                 (bbreg_samples_roi[:, 1]).reshape(-1, 1),
                 (bbreg_samples_roi[:, 2:] - bbreg_samples_roi[:, :2])))
            bbreg_feats = extract_feat(model,
                                       region,
                                       bbreg_samples_roi,
                                       samples_im_index[top_idx],
                                       fea_view=True)
            bbreg_samples = bbreg.predict(bbreg_feats, bbreg_samples_reg)
            bbreg_bbox = bbreg_samples.mean(axis=0)

            bbreg_bbox = np.array([
                bbreg_bbox[0] * coe[0], bbreg_bbox[1] * coe[1],
                bbreg_bbox[2] * coe[0], bbreg_bbox[3] * coe[1]
            ])
            bbreg_bbox[:2] = np.array(bbreg_bbox[:2] - box__crop[:2] +
                                      box__copy[:2])
        else:
            bbreg_bbox = box_

        # Copy previous result at failure
        if not success:
            box_ = result[i - 1]
            bbreg_bbox = result_bb[i - 1]

        # Save result
        result[i] = box_
        result_bb[i] = bbreg_bbox

        # Data collect
        if success:
            # Draw pos/neg samples
            region, crop_region_sz, coe, box__crop = acquire_region(
                image_np, box_, opts)
            pos_examples, pos_examples_roi, pos_im_index = acquire_roi_samples(
                pos_generator, coe, box__crop, crop_region_sz,
                opts['n_pos_update'], opts['overlap_pos_update'])
            neg_examples, neg_examples_roi, neg_im_index = acquire_roi_samples(
                neg_generator, coe, box__crop, crop_region_sz,
                opts['n_neg_update'], opts['overlap_neg_update'])
            # Extract pos/neg features
            pos_feats = extract_feat(model, region, pos_examples_roi,
                                     pos_im_index)
            neg_feats = extract_feat(model, region, neg_examples_roi,
                                     neg_im_index)
            pos_feats_all.append(pos_feats)
            neg_feats_all.append(neg_feats)
            if len(pos_feats_all
                   ) > opts['n_frames_long']:  # Accumulate updating features
                del pos_feats_all[
                    1]  # Keep the information of the first frame 1 or 0
            if len(neg_feats_all) > opts['n_frames_short']:
                del neg_feats_all[
                    0]  # Keep the information of the first frame, but it will hurt ironman

        # Short term update
        if (not success) & (unsuccess_num < 15):
            nframes = min(opts['n_frames_short'], len(pos_feats_all))
            pos_data = torch.stack(pos_feats_all[-nframes:],
                                   0).view(-1, channel_dim, feat_dim,
                                           feat_dim)  # [20*50, 512,7,7]
            neg_data = torch.stack(neg_feats_all, 0).view(
                -1, channel_dim, feat_dim,
                feat_dim)  # [20 or less *200, 512,7,7]
            train(model, criterion, target, update_optimizer, pos_data,
                  neg_data, opts['maxiter_update'])

        # Long term update
        elif i % opts['long_interval'] == 0:
            pos_data = torch.stack(pos_feats_all,
                                   0).view(-1, channel_dim, feat_dim, feat_dim)
            neg_data = torch.stack(neg_feats_all,
                                   0).view(-1, channel_dim, feat_dim, feat_dim)
            train(model, criterion, target, update_optimizer, pos_data,
                  neg_data, opts['maxiter_update'])

        spf = time.time() - tic
        spf_total += spf

    fps = len(img_files) / spf_total
    print("Speed: %.3f" % (fps))
    return result, result_bb, fps, spf_total
Example #12
0
def run_mdnet(imgs,
              init_bbox,
              gt=None,
              seq='',
              label_id=0,
              savefig_dir='',
              display=False):
    # Init bbox
    target_bbox = np.array(init_bbox[0], dtype='float')
    result = np.zeros((len(imgs), 4))
    result[0] = np.copy(target_bbox)
    iou_result = np.zeros((len(imgs), 1))
    savefig_dir = os.path.join("dump/{}/{}".format(seq, label_id))
    os.makedirs(savefig_dir, exist_ok=True)

    # Init model and optimizer
    mdnet = MDNet()
    mdnet.load_fclayer_weights(opts['model_path'])
    mdnet.set_learnable_params(opts['ft_layers'])
    mdnet.OPN.eval()
    mdnet.cuda()
    gaussian_sampler = SampleGenerator("gaussian", opts["img_size"], 0.1, 1.2)
    backend_sampler = SampleGenerator("gaussian", opts["img_size"], 0.2, 1.2)
    uniform_sampler = SampleGenerator("uniform", opts["img_size"], 1, 2, 1.1)

    FPN_RoIAlign = Pooler(output_size=(7, 7),
                          scales=(0.25, 0.125, 0.0625, 0.03125),
                          sampling_ratio=2)

    criterion = BinaryLoss()
    roi_scene_size = opts["img_size"]  # (w, h)
    init_optimizer = set_optimizer(mdnet, opts['lr_init'])
    update_optimizer = set_optimizer(mdnet, opts['lr_update'])
    pos_feats_all, neg_feats_all = [], []

    tic = time.time()
    # Load first image and finetune
    init_image = imgs[0:1, :]
    init_opn_feat, init_opn_rois = mdnet.forward_OPN(init_image)
    init_roi_feats = FPN_RoIAlign(init_opn_feat, init_opn_rois)

    init_pos_idx, init_neg_idx = sample_pos_neg_idxs(
        init_bbox,
        init_opn_rois,
        fg_thres=opts['overlap_pos_init'][0],
        bg_thres=opts['overlap_neg_init'][1],
        fg_num=opts['n_pos_init'],
        bg_num=opts['n_neg_init'])
    if init_pos_idx is not None and init_neg_idx is not None:
        init_pos_feats = init_roi_feats[init_pos_idx]
        init_neg_feats = init_roi_feats[init_neg_idx]
        init_pos_rois_visual = torch.cat([x.bbox for x in init_opn_rois
                                          ])[init_pos_idx]
    else:
        if boxarea(init_bbox[0]) < 50:
            norm_init_bbox = scalebox(init_bbox[0], 5)
        else:
            norm_init_bbox = init_bbox[0]

        init_pos_rois = gen_samples(gaussian_sampler,
                                    norm_init_bbox,
                                    opts['n_pos_init'],
                                    overlap_range=opts['overlap_pos_init'])
        init_neg_rois = gen_samples(uniform_sampler,
                                    norm_init_bbox,
                                    opts['n_neg_init'],
                                    overlap_range=opts['overlap_neg_init'])

        init_pos_rois = [
            BoxList(torch.from_numpy(init_pos_rois).cuda(),
                    roi_scene_size,
                    mode="xyxy")
        ]
        init_neg_rois = [
            BoxList(torch.from_numpy(init_neg_rois).cuda(),
                    roi_scene_size,
                    mode="xyxy")
        ]
        init_pos_feats = FPN_RoIAlign(init_opn_feat, init_pos_rois)
        init_neg_feats = FPN_RoIAlign(init_opn_feat, init_neg_rois)
        init_pos_rois_visual = init_pos_rois[0].bbox

    init_pos_feats = init_pos_feats.view(opts['n_pos_init'], -1)
    init_neg_feats = init_neg_feats.view(opts['n_neg_init'], -1)

    feat_dim = init_pos_feats.size(-1)
    print(feat_dim)

    torch.cuda.empty_cache()
    init_optimizer.zero_grad()
    train(mdnet, criterion, init_optimizer, init_pos_feats, init_neg_feats,
          opts['maxiter_init'])

    # Memory
    pos_idx = np.asarray(range(init_pos_feats.size(0)))
    np.random.shuffle(pos_idx)
    pos_feats_all = [
        init_pos_feats.index_select(
            0,
            torch.from_numpy(pos_idx[0:opts['n_pos_update']]).cuda())
    ]
    neg_idx = np.asarray(range(init_neg_feats.size(0)))
    np.random.shuffle(neg_idx)
    neg_feats_all = [
        init_neg_feats.index_select(
            0,
            torch.from_numpy(neg_idx[0:opts['n_neg_update']]).cuda())
    ]

    spf_total = time.time() - tic

    # Visual
    savefig_path = "{}/00000.jpg".format(savefig_dir)
    print("Dump {}...".format(savefig_path))
    #init_rois = torch.cat([x.bbox for x in init_pos_rois])
    overlay_box(depreprocess(imgs[0]),
                init_pos_rois_visual.cpu().numpy(),
                gt[0:1],
                savefig_path=savefig_path)

    for i in range(1, len(imgs)):
        tic = time.time()
        cur_img = imgs[i:i + 1, :]
        cur_opn_feat, cur_opn_rois = mdnet.forward_OPN(cur_img)
        cur_roi_feats = FPN_RoIAlign(cur_opn_feat, cur_opn_rois)
        cur_cand_idx = sample_cand_idxs(target_bbox[None, :],
                                        torch.cat(
                                            [x.bbox for x in cur_opn_rois]),
                                        size=roi_scene_size,
                                        thres=0.2)
        if cur_cand_idx is not None:
            cur_cand_feats = cur_roi_feats[cur_cand_idx].view(
                cur_cand_idx.size(0), -1)
            cur_cand_rois = torch.cat([x.bbox
                                       for x in cur_opn_rois])[cur_cand_idx]
        else:
            backend_rois = gen_samples(backend_sampler,
                                       target_bbox,
                                       200,
                                       overlap_range=(0, 0.3))
            backend_rois = [
                BoxList(torch.from_numpy(backend_rois).cuda(),
                        roi_scene_size,
                        mode="xyxy")
            ]
            cur_cand_rois = torch.cat([x.bbox for x in backend_rois])
            cur_cand_feats = FPN_RoIAlign(cur_opn_feat, backend_rois)
            cur_cand_feats = cur_cand_feats.view(cur_cand_rois.size(0), -1)

        cur_cand_scores = mdnet.forward(cur_cand_feats, in_layer='fc4')
        top_scores, top_idx = cur_cand_scores[:, 1].topk(5)
        top_idx = top_idx.cpu().numpy()
        target_score = top_scores.data.mean().item()

        success = target_score > 0

        # Save result
        if success:
            target_bbox = cur_cand_rois[top_idx].data.cpu().numpy().mean(
                axis=0)
            print("success")
        else:
            target_bbox = result[i - 1]
            print("failed")
        result[i] = target_bbox

        # Data collect
        if success:
            cur_pos_idx, cur_neg_idx = sample_pos_neg_idxs_4tensor(
                target_bbox[None, :],
                cur_cand_rois,
                size=roi_scene_size,
                fg_thres=opts['overlap_pos_update'][0],
                bg_thres=opts['overlap_neg_update'][1],
                fg_num=opts['n_pos_update'],
                bg_num=opts['n_neg_update'])
            if cur_pos_idx is not None and cur_neg_idx is not None:
                cur_pos_feats = cur_cand_feats[cur_pos_idx].view(
                    opts['n_pos_update'], -1)
                cur_neg_feats = cur_cand_feats[cur_neg_idx].view(
                    opts['n_neg_update'], -1)

                pos_feats_all.append(cur_pos_feats)
                neg_feats_all.append(cur_neg_feats)

                if len(pos_feats_all) > opts['n_frames_long']:
                    del pos_feats_all[0]
                if len(neg_feats_all) > opts['n_frames_short']:
                    del neg_feats_all[0]

        # Short term update
        if not success:
            nframes = min(opts['n_frames_short'], len(pos_feats_all))
            pos_data = torch.stack(pos_feats_all[-nframes:],
                                   0).view(-1, feat_dim)
            neg_data = torch.stack(neg_feats_all, 0).view(-1, feat_dim)
            train(mdnet, criterion, update_optimizer, pos_data, neg_data,
                  opts['maxiter_update'])
        # Long term update
        elif i % opts['long_interval'] == 0:
            pos_data = torch.stack(pos_feats_all, 0).view(-1, feat_dim)
            neg_data = torch.stack(neg_feats_all, 0).view(-1, feat_dim)
            train(mdnet, criterion, update_optimizer, pos_data, neg_data,
                  opts['maxiter_update'])

        spf = time.time() - tic
        spf_total += spf

        # Visual
        savefig_path = "{}/{:05d}.jpg".format(savefig_dir, i)
        print("Dump {}...".format(savefig_path))
        #debug_scores, debug_idx = cur_cand_scores[:, 1].topk(10)
        overlay_box(depreprocess(imgs[i]),
                    target_bbox,
                    gt[i:i + 1],
                    savefig_path=savefig_path)
    fps = len(imgs) / spf_total

    return result, fps
Example #13
0
def create_data_objs():

    android_data_folder = 'Android-master'
    f = open(os.path.join(android_data_folder, "corpus.pkl"), "rb")
    android_question_id = pickle.load(f)
    f.close()

    data_folder = "data_folder/created_data"
    f = open(os.path.join(data_folder, "word_embed.pkl"), "rb")
    word_embed = pickle.load(f)
    f.close()

    f = open(os.path.join(data_folder, "question_id.pkl"), "rb")
    ubuntu_question_id = pickle.load(f)
    f.close()

    n = 120
    N = 100
    opveclen = 100
    wlen = len(word_embed['the'])
    dims = n, N, wlen, opveclen

    f = open(os.path.join(android_data_folder, "dev_pos.pkl"), "rb")
    android_dev_pos = pickle.load(f)
    f.close()

    f = open(os.path.join(android_data_folder, "dev_neg.pkl"), "rb")
    android_dev_neg = pickle.load(f)
    f.close()

    f = open(os.path.join(android_data_folder, "test_pos.pkl"), "rb")
    android_test_pos = pickle.load(f)
    f.close()

    f = open(os.path.join(android_data_folder, "test_neg.pkl"), "rb")
    android_test_neg = pickle.load(f)
    f.close()

    train_q, train_pos, train_neg = read_question_data(
        'data_folder/data/train_random.txt')
    dev_q, dev_pos, dev_neg = read_question_data('data_folder/data/dev.txt')
    test_q, test_pos, test_neg = read_question_data(
        'data_folder/data/test.txt')

    android_data_obj = DataStore(android_question_id, word_embed)
    ubuntu_data_obj = DataStore(ubuntu_question_id, word_embed)

    android_dev_generator = AndroidSampleGenerator(android_dev_pos,\
     android_dev_neg, dims, android_data_obj)
    android_test_generator = AndroidSampleGenerator(android_test_pos,\
     android_test_neg, dims, android_data_obj)

    ubuntu_train_generator = SampleGenerator(train_q, train_pos, train_neg,
                                             dims, ubuntu_data_obj)
    ubuntu_dev_generator = SampleGenerator(dev_q, dev_pos, dev_neg, dims,
                                           ubuntu_data_obj)
    ubuntu_test_generator = SampleGenerator(test_q, test_pos, test_neg, dims,
                                            ubuntu_data_obj)
    return (dims, android_data_obj, android_dev_generator,
            android_test_generator, ubuntu_data_obj, ubuntu_train_generator,
            ubuntu_dev_generator, ubuntu_test_generator)
Example #14
0
def RTMDNet_track(state, img_file):
    cur_image = Image.open(img_file).convert('RGB')
    cur_image = np.asarray(cur_image)

    trans_f = state['trans_f']
    model = state['model']
    target_bbox = state['target_bbox']
    img_crop_model = state['img_crop_model']
    bbreg = state['bbreg']
    criterion = state['criterion']
    update_optimizer = state['update_optimizer']
    pos_feats_all = state['pos_feats_all']
    neg_feats_all = state['neg_feats_all']
    feat_dim = state['feat_dim']
    count = state['count']

    ishape = cur_image.shape
    samples = gen_samples(
        SampleGenerator('gaussian', (ishape[1], ishape[0]),
                        trans_f,
                        opts['scale_f'],
                        valid=True), target_bbox, opts['n_samples'])

    padded_x1 = (samples[:, 0] - samples[:, 2] *
                 (opts['padding'] - 1.) / 2.).min()
    padded_y1 = (samples[:, 1] - samples[:, 3] *
                 (opts['padding'] - 1.) / 2.).min()
    padded_x2 = (samples[:, 0] + samples[:, 2] *
                 (opts['padding'] + 1.) / 2.).max()
    padded_y2 = (samples[:, 1] + samples[:, 3] *
                 (opts['padding'] + 1.) / 2.).max()
    padded_scene_box = np.asarray(
        (padded_x1, padded_y1, padded_x2 - padded_x1, padded_y2 - padded_y1))

    if padded_scene_box[0] > cur_image.shape[1]:
        padded_scene_box[0] = cur_image.shape[1] - 1
    if padded_scene_box[1] > cur_image.shape[0]:
        padded_scene_box[1] = cur_image.shape[0] - 1
    if padded_scene_box[0] + padded_scene_box[2] < 0:
        padded_scene_box[2] = -padded_scene_box[0] + 1
    if padded_scene_box[1] + padded_scene_box[3] < 0:
        padded_scene_box[3] = -padded_scene_box[1] + 1

    crop_img_size = (padded_scene_box[2:4] *
                     ((opts['img_size'], opts['img_size']) /
                      target_bbox[2:4])).astype('int64')
    cropped_image, cur_image_var = img_crop_model.crop_image(
        cur_image, np.reshape(padded_scene_box, (1, 4)), crop_img_size)
    cropped_image = cropped_image - 128.

    model.eval()
    feat_map = model(cropped_image, out_layer='conv3')

    # relative target bbox with padded_scene_box
    rel_target_bbox = np.copy(target_bbox)
    rel_target_bbox[0:2] -= padded_scene_box[0:2]

    # Extract sample features and get target location
    batch_num = np.zeros((samples.shape[0], 1))
    sample_rois = np.copy(samples)
    sample_rois[:, 0:2] -= np.repeat(np.reshape(padded_scene_box[0:2], (1, 2)),
                                     sample_rois.shape[0],
                                     axis=0)
    sample_rois = samples2maskroi(sample_rois, model.receptive_field,
                                  (opts['img_size'], opts['img_size']),
                                  target_bbox[2:4], opts['padding'])
    sample_rois = np.concatenate((batch_num, sample_rois), axis=1)
    sample_rois = Variable(torch.from_numpy(
        sample_rois.astype('float32'))).cuda()
    sample_feats = model.roi_align_model(feat_map, sample_rois)
    sample_feats = sample_feats.view(sample_feats.size(0), -1).clone()
    sample_scores = model(sample_feats, in_layer='fc4')
    top_scores, top_idx = sample_scores[:, 1].topk(5)
    top_idx = top_idx.data.cpu().numpy()
    target_score = top_scores.data.mean()
    target_bbox = samples[top_idx].mean(axis=0)

    success = target_score > opts['success_thr']

    logging.info('target_score: %s, success: %s', target_score, success)
    # Expand search area at failure
    if success:
        trans_f = opts['trans_f']
    else:
        trans_f = opts['trans_f_expand']

    ## Bbox regression
    if success:
        bbreg_feats = sample_feats[top_idx, :]
        bbreg_samples = samples[top_idx]
        bbreg_samples = bbreg.predict(bbreg_feats.data, bbreg_samples)
        bbreg_bbox = bbreg_samples.mean(axis=0)
    else:
        bbreg_bbox = target_bbox

    # Data collect
    if success:
        # Draw pos/neg samples
        pos_examples = gen_samples(
            SampleGenerator('gaussian', (ishape[1], ishape[0]), 0.1, 1.2),
            target_bbox, opts['n_pos_update'], opts['overlap_pos_update'])
        neg_examples = gen_samples(
            SampleGenerator('uniform', (ishape[1], ishape[0]), 1.5, 1.2),
            target_bbox, opts['n_neg_update'], opts['overlap_neg_update'])

        padded_x1 = (neg_examples[:, 0] - neg_examples[:, 2] *
                     (opts['padding'] - 1.) / 2.).min()
        padded_y1 = (neg_examples[:, 1] - neg_examples[:, 3] *
                     (opts['padding'] - 1.) / 2.).min()
        padded_x2 = (neg_examples[:, 0] + neg_examples[:, 2] *
                     (opts['padding'] + 1.) / 2.).max()
        padded_y2 = (neg_examples[:, 1] + neg_examples[:, 3] *
                     (opts['padding'] + 1.) / 2.).max()
        padded_scene_box = np.reshape(
            np.asarray((padded_x1, padded_y1, padded_x2 - padded_x1,
                        padded_y2 - padded_y1)), (1, 4))

        scene_boxes = np.reshape(np.copy(padded_scene_box), (1, 4))
        jitter_scale = [1.]

        for bidx in range(0, scene_boxes.shape[0]):
            crop_img_size = (scene_boxes[bidx, 2:4] * (
                (opts['img_size'], opts['img_size']) / target_bbox[2:4])
                             ).astype('int64') * jitter_scale[bidx]
            cropped_image, cur_image_var = img_crop_model.crop_image(
                cur_image, np.reshape(scene_boxes[bidx], (1, 4)),
                crop_img_size)
            cropped_image = cropped_image - 128.

            feat_map = model(cropped_image, out_layer='conv3')

            rel_target_bbox = np.copy(target_bbox)
            rel_target_bbox[0:2] -= scene_boxes[bidx, 0:2]

            batch_num = np.zeros((pos_examples.shape[0], 1))
            cur_pos_rois = np.copy(pos_examples)
            cur_pos_rois[:,
                         0:2] -= np.repeat(np.reshape(scene_boxes[bidx, 0:2],
                                                      (1, 2)),
                                           cur_pos_rois.shape[0],
                                           axis=0)
            scaled_obj_size = float(opts['img_size']) * jitter_scale[bidx]
            cur_pos_rois = samples2maskroi(cur_pos_rois, model.receptive_field,
                                           (scaled_obj_size, scaled_obj_size),
                                           target_bbox[2:4], opts['padding'])
            cur_pos_rois = np.concatenate((batch_num, cur_pos_rois), axis=1)
            cur_pos_rois = Variable(
                torch.from_numpy(cur_pos_rois.astype('float32'))).cuda()
            cur_pos_feats = model.roi_align_model(feat_map, cur_pos_rois)
            cur_pos_feats = cur_pos_feats.view(cur_pos_feats.size(0),
                                               -1).data.clone()

            batch_num = np.zeros((neg_examples.shape[0], 1))
            cur_neg_rois = np.copy(neg_examples)
            cur_neg_rois[:,
                         0:2] -= np.repeat(np.reshape(scene_boxes[bidx, 0:2],
                                                      (1, 2)),
                                           cur_neg_rois.shape[0],
                                           axis=0)
            cur_neg_rois = samples2maskroi(cur_neg_rois, model.receptive_field,
                                           (scaled_obj_size, scaled_obj_size),
                                           target_bbox[2:4], opts['padding'])
            cur_neg_rois = np.concatenate((batch_num, cur_neg_rois), axis=1)
            cur_neg_rois = Variable(
                torch.from_numpy(cur_neg_rois.astype('float32'))).cuda()
            cur_neg_feats = model.roi_align_model(feat_map, cur_neg_rois)
            cur_neg_feats = cur_neg_feats.view(cur_neg_feats.size(0),
                                               -1).data.clone()

            feat_dim = cur_pos_feats.size(-1)

            if bidx == 0:
                pos_feats = cur_pos_feats  ##index select
                neg_feats = cur_neg_feats
            else:
                pos_feats = torch.cat((pos_feats, cur_pos_feats), dim=0)
                neg_feats = torch.cat((neg_feats, cur_neg_feats), dim=0)

        if pos_feats.size(0) > opts['n_pos_update']:
            pos_idx = np.asarray(range(pos_feats.size(0)))
            np.random.shuffle(pos_idx)
            pos_feats = pos_feats.index_select(
                0,
                torch.from_numpy(pos_idx[0:opts['n_pos_update']]).cuda())
        if neg_feats.size(0) > opts['n_neg_update']:
            neg_idx = np.asarray(range(neg_feats.size(0)))
            np.random.shuffle(neg_idx)
            neg_feats = neg_feats.index_select(
                0,
                torch.from_numpy(neg_idx[0:opts['n_neg_update']]).cuda())

        pos_feats_all.append(pos_feats)
        neg_feats_all.append(neg_feats)

        if len(pos_feats_all) > opts['n_frames_long']:
            del pos_feats_all[0]
        if len(neg_feats_all) > opts['n_frames_short']:
            del neg_feats_all[0]

    # Short term update
    if not success:
        nframes = min(opts['n_frames_short'], len(pos_feats_all))
        pos_data = torch.stack(pos_feats_all[-nframes:], 0).view(-1, feat_dim)
        neg_data = torch.stack(neg_feats_all, 0).view(-1, feat_dim)
        train(model, criterion, update_optimizer, pos_data, neg_data,
              opts['maxiter_update'])

    # Long term update
    elif count % opts['long_interval'] == 0:
        pos_data = torch.stack(pos_feats_all, 0).view(-1, feat_dim)
        neg_data = torch.stack(neg_feats_all, 0).view(-1, feat_dim)
        train(model, criterion, update_optimizer, pos_data, neg_data,
              opts['maxiter_update'])

    state['trans_f'] = trans_f
    state['model'] = model
    state['target_bbox'] = target_bbox
    state['img_crop_model'] = img_crop_model
    state['bbreg'] = bbreg
    state['criterion'] = criterion
    state['update_optimizer'] = update_optimizer
    state['pos_feats_all'] = pos_feats_all
    state['neg_feats_all'] = neg_feats_all
    state['count'] = count + 1

    return state
Example #15
0
def RTMDNet_init(model_path, image_file, init_bbox):
    state = dict()
    target_bbox = np.array(init_bbox)
    model = MDNet(model_path)
    if opts['adaptive_align']:
        align_h = model.roi_align_model.aligned_height
        align_w = model.roi_align_model.aligned_width
        spatial_s = model.roi_align_model.spatial_scale
        model.roi_align_model = RoIAlignAdaMax(align_h, align_w, spatial_s)
    if opts['use_gpu']:
        model = model.cuda()

    model.set_learnable_params(opts['ft_layers'])
    # Init image crop model
    img_crop_model = imgCropper(1.)
    if opts['use_gpu']:
        img_crop_model.gpuEnable()

    # Init criterion and optimizer
    criterion = BinaryLoss()
    init_optimizer = set_optimizer(model, opts['lr_init'])
    update_optimizer = set_optimizer(model, opts['lr_update'])

    cur_image = Image.open(image_file).convert('RGB')
    cur_image = np.asarray(cur_image)

    # Draw pos/neg samples
    ishape = cur_image.shape
    #    logging.info('ishape: %s, n_pos_init: %s, overlap_pos_init: %s, target_bbox: %s', ishape, opts['n_pos_init'], opts['overlap_pos_init'], target_bbox)
    pos_examples = gen_samples(
        SampleGenerator('gaussian', (ishape[1], ishape[0]), 0.1, 1.2),
        target_bbox, opts['n_pos_init'], opts['overlap_pos_init'])
    neg_examples = gen_samples(
        SampleGenerator('uniform', (ishape[1], ishape[0]), 1, 2, 1.1),
        target_bbox, opts['n_neg_init'], opts['overlap_neg_init'])
    neg_examples = np.random.permutation(neg_examples)

    cur_bbreg_examples = gen_samples(
        SampleGenerator('uniform', (ishape[1], ishape[0]), 0.3, 1.5,
                        1.1), target_bbox, opts['n_bbreg'],
        opts['overlap_bbreg'], opts['scale_bbreg'])

    # compute padded sample
    padded_x1 = (neg_examples[:, 0] - neg_examples[:, 2] *
                 (opts['padding'] - 1.) / 2.).min()
    padded_y1 = (neg_examples[:, 1] - neg_examples[:, 3] *
                 (opts['padding'] - 1.) / 2.).min()
    padded_x2 = (neg_examples[:, 0] + neg_examples[:, 2] *
                 (opts['padding'] + 1.) / 2.).max()
    padded_y2 = (neg_examples[:, 1] + neg_examples[:, 3] *
                 (opts['padding'] + 1.) / 2.).max()
    padded_scene_box = np.reshape(
        np.asarray((padded_x1, padded_y1, padded_x2 - padded_x1,
                    padded_y2 - padded_y1)), (1, 4))

    scene_boxes = np.reshape(np.copy(padded_scene_box), (1, 4))

    if opts['jitter']:
        ## horizontal shift
        jittered_scene_box_horizon = np.copy(padded_scene_box)
        jittered_scene_box_horizon[0, 0] -= 4.
        jitter_scale_horizon = 1.

        ## vertical shift
        jittered_scene_box_vertical = np.copy(padded_scene_box)
        jittered_scene_box_vertical[0, 1] -= 4.
        jitter_scale_vertical = 1.

        jittered_scene_box_reduce1 = np.copy(padded_scene_box)
        jitter_scale_reduce1 = 1.1**(-1)

        ## vertical shift
        jittered_scene_box_enlarge1 = np.copy(padded_scene_box)
        jitter_scale_enlarge1 = 1.1**(1)

        ## scale reduction
        jittered_scene_box_reduce2 = np.copy(padded_scene_box)
        jitter_scale_reduce2 = 1.1**(-2)
        ## scale enlarge
        jittered_scene_box_enlarge2 = np.copy(padded_scene_box)
        jitter_scale_enlarge2 = 1.1**(2)

        scene_boxes = np.concatenate([
            scene_boxes, jittered_scene_box_horizon,
            jittered_scene_box_vertical, jittered_scene_box_reduce1,
            jittered_scene_box_enlarge1, jittered_scene_box_reduce2,
            jittered_scene_box_enlarge2
        ],
                                     axis=0)
        jitter_scale = [
            1., jitter_scale_horizon, jitter_scale_vertical,
            jitter_scale_reduce1, jitter_scale_enlarge1, jitter_scale_reduce2,
            jitter_scale_enlarge2
        ]
    else:
        jitter_scale = [1.]

    model.eval()

    for bidx in range(0, scene_boxes.shape[0]):
        crop_img_size = (scene_boxes[bidx, 2:4] * (
            (opts['img_size'], opts['img_size']) / target_bbox[2:4])
                         ).astype('int64') * jitter_scale[bidx]
        cropped_image, cur_image_var = img_crop_model.crop_image(
            cur_image, np.reshape(scene_boxes[bidx], (1, 4)), crop_img_size)
        cropped_image = cropped_image - 128.

        feat_map = model(cropped_image, out_layer='conv3')

        rel_target_bbox = np.copy(target_bbox)
        rel_target_bbox[0:2] -= scene_boxes[bidx, 0:2]

        batch_num = np.zeros((pos_examples.shape[0], 1))
        cur_pos_rois = np.copy(pos_examples)
        #	logging.info('cur_pos_rois from copy: %s', cur_pos_rois.shape)

        cur_pos_rois[:, 0:2] -= np.repeat(np.reshape(scene_boxes[bidx, 0:2],
                                                     (1, 2)),
                                          cur_pos_rois.shape[0],
                                          axis=0)

        #       logging.info('cur_pos_rois after reshape: %s', cur_pos_rois.shape)

        scaled_obj_size = float(opts['img_size']) * jitter_scale[bidx]

        #	logging.info('scaled_obj_size: %s ', scaled_obj_size)

        cur_pos_rois = samples2maskroi(cur_pos_rois, model.receptive_field,
                                       (scaled_obj_size, scaled_obj_size),
                                       target_bbox[2:4], opts['padding'])
        #       logging.info('cur_pos_rois after after samples2maskroi: %s', cur_pos_rois.shape)
        cur_pos_rois = np.concatenate((batch_num, cur_pos_rois), axis=1)
        #      logging.info('cur_pos_rois after after concatenate: %s', cur_pos_rois.shape)
        cur_pos_rois = Variable(
            torch.from_numpy(cur_pos_rois.astype('float32'))).cuda()
        cur_pos_feats = model.roi_align_model(feat_map, cur_pos_rois)
        cur_pos_feats = cur_pos_feats.view(cur_pos_feats.size(0),
                                           -1).data.clone()

        batch_num = np.zeros((neg_examples.shape[0], 1))
        cur_neg_rois = np.copy(neg_examples)
        cur_neg_rois[:, 0:2] -= np.repeat(np.reshape(scene_boxes[bidx, 0:2],
                                                     (1, 2)),
                                          cur_neg_rois.shape[0],
                                          axis=0)
        cur_neg_rois = samples2maskroi(cur_neg_rois, model.receptive_field,
                                       (scaled_obj_size, scaled_obj_size),
                                       target_bbox[2:4], opts['padding'])
        cur_neg_rois = np.concatenate((batch_num, cur_neg_rois), axis=1)
        cur_neg_rois = Variable(
            torch.from_numpy(cur_neg_rois.astype('float32'))).cuda()
        cur_neg_feats = model.roi_align_model(feat_map, cur_neg_rois)
        cur_neg_feats = cur_neg_feats.view(cur_neg_feats.size(0),
                                           -1).data.clone()

        ## bbreg rois
        batch_num = np.zeros((cur_bbreg_examples.shape[0], 1))
        cur_bbreg_rois = np.copy(cur_bbreg_examples)
        cur_bbreg_rois[:, 0:2] -= np.repeat(np.reshape(scene_boxes[bidx, 0:2],
                                                       (1, 2)),
                                            cur_bbreg_rois.shape[0],
                                            axis=0)
        scaled_obj_size = float(opts['img_size']) * jitter_scale[bidx]
        cur_bbreg_rois = samples2maskroi(cur_bbreg_rois, model.receptive_field,
                                         (scaled_obj_size, scaled_obj_size),
                                         target_bbox[2:4], opts['padding'])
        cur_bbreg_rois = np.concatenate((batch_num, cur_bbreg_rois), axis=1)
        cur_bbreg_rois = Variable(
            torch.from_numpy(cur_bbreg_rois.astype('float32'))).cuda()
        cur_bbreg_feats = model.roi_align_model(feat_map, cur_bbreg_rois)
        cur_bbreg_feats = cur_bbreg_feats.view(cur_bbreg_feats.size(0),
                                               -1).data.clone()

        feat_dim = cur_pos_feats.size(-1)

        if bidx == 0:
            pos_feats = cur_pos_feats
            neg_feats = cur_neg_feats
            ##bbreg feature
            bbreg_feats = cur_bbreg_feats
            bbreg_examples = cur_bbreg_examples
        else:
            pos_feats = torch.cat((pos_feats, cur_pos_feats), dim=0)
            neg_feats = torch.cat((neg_feats, cur_neg_feats), dim=0)
            ##bbreg feature
            bbreg_feats = torch.cat((bbreg_feats, cur_bbreg_feats), dim=0)
            bbreg_examples = np.concatenate(
                (bbreg_examples, cur_bbreg_examples), axis=0)

    if pos_feats.size(0) > opts['n_pos_init']:
        pos_idx = np.asarray(range(pos_feats.size(0)))
        np.random.shuffle(pos_idx)
        pos_feats = pos_feats[pos_idx[0:opts['n_pos_init']], :]
    if neg_feats.size(0) > opts['n_neg_init']:
        neg_idx = np.asarray(range(neg_feats.size(0)))
        np.random.shuffle(neg_idx)
        neg_feats = neg_feats[neg_idx[0:opts['n_neg_init']], :]

    ##bbreg
    if bbreg_feats.size(0) > opts['n_bbreg']:
        bbreg_idx = np.asarray(range(bbreg_feats.size(0)))
        np.random.shuffle(bbreg_idx)
        bbreg_feats = bbreg_feats[bbreg_idx[0:opts['n_bbreg']], :]
        bbreg_examples = bbreg_examples[bbreg_idx[0:opts['n_bbreg']], :]
        #print bbreg_examples.shape

    ## open images and crop patch from obj
    extra_obj_size = np.array((opts['img_size'], opts['img_size']))
    extra_crop_img_size = extra_obj_size * (opts['padding'] + 0.6)
    replicateNum = 100
    for iidx in range(replicateNum):
        extra_target_bbox = np.copy(target_bbox)

        extra_scene_box = np.copy(extra_target_bbox)
        extra_scene_box_center = extra_scene_box[
            0:2] + extra_scene_box[2:4] / 2.
        extra_scene_box_size = extra_scene_box[2:4] * (opts['padding'] + 0.6)
        extra_scene_box[
            0:2] = extra_scene_box_center - extra_scene_box_size / 2.
        extra_scene_box[2:4] = extra_scene_box_size

        extra_shift_offset = np.clip(2. * np.random.randn(2), -4, 4)
        cur_extra_scale = 1.1**np.clip(np.random.randn(1), -2, 2)

        extra_scene_box[0] += extra_shift_offset[0]
        extra_scene_box[1] += extra_shift_offset[1]
        extra_scene_box[2:4] *= cur_extra_scale[0]

        scaled_obj_size = float(opts['img_size']) / cur_extra_scale[0]

        cur_extra_cropped_image, _ = img_crop_model.crop_image(
            cur_image, np.reshape(extra_scene_box, (1, 4)),
            extra_crop_img_size)
        cur_extra_cropped_image = cur_extra_cropped_image.detach()

        cur_extra_pos_examples = gen_samples(
            SampleGenerator('gaussian', (ishape[1], ishape[0]), 0.1,
                            1.2), extra_target_bbox,
            opts['n_pos_init'] / replicateNum, opts['overlap_pos_init'])
        cur_extra_neg_examples = gen_samples(
            SampleGenerator('uniform', (ishape[1], ishape[0]), 0.3, 2,
                            1.1), extra_target_bbox,
            opts['n_neg_init'] / replicateNum / 4, opts['overlap_neg_init'])

        ##bbreg sample
        cur_extra_bbreg_examples = gen_samples(
            SampleGenerator('uniform', (ishape[1], ishape[0]), 0.3, 1.5, 1.1),
            extra_target_bbox, opts['n_bbreg'] / replicateNum / 4,
            opts['overlap_bbreg'], opts['scale_bbreg'])

        batch_num = iidx * np.ones((cur_extra_pos_examples.shape[0], 1))
        cur_extra_pos_rois = np.copy(cur_extra_pos_examples)
        cur_extra_pos_rois[:, 0:2] -= np.repeat(np.reshape(
            extra_scene_box[0:2], (1, 2)),
                                                cur_extra_pos_rois.shape[0],
                                                axis=0)
        cur_extra_pos_rois = samples2maskroi(
            cur_extra_pos_rois, model.receptive_field,
            (scaled_obj_size, scaled_obj_size), extra_target_bbox[2:4],
            opts['padding'])
        cur_extra_pos_rois = np.concatenate((batch_num, cur_extra_pos_rois),
                                            axis=1)

        batch_num = iidx * np.ones((cur_extra_neg_examples.shape[0], 1))
        cur_extra_neg_rois = np.copy(cur_extra_neg_examples)
        cur_extra_neg_rois[:, 0:2] -= np.repeat(np.reshape(
            extra_scene_box[0:2], (1, 2)),
                                                cur_extra_neg_rois.shape[0],
                                                axis=0)
        cur_extra_neg_rois = samples2maskroi(
            cur_extra_neg_rois, model.receptive_field,
            (scaled_obj_size, scaled_obj_size), extra_target_bbox[2:4],
            opts['padding'])
        cur_extra_neg_rois = np.concatenate((batch_num, cur_extra_neg_rois),
                                            axis=1)

        ## bbreg rois
        batch_num = iidx * np.ones((cur_extra_bbreg_examples.shape[0], 1))
        cur_extra_bbreg_rois = np.copy(cur_extra_bbreg_examples)
        cur_extra_bbreg_rois[:,
                             0:2] -= np.repeat(np.reshape(
                                 extra_scene_box[0:2], (1, 2)),
                                               cur_extra_bbreg_rois.shape[0],
                                               axis=0)
        cur_extra_bbreg_rois = samples2maskroi(
            cur_extra_bbreg_rois, model.receptive_field,
            (scaled_obj_size, scaled_obj_size), extra_target_bbox[2:4],
            opts['padding'])
        cur_extra_bbreg_rois = np.concatenate(
            (batch_num, cur_extra_bbreg_rois), axis=1)

        if iidx == 0:
            extra_cropped_image = cur_extra_cropped_image

            extra_pos_rois = np.copy(cur_extra_pos_rois)
            extra_neg_rois = np.copy(cur_extra_neg_rois)
            ##bbreg rois
            extra_bbreg_rois = np.copy(cur_extra_bbreg_rois)
            extra_bbreg_examples = np.copy(cur_extra_bbreg_examples)
        else:
            extra_cropped_image = torch.cat(
                (extra_cropped_image, cur_extra_cropped_image), dim=0)

            extra_pos_rois = np.concatenate(
                (extra_pos_rois, np.copy(cur_extra_pos_rois)), axis=0)
            extra_neg_rois = np.concatenate(
                (extra_neg_rois, np.copy(cur_extra_neg_rois)), axis=0)
            ##bbreg rois
            extra_bbreg_rois = np.concatenate(
                (extra_bbreg_rois, np.copy(cur_extra_bbreg_rois)), axis=0)
            extra_bbreg_examples = np.concatenate(
                (extra_bbreg_examples, np.copy(cur_extra_bbreg_examples)),
                axis=0)

    extra_pos_rois = Variable(
        torch.from_numpy(extra_pos_rois.astype('float32'))).cuda()
    extra_neg_rois = Variable(
        torch.from_numpy(extra_neg_rois.astype('float32'))).cuda()
    ##bbreg rois
    extra_bbreg_rois = Variable(
        torch.from_numpy(extra_bbreg_rois.astype('float32'))).cuda()

    extra_cropped_image -= 128.

    extra_feat_maps = model(extra_cropped_image, out_layer='conv3')
    # Draw pos/neg samples
    ishape = cur_image.shape

    extra_pos_feats = model.roi_align_model(extra_feat_maps, extra_pos_rois)
    extra_pos_feats = extra_pos_feats.view(extra_pos_feats.size(0),
                                           -1).data.clone()

    extra_neg_feats = model.roi_align_model(extra_feat_maps, extra_neg_rois)
    extra_neg_feats = extra_neg_feats.view(extra_neg_feats.size(0),
                                           -1).data.clone()
    ##bbreg feat
    extra_bbreg_feats = model.roi_align_model(extra_feat_maps,
                                              extra_bbreg_rois)
    extra_bbreg_feats = extra_bbreg_feats.view(extra_bbreg_feats.size(0),
                                               -1).data.clone()

    ## concatenate extra features to original_features
    pos_feats = torch.cat((pos_feats, extra_pos_feats), dim=0)
    neg_feats = torch.cat((neg_feats, extra_neg_feats), dim=0)
    ## concatenate extra bbreg feats to original_bbreg_feats
    bbreg_feats = torch.cat((bbreg_feats, extra_bbreg_feats), dim=0)
    bbreg_examples = np.concatenate((bbreg_examples, extra_bbreg_examples),
                                    axis=0)

    torch.cuda.empty_cache()
    model.zero_grad()

    # Initial training
    train(model, criterion, init_optimizer, pos_feats, neg_feats,
          opts['maxiter_init'])

    ##bbreg train
    if bbreg_feats.size(0) > opts['n_bbreg']:
        bbreg_idx = np.asarray(range(bbreg_feats.size(0)))
        np.random.shuffle(bbreg_idx)
        bbreg_feats = bbreg_feats[bbreg_idx[0:opts['n_bbreg']], :]
        bbreg_examples = bbreg_examples[bbreg_idx[0:opts['n_bbreg']], :]
    bbreg = BBRegressor((ishape[1], ishape[0]))
    bbreg.train(bbreg_feats, bbreg_examples, target_bbox)

    if pos_feats.size(0) > opts['n_pos_update']:
        pos_idx = np.asarray(range(pos_feats.size(0)))
        np.random.shuffle(pos_idx)
        pos_feats_all = [
            pos_feats.index_select(
                0,
                torch.from_numpy(pos_idx[0:opts['n_pos_update']]).cuda())
        ]
    if neg_feats.size(0) > opts['n_neg_update']:
        neg_idx = np.asarray(range(neg_feats.size(0)))
        np.random.shuffle(neg_idx)
        neg_feats_all = [
            neg_feats.index_select(
                0,
                torch.from_numpy(neg_idx[0:opts['n_neg_update']]).cuda())
        ]

    state['trans_f'] = opts['trans_f']
    state['count'] = 1
    state['model'] = model
    state['target_bbox'] = target_bbox
    state['img_crop_model'] = img_crop_model
    state['bbreg'] = bbreg
    state['criterion'] = criterion
    state['update_optimizer'] = update_optimizer
    state['pos_feats_all'] = pos_feats_all
    state['neg_feats_all'] = neg_feats_all
    state['feat_dim'] = feat_dim

    return state
    def __init__(self, init_bbox, first_frame):
        self.frame_idx = 0

        self.target_bbox = np.array(init_bbox)
        self.bbreg_bbox = self.target_bbox

        # Init model
        self.model = MDNet(opts['model_path'])
        if opts['use_gpu']:
            self.model = self.model.cuda()
        self.model.set_learnable_params(opts['ft_layers'])

        # Init criterion and optimizer
        self.criterion = BinaryLoss()
        self.init_optimizer = set_optimizer(self.model, opts['lr_init'])
        self.update_optimizer = set_optimizer(self.model, opts['lr_update'])

        # Train bbox regressor
        bbreg_examples = gen_samples(
            SampleGenerator('uniform', first_frame.size, 0.3, 1.5,
                            1.1), self.target_bbox, opts['n_bbreg'],
            opts['overlap_bbreg'], opts['scale_bbreg'])
        assert len(bbreg_examples) > 0
        bbreg_feats = forward_samples(self.model, first_frame, bbreg_examples)
        assert len(bbreg_feats) > 0
        self.bbreg = BBRegressor(first_frame.size)
        self.bbreg.train(bbreg_feats, bbreg_examples, self.target_bbox)

        # Draw pos/neg samples
        pos_examples = gen_samples(
            SampleGenerator('gaussian', first_frame.size, 0.1, 1.2),
            self.target_bbox, opts['n_pos_init'], opts['overlap_pos_init'])

        neg_examples = np.concatenate([
            gen_samples(
                SampleGenerator('uniform', first_frame.size, 1, 2,
                                1.1), self.target_bbox,
                opts['n_neg_init'] // 2, opts['overlap_neg_init']),
            gen_samples(
                SampleGenerator('whole', first_frame.size, 0, 1.2,
                                1.1), self.target_bbox,
                opts['n_neg_init'] // 2, opts['overlap_neg_init'])
        ])
        neg_examples = np.random.permutation(neg_examples)

        # Extract pos/neg features
        pos_feats = forward_samples(self.model, first_frame, pos_examples)
        neg_feats = forward_samples(self.model, first_frame, neg_examples)
        self.feat_dim = pos_feats.size(-1)

        # Initial training
        train(self.model, self.criterion, self.init_optimizer, pos_feats,
              neg_feats, opts['maxiter_init'])

        # Init sample generators
        self.sample_generator = SampleGenerator('gaussian',
                                                first_frame.size,
                                                opts['trans_f'],
                                                opts['scale_f'],
                                                valid=True)
        self.pos_generator = SampleGenerator('gaussian', first_frame.size, 0.1,
                                             1.2)
        self.neg_generator = SampleGenerator('uniform', first_frame.size, 1.5,
                                             1.2)

        # Init pos/neg features for update
        self.pos_feats_all = [pos_feats[:opts['n_pos_update']]]
        self.neg_feats_all = [neg_feats[:opts['n_neg_update']]]
Example #17
0
 def __init__(self, pos_data, neg_data, dims, data_obj):
     qset, pos_set, neg_set = self.format_data(pos_data, neg_data)
     SampleGenerator.__init__(self, qset, pos_set, neg_set, dims, data_obj)
Example #18
0
def generate_sample(view):
    sample = SampleGenerator(view)
    sample.run()
    print('foo')
Example #19
0
def main():

    # Arguments
    parser = argparse.ArgumentParser()
    
    parser.add_argument("-d", "--data_set", type=str, required=True, \
                        choices = ["train", "dev", "test"], \
                        help="Specify if evaluation to be done on train/dev/test")

    parser.add_argument("-m", "--model", type=str, required=True, \
                        help="Model path")

    parser.add_argument("-n", "--num_data", type=int, \
                        help="Number of data points to evaluate")

    parser.add_argument("-po", "--print_outputs", type=str, default="1 1", \
                        help="-po batch_size num_pos outputs")

    parser.add_argument("-met", "--metrics", action='store_false', \
                        help="-met (True/False) to print metrics")

    parser.add_argument("-ver_s", "--verify_samples", action='store_false', \
                        help="-met (True/False) to print metrics")

    parser.add_argument("-ver_i", "--verify_input", action='store_false', \
                        help="-met (True/False) to print metrics")

    args = parser.parse_args()    
    model_path = args.model
    num_data = []
    if (args.num_data):
        num_data = args.num_data
    data_set = args.data_set
    batch_size, num_pos = args.print_outputs.split()
    batch_size = int(batch_size)
    num_pos = int(num_pos)

    f = open("data_folder/created_data/word_embed.pkl", "rb") 
    word_embed = pickle.load(f)
    f.close()

    f = open("data_folder/created_data/question_id.pkl", "rb") 
    question_id = pickle.load(f)
    f.close()

    data_obj = DataStore(question_id, word_embed)

    n = 120
    N = 100
    opveclen = 100 
    wlen = len(word_embed['the'])
    dims = n, N, wlen, opveclen
    loss_fn = loss_fn_wrap(dims)

    model = tf.keras.models.load_model(model_path, \
     custom_objects={'loss': loss_fn_wrap(dims)}, compile=False)

    model.compile(optimizer='adam', loss=loss_fn)

    loaded_data = (word_embed, question_id, model)



    data_folder = 'data_folder/data'
    train_file = 'train_random.txt'
    dev_file = 'dev.txt'
    test_file = 'heldout.txt'

    dev_path = os.path.join(data_folder, dev_file)
    test_path = os.path.join(data_folder, test_file)
    train_path = os.path.join(data_folder, train_file)

    sample_gen = dict()

    train_q, train_pos, train_neg = read_question_data(train_path)
    sample_gen["train"] = SampleGenerator(train_q, train_pos, \
            train_neg, dims, data_obj)

    dev_q, dev_pos, dev_neg = read_question_data(dev_path)
    sample_gen["dev"] = SampleGenerator(dev_q, dev_pos, \
            dev_neg, dims, data_obj)

    test_q, test_pos, test_neg = read_question_data(test_path)
    sample_gen["test"] = SampleGenerator(test_q, test_pos, \
            test_neg, dims, data_obj)

    if (args.metrics):
        print(get_metrics(model, sample_gen[data_set], dims, num_data=num_data)) 

    if (args.verify_samples):
        verify_samples(sample_gen[data_set], model, dims, batch_size=batch_size, num_pos=num_pos, randomly=False) 

    if (args.verify_input):
        verify_inputs(sample_gen[data_set], dims, batch_ind=1)
Example #20
0

if __name__ == '__main__':

    if len(sys.argv) != 2:
        print('word2vec.py train & sim')
        sys.exit(0)

    vocab = Vocabulary('../data/vocab.txt')
    vocab.load()

    word2vec = Word2Vec()

    what = sys.argv[1]
    if what == 'train':
        generator = SampleGenerator('../data/3b_token.txt.final', vocab)
        dataset = tf.data.Dataset.from_generator(
            generator,
            output_types=((tf.int32, tf.int32), tf.float32),
            output_shapes=(((), ()), ())
            #((tf.int32, tf.int32), tf.int32))
        )

        batch_size = 1024
        dataset = dataset.batch(batch_size)
        dataset = dataset.prefetch(buffer_size=5 * batch_size)

        word2vec.build_model(vocab.get_size(), 200)
        word2vec.train(dataset, epoch=1)
        word2vec.save('../data/word2vec.h5')
class Tracker:
    def __init__(self, init_bbox, first_frame):
        self.frame_idx = 0

        self.target_bbox = np.array(init_bbox)
        self.bbreg_bbox = self.target_bbox

        # Init model
        self.model = MDNet(opts['model_path'])
        if opts['use_gpu']:
            self.model = self.model.cuda()
        self.model.set_learnable_params(opts['ft_layers'])

        # Init criterion and optimizer
        self.criterion = BinaryLoss()
        self.init_optimizer = set_optimizer(self.model, opts['lr_init'])
        self.update_optimizer = set_optimizer(self.model, opts['lr_update'])

        # Train bbox regressor
        bbreg_examples = gen_samples(
            SampleGenerator('uniform', first_frame.size, 0.3, 1.5,
                            1.1), self.target_bbox, opts['n_bbreg'],
            opts['overlap_bbreg'], opts['scale_bbreg'])
        assert len(bbreg_examples) > 0
        bbreg_feats = forward_samples(self.model, first_frame, bbreg_examples)
        assert len(bbreg_feats) > 0
        self.bbreg = BBRegressor(first_frame.size)
        self.bbreg.train(bbreg_feats, bbreg_examples, self.target_bbox)

        # Draw pos/neg samples
        pos_examples = gen_samples(
            SampleGenerator('gaussian', first_frame.size, 0.1, 1.2),
            self.target_bbox, opts['n_pos_init'], opts['overlap_pos_init'])

        neg_examples = np.concatenate([
            gen_samples(
                SampleGenerator('uniform', first_frame.size, 1, 2,
                                1.1), self.target_bbox,
                opts['n_neg_init'] // 2, opts['overlap_neg_init']),
            gen_samples(
                SampleGenerator('whole', first_frame.size, 0, 1.2,
                                1.1), self.target_bbox,
                opts['n_neg_init'] // 2, opts['overlap_neg_init'])
        ])
        neg_examples = np.random.permutation(neg_examples)

        # Extract pos/neg features
        pos_feats = forward_samples(self.model, first_frame, pos_examples)
        neg_feats = forward_samples(self.model, first_frame, neg_examples)
        self.feat_dim = pos_feats.size(-1)

        # Initial training
        train(self.model, self.criterion, self.init_optimizer, pos_feats,
              neg_feats, opts['maxiter_init'])

        # Init sample generators
        self.sample_generator = SampleGenerator('gaussian',
                                                first_frame.size,
                                                opts['trans_f'],
                                                opts['scale_f'],
                                                valid=True)
        self.pos_generator = SampleGenerator('gaussian', first_frame.size, 0.1,
                                             1.2)
        self.neg_generator = SampleGenerator('uniform', first_frame.size, 1.5,
                                             1.2)

        # Init pos/neg features for update
        self.pos_feats_all = [pos_feats[:opts['n_pos_update']]]
        self.neg_feats_all = [neg_feats[:opts['n_neg_update']]]

    def track(self, image):
        self.frame_idx += 1

        # Estimate target bbox
        samples = gen_samples(self.sample_generator, self.target_bbox,
                              opts['n_samples'])
        sample_scores = forward_samples(self.model,
                                        image,
                                        samples,
                                        out_layer='fc6')
        top_scores, top_idx = sample_scores[:, 1].topk(5)
        top_idx = top_idx.cpu().numpy()
        target_score = top_scores.mean()

        success = target_score > opts['success_thr']

        # Expand search area at failure
        if success:
            self.sample_generator.set_trans_f(opts['trans_f'])
        else:
            self.sample_generator.set_trans_f(opts['trans_f_expand'])

        # Save result at success.
        if success:
            self.target_bbox = samples[top_idx].mean(axis=0)

            # Bbox regression
            bbreg_samples = samples[top_idx]
            bbreg_feats = forward_samples(self.model, image, bbreg_samples)
            bbreg_samples = self.bbreg.predict(bbreg_feats, bbreg_samples)
            self.bbreg_bbox = bbreg_samples.mean(axis=0)

        # Data collect
        if success:
            # Draw pos/neg samples
            pos_examples = gen_samples(self.pos_generator, self.target_bbox,
                                       opts['n_pos_update'],
                                       opts['overlap_pos_update'])
            neg_examples = gen_samples(self.neg_generator, self.target_bbox,
                                       opts['n_neg_update'],
                                       opts['overlap_neg_update'])

            # Extract pos/neg features
            pos_feats = forward_samples(self.model, image, pos_examples)
            neg_feats = forward_samples(self.model, image, neg_examples)
            self.pos_feats_all.append(pos_feats)
            self.neg_feats_all.append(neg_feats)
            if len(self.pos_feats_all) > opts['n_frames_long']:
                del self.pos_feats_all[0]
            if len(self.neg_feats_all) > opts['n_frames_short']:
                del self.neg_feats_all[0]

        # Short term update
        if not success:
            nframes = min(opts['n_frames_short'], len(self.pos_feats_all))
            pos_data = torch.stack(self.pos_feats_all[-nframes:],
                                   0).view(-1, self.feat_dim)
            neg_data = torch.stack(self.neg_feats_all,
                                   0).view(-1, self.feat_dim)
            train(self.model, self.criterion, self.update_optimizer, pos_data,
                  neg_data, opts['maxiter_update'])

        # Long term update
        elif self.frame_idx % opts['long_interval'] == 0:
            pos_data = torch.stack(self.pos_feats_all,
                                   0).view(-1, self.feat_dim)
            neg_data = torch.stack(self.neg_feats_all,
                                   0).view(-1, self.feat_dim)
            train(self.model, self.criterion, self.update_optimizer, pos_data,
                  neg_data, opts['maxiter_update'])

        return self.bbreg_bbox, target_score