Example #1
0
class GenDiagGaussian:
    def __init__(self,
                 name,
                 abstract_dim,
                 hidden_sizes=(32),
                 min_std=1e-6,
                 hidden_nonlinearity=tf.nn.tanh,
                 output_nonlinearity=None,
                 optim=tf.train.AdamOptimizer(learning_rate=0.001)):
        self.obs_dim = abstract_dim
        self.min_std = min_std
        self.distribution = DiagonalGaussian(self.obs_dim)
        with tf.variable_scope(name):
            self.net = MLP(
                name="mu_log_sigma",
                input_shape=self.obs_dim,
                output_dim=2 * self.obs_dim,
                hidden_sizes=hidden_sizes,
                hidden_nonlinearity=hidden_nonlinearity,
                output_nonlinearity=output_nonlinearity,
            )
        self.obs_var = self.net.input_layer.input_var
        self.output = L.get_output(self.net.output_layer, self.obs_var)
        self.mu, unstable_log_sigma = tf.split(self.output,
                                               [self.obs_dim, self.obs_dim], 1)
        self.log_sigma = tf.maximum(unstable_log_sigma, self.min_std)

        self.nexts = tf.placeholder(tf.float32, shape=(None, self.obs_dim))
        self.loss = -self.distribution.log_likelihood(
            self.nexts, dist_info=dict(mean=self.mu, log_stds=self.log_sigma))
        self.optimizer = optim
        self.train_op = optim.minimize(self.loss)

        config = tf.ConfigProto()
        config.gpu_options.allow_growth = True
        self.sess = tf.Session(config=config)
        self.sess.run(tf.global_variables_initializer())

    def forward(self, obs):
        return self.sess.run([self.mu, self.log_sigma],
                             feed_dict={self.obs_var: obs})

    def get_loglikelihood(self, obs, next):
        mu, sigma = self.forward(obs)
        return self.distribution.log_likelihood(next,
                                                dist_info=dict(mean=mu,
                                                               log_stds=sigma))

    def fit(self, obs, nexts, n_steps=25):
        for _ in range(n_steps):
            self.sess.run(self.train_op,
                          feed_dict={
                              self.obs_var: obs,
                              self.nexts: nexts
                          })
        return True
Example #2
0
    def __init__(
        self,
        name,
        env_spec,
        arch=gaussian_ff_arch,
        arch_args=None,
        min_std=1e-6,
    ):
        """
        :param env_spec:
        :param hidden_sizes: list of sizes for the fully-connected hidden layers
        :param learn_std: Is std trainable
        :param init_std: Initial std
        :param adaptive_std:
        :param std_share_network:
        :param std_hidden_sizes: list of sizes for the fully-connected layers for std
        :param min_std: whether to make sure that the std is at least some threshold value, to avoid numerical issues
        :param std_hidden_nonlinearity:
        :param hidden_nonlinearity: nonlinearity used for each hidden layer
        :param output_nonlinearity: nonlinearity for the output layer
        :param mean_network: custom network for the output mean
        :param std_network: custom network for the output log std
        :param std_parametrization: how the std should be parametrized. There are a few options:
            - exp: the logarithm of the std will be stored, and applied a exponential transformation
            - softplus: the std will be computed as log(1+exp(x))
        :return:
        """
        Serializable.quick_init(self, locals())
        super(GaussianTFPolicy, self).__init__(env_spec)
        assert isinstance(env_spec.action_space, Box)

        if arch_args is None:
            arch_args = {}
        self.arch_args = arch_args
        self.name = name

        self.min_std_param = np.log(min_std)

        obs_dim = env_spec.observation_space.flat_dim
        action_dim = env_spec.action_space.flat_dim

        self._dist = DiagonalGaussian(action_dim)
        self.arch = arch

        with tf.variable_scope(self.name):
            self.sample_obs = tf.placeholder(tf.float32, [None, obs_dim])
            self.sample_mu, self.sample_log_std = self.arch(self.sample_obs,
                                                            env_spec=env_spec,
                                                            **self.arch_args)
Example #3
0
    def __init__(self, env_spec, name=None, mean=0.0, log_std=1.0):
        with tf.variable_scope(name):
            assert isinstance(env_spec.action_space, Box)
            Serializable.quick_init(self, locals())

            self.action_dim = env_spec.action_space.flat_dim
            self._dist = DiagonalGaussian(self.action_dim)
            self.mean = mean * np.ones(self.action_dim)
            self.log_std = log_std * np.ones(self.action_dim)
            self.mean_tf = tf.constant(self.mean, dtype=tf.float32)
            self.log_std_tf = tf.constant(self.log_std, dtype=tf.float32)

            self.dummy_var = tf.get_variable(name='dummy',
                                             shape=self.action_dim)

            super(GaussianPolicy, self).__init__(env_spec=env_spec)
    def __init__(
            self,
            name,
            env_spec,
            hidden_sizes=(32, 32),
            learn_std=True,
            init_std=1.0,
            adaptive_std=False,
            std_share_network=False,
            std_hidden_sizes=(32, 32),
            min_std=1e-6,
            std_hidden_nonlinearity=tf.nn.tanh,
            hidden_nonlinearity=tf.nn.tanh,
            output_nonlinearity=None,
            mean_network=None,
            std_network=None,
            std_parametrization='exp'
    ):
        """
        :param env_spec:
        :param hidden_sizes: list of sizes for the fully-connected hidden layers
        :param learn_std: Is std trainable
        :param init_std: Initial std
        :param adaptive_std:
        :param std_share_network:
        :param std_hidden_sizes: list of sizes for the fully-connected layers for std
        :param min_std: whether to make sure that the std is at least some threshold value, to avoid numerical issues
        :param std_hidden_nonlinearity:
        :param hidden_nonlinearity: nonlinearity used for each hidden layer
        :param output_nonlinearity: nonlinearity for the output layer
        :param mean_network: custom network for the output mean
        :param std_network: custom network for the output log std
        :param std_parametrization: how the std should be parametrized. There are a few options:
            - exp: the logarithm of the std will be stored, and applied a exponential transformation
            - softplus: the std will be computed as log(1+exp(x))
        :return:
        """
        Serializable.quick_init(self, locals())
        assert isinstance(env_spec.action_space, Box)

        with tf.variable_scope(name):

            obs_dim = env_spec.observation_space.flat_dim
            action_dim = env_spec.action_space.flat_dim

            # create network
            if mean_network is None:
                mean_network = MLP(
                    name="mean_network",
                    input_shape=(obs_dim,),
                    output_dim=action_dim,
                    hidden_sizes=hidden_sizes,
                    hidden_nonlinearity=hidden_nonlinearity,
                    output_nonlinearity=output_nonlinearity,
                )
            self._mean_network = mean_network

            l_mean = mean_network.output_layer
            obs_var = mean_network.input_layer.input_var

            if std_network is not None:
                l_std_param = std_network.output_layer
            else:
                if adaptive_std:
                    std_network = MLP(
                        name="std_network",
                        input_shape=(obs_dim,),
                        input_layer=mean_network.input_layer,
                        output_dim=action_dim,
                        hidden_sizes=std_hidden_sizes,
                        hidden_nonlinearity=std_hidden_nonlinearity,
                        output_nonlinearity=None,
                    )
                    l_std_param = std_network.output_layer
                else:
                    if std_parametrization == 'exp':
                        init_std_param = np.log(init_std)
                    elif std_parametrization == 'softplus':
                        init_std_param = np.log(np.exp(init_std) - 1)
                    else:
                        raise NotImplementedError
                    l_std_param = L.ParamLayer(
                        mean_network.input_layer,
                        num_units=action_dim,
                        param=tf.constant_initializer(init_std_param),
                        name="output_std_param",
                        trainable=learn_std,
                    )

            self.std_parametrization = std_parametrization

            if std_parametrization == 'exp':
                min_std_param = np.log(min_std)
            elif std_parametrization == 'softplus':
                min_std_param = np.log(np.exp(min_std) - 1)
            else:
                raise NotImplementedError

            self.min_std_param = min_std_param

            # mean_var, log_std_var = L.get_output([l_mean, l_std_param])
            #
            # if self.min_std_param is not None:
            #     log_std_var = tf.maximum(log_std_var, np.log(min_std))
            #
            # self._mean_var, self._log_std_var = mean_var, log_std_var

            self._l_mean = l_mean
            self._l_std_param = l_std_param

            self._dist = DiagonalGaussian(action_dim)

            LayersPowered.__init__(self, [l_mean, l_std_param])
            super(GaussianMLPPolicy, self).__init__(env_spec)

            dist_info_sym = self.dist_info_sym(mean_network.input_layer.input_var, dict())
            mean_var = dist_info_sym["mean"]
            log_std_var = dist_info_sym["log_std"]

            self._f_dist = tensor_utils.compile_function(
                inputs=[obs_var],
                outputs=[mean_var, log_std_var],
            )
    def __init__(
        self,
        name,
        env_spec,
        hidden_sizes=(32, 32),
        learn_std=True,
        init_std=1.0,
        adaptive_std=False,
        std_share_network=False,
        std_hidden_sizes=(32, 32),
        min_std=1e-6,
        max_std=1000.0,
        std_modifier=1.0,
        std_hidden_nonlinearity=tf.nn.tanh,
        hidden_nonlinearity=tf.nn.tanh,
        output_nonlinearity=tf.identity,
        mean_network=None,
        std_network=None,
        std_parametrization='exp',
        grad_step_size=1.0,
        stop_grad=False,
        extra_input_dim=0,
        # metalearn_baseline=False,
    ):
        """
        :param env_spec:
        :param hidden_sizes: list of sizes for the fully-connected hidden layers
        :param learn_std: Is std trainable
        :param init_std: Initial std
        :param adaptive_std:
        :param std_share_network:
        :param std_hidden_sizes: list of sizes for the fully-connected layers for std
        :param min_std: whether to make sure that the std is at least some threshold value, to avoid numerical issues
        :param std_hidden_nonlinearity:
        :param hidden_nonlinearity: nonlinearity used for each hidden layer
        :param output_nonlinearity: nonlinearity for the output layer
        :param mean_network: custom network for the output mean
        :param std_network: custom network for the output log std
        :param std_parametrization: how the std should be parametrized. There are a few options:
            - exp: the logarithm of the std will be stored, and applied a exponential transformation
            - softplus: the std will be computed as log(1+exp(x))
        :param grad_step_size: the step size taken in the learner's gradient update, sample uniformly if it is a range e.g. [0.1,1]
        :param stop_grad: whether or not to stop the gradient through the gradient.
        :return:
        """
        Serializable.quick_init(self, locals())
        #assert isinstance(env_spec.action_space, Box)

        obs_dim = env_spec.observation_space.flat_dim
        self.action_dim = env_spec.action_space.flat_dim
        self.n_hidden = len(hidden_sizes)
        self.hidden_nonlinearity = hidden_nonlinearity
        self.output_nonlinearity = output_nonlinearity
        self.input_shape = (
            None,
            obs_dim + extra_input_dim,
        )
        self.extra_input_dim = extra_input_dim
        self.step_size = grad_step_size
        self.stop_grad = stop_grad
        # self.metalearn_baseline = metalearn_baseline
        if type(self.step_size) == list:
            raise NotImplementedError('removing this since it didnt work well')

        # create network
        if mean_network is None:
            self.all_params = self.create_MLP(  # TODO: this should not be a method of the policy! --> helper
                name="mean_network",
                output_dim=self.action_dim,
                hidden_sizes=hidden_sizes,
            )
            self.input_tensor, _ = self.forward_MLP(
                'mean_network',
                self.all_params,
                reuse=None  # Need to run this for batch norm
            )
            forward_mean = lambda x, params, is_train: self.forward_MLP(
                'mean_network',
                all_params=params,
                input_tensor=x,
                is_training=is_train)[1]
        else:
            raise NotImplementedError('Not supported.')

        if std_network is not None:
            raise NotImplementedError('Not supported.')
        else:
            if adaptive_std:
                raise NotImplementedError('Not supported.')
            else:
                if std_parametrization == 'exp':
                    init_std_param = np.log(init_std)
                elif std_parametrization == 'softplus':
                    init_std_param = np.log(np.exp(init_std) - 1)
                else:
                    raise NotImplementedError
                self.all_params['std_param'] = make_param_layer(
                    num_units=self.action_dim,
                    param=tf.constant_initializer(init_std_param),
                    name="output_std_param",
                    trainable=learn_std,
                )
                forward_std = lambda x, params: forward_param_layer(
                    x, params['std_param'])
            self.all_param_vals = None

            # unify forward mean and forward std into a single function
            self._forward = lambda obs, params, is_train: (forward_mean(
                obs, params, is_train), forward_std(obs, params))

            self.std_parametrization = std_parametrization

            if std_parametrization == 'exp':
                min_std_param = np.log(min_std)
                max_std_param = np.log(max_std)
            elif std_parametrization == 'softplus':
                min_std_param = np.log(np.exp(min_std) - 1)
                max_std_param = np.log(np.exp(max_std) - 1)
            else:
                raise NotImplementedError

            self.min_std_param = min_std_param  # TODO: change these to min_std_param_raw
            self.max_std_param = max_std_param
            self.std_modifier = np.float64(std_modifier)
            #print("initializing max_std debug4", self.min_std_param, self.max_std_param)

            self._dist = DiagonalGaussian(self.action_dim)

            self._cached_params = {}

            super(MAMLGaussianMLPPolicy, self).__init__(env_spec)

            dist_info_sym = self.dist_info_sym(self.input_tensor,
                                               dict(),
                                               is_training=False)
            mean_var = dist_info_sym["mean"]
            log_std_var = dist_info_sym["log_std"]

            # pre-update policy
            self._init_f_dist = tensor_utils.compile_function(
                inputs=[self.input_tensor],
                outputs=[mean_var, log_std_var],
            )
            self._cur_f_dist = self._init_f_dist
    def __init__(self,
                 name,
                 env_spec,
                 hidden_sizes=(32, 32),
                 learn_std=True,
                 init_std=1.0,
                 adaptive_std=False,
                 std_share_network=False,
                 std_hidden_sizes=(32, 32),
                 min_std=1e-6,
                 std_hidden_nonlinearity=tf.nn.tanh,
                 hidden_nonlinearity=tf.nn.tanh,
                 output_nonlinearity=None,
                 mean_network=None,
                 std_network=None,
                 std_parametrization='exp'):
        """
        :param env_spec:
        :param hidden_sizes: list of sizes for the fully-connected hidden layers
        :param learn_std: Is std trainable
        :param init_std: Initial std
        :param adaptive_std:
        :param std_share_network:
        :param std_hidden_sizes: list of sizes for the fully-connected layers for std
        :param min_std: whether to make sure that the std is at least some threshold value, to avoid numerical issues
        :param std_hidden_nonlinearity:
        :param hidden_nonlinearity: nonlinearity used for each hidden layer
        :param output_nonlinearity: nonlinearity for the output layer
        :param mean_network: custom network for the output mean
        :param std_network: custom network for the output log std
        :param std_parametrization: how the std should be parametrized. There are a few options:
            - exp: the logarithm of the std will be stored, and applied a exponential transformation
            - softplus: the std will be computed as log(1+exp(x))
        :return:
        """
        Serializable.quick_init(self, locals())
        assert isinstance(env_spec.action_space, Box)

        with tf.variable_scope(name):

            obs_dim = env_spec.observation_space.flat_dim
            action_dim = env_spec.action_space.flat_dim

            # create network
            if mean_network is None:
                # returns layers(), input_layer, output_layer, input_var, output
                mean_network = self.create_MLP(
                    name="mean_network",
                    input_shape=(obs_dim, ),
                    output_dim=action_dim,
                    hidden_sizes=hidden_sizes,
                    hidden_nonlinearity=hidden_nonlinearity,
                    output_nonlinearity=output_nonlinearity,
                )
            else:
                raise NotImplementedError('Chelsea does not support this.')
            l_mean = mean_network[2]
            obs_var = mean_network[3]

            if std_network is not None:
                raise NotImplementedError(
                    'Contained Gaussian MLP does not support this.')
                l_std_param = std_network.output_layer
            else:
                if adaptive_std:
                    # returns layers(), input_layer, output_layer, input_var, output
                    std_network = self.create_MLP(
                        name="std_network",
                        input_shape=(obs_dim, ),
                        input_layer=mean_network[1],
                        output_dim=action_dim,
                        hidden_sizes=std_hidden_sizes,
                        hidden_nonlinearity=std_hidden_nonlinearity,
                        output_nonlinearity=None,
                    )
                    l_std_param = std_network[2]
                else:
                    if std_parametrization == 'exp':
                        init_std_param = np.log(init_std)
                    elif std_parametrization == 'softplus':
                        init_std_param = np.log(np.exp(init_std) - 1)
                    else:
                        raise NotImplementedError
                    l_std_param = L.ParamLayer(
                        mean_network[1],
                        num_units=action_dim,
                        param=tf.constant_initializer(init_std_param),
                        name="output_std_param",
                        trainable=learn_std,
                    )

            self.std_parametrization = std_parametrization

            if std_parametrization == 'exp':
                min_std_param = np.log(min_std)
            elif std_parametrization == 'softplus':
                min_std_param = np.log(np.exp(min_std) - 1)
            else:
                raise NotImplementedError

            self.min_std_param = min_std_param

            self._l_mean = l_mean
            self._l_std_param = l_std_param

            self._dist = DiagonalGaussian(action_dim)

            # LayersPowered.__init__(self, [l_mean, l_std_param])
            self._output_layers = [l_mean, l_std_param]
            #self._input_layers = None
            # Parameterized.__init__(self)
            self._cached_params = {}
            #self._cached_param_dtypes = {} #self._cached_param_shapes = {} #self._cached_assign_ops = {} #self._cached_assign_placeholders = {}

            super(GaussianMLPPolicy, self).__init__(env_spec)

            dist_info_sym = self.dist_info_sym(mean_network[3], dict())
            mean_var = dist_info_sym["mean"]
            log_std_var = dist_info_sym["log_std"]

            def f_dist(*input_vals):
                sess = tf.get_default_session()
                return sess.run([mean_var, log_std_var],
                                feed_dict=dict(list(zip([obs_var],
                                                        input_vals))))

            self._f_dist = f_dist
    def __init__(
            self,
            name,
            input_shape,
            output_dim,
            # observation_space,
            mean_network=None,
            hidden_sizes=(32, 32),
            hidden_nonlinearity=tf.nn.tanh,
            optimizer=None,
            use_trust_region=True,
            step_size=0.01,
            learn_std=True,
            init_std=1.0,
            adaptive_std=False,
            std_share_network=False,
            std_hidden_sizes=(32, 32),
            std_nonlinearity=None,
            normalize_inputs=True,
            normalize_outputs=True,
            subsample_factor=1.0
    ):
        """
        :param input_shape: Shape of the input data.
        :param output_dim: Dimension of output.
        :param hidden_sizes: Number of hidden units of each layer of the mean network.
        :param hidden_nonlinearity: Non-linearity used for each layer of the mean network.
        :param optimizer: Optimizer for minimizing the negative log-likelihood.
        :param use_trust_region: Whether to use trust region constraint.
        :param step_size: KL divergence constraint for each iteration
        :param learn_std: Whether to learn the standard deviations. Only effective if adaptive_std is False. If
        adaptive_std is True, this parameter is ignored, and the weights for the std network are always learned.
        :param adaptive_std: Whether to make the std a function of the states.
        :param std_share_network: Whether to use the same network as the mean.
        :param std_hidden_sizes: Number of hidden units of each layer of the std network. Only used if
        `std_share_network` is False. It defaults to the same architecture as the mean.
        :param std_nonlinearity: Non-linearity used for each layer of the std network. Only used if `std_share_network`
        is False. It defaults to the same non-linearity as the mean.
        """
        Serializable.quick_init(self, locals())

        with tf.variable_scope(name):

            if optimizer is None:
                if use_trust_region:
                    optimizer = PenaltyLbfgsOptimizer("optimizer")
                else:
                    optimizer = LbfgsOptimizer("optimizer")

            self._optimizer = optimizer
            self._subsample_factor = subsample_factor

            if mean_network is None:
                mean_network = MLP(
                    name="mean_network",
                    input_shape=input_shape,
                    output_dim=output_dim,
                    hidden_sizes=hidden_sizes,
                    hidden_nonlinearity=hidden_nonlinearity,
                    output_nonlinearity=None,
                )

            l_mean = mean_network.output_layer

            if adaptive_std:
                l_log_std = MLP(
                    name="log_std_network",
                    input_shape=input_shape,
                    input_var=mean_network.input_layer.input_var,
                    output_dim=output_dim,
                    hidden_sizes=std_hidden_sizes,
                    hidden_nonlinearity=std_nonlinearity,
                    output_nonlinearity=None,
                ).output_layer
            else:
                l_log_std = L.ParamLayer(
                    mean_network.input_layer,
                    num_units=output_dim,
                    param=tf.constant_initializer(np.log(init_std)),
                    name="output_log_std",
                    trainable=learn_std,
                )

            LayersPowered.__init__(self, [l_mean, l_log_std])

            xs_var = mean_network.input_layer.input_var
            ys_var = tf.placeholder(dtype=tf.float32, name="ys", shape=(None, output_dim))
            old_means_var = tf.placeholder(dtype=tf.float32, name="ys", shape=(None, output_dim))
            old_log_stds_var = tf.placeholder(dtype=tf.float32, name="old_log_stds", shape=(None, output_dim))

            x_mean_var = tf.Variable(
                np.zeros((1,) + input_shape, dtype=np.float32),
                name="x_mean",
            )
            x_std_var = tf.Variable(
                np.ones((1,) + input_shape, dtype=np.float32),
                name="x_std",
            )
            y_mean_var = tf.Variable(
                np.zeros((1, output_dim), dtype=np.float32),
                name="y_mean",
            )
            y_std_var = tf.Variable(
                np.ones((1, output_dim), dtype=np.float32),
                name="y_std",
            )

            self.x_mean_var = x_mean_var
            self.x_std_var = x_std_var
            self.y_mean_var = y_mean_var
            self.y_std_var = y_std_var
            # self.observation_space = observation_space

            normalized_xs_var = (xs_var - x_mean_var) / x_std_var
            normalized_ys_var = (ys_var - y_mean_var) / y_std_var

            normalized_means_var = L.get_output(l_mean, {mean_network.input_layer: normalized_xs_var})
            normalized_log_stds_var = L.get_output(l_log_std, {mean_network.input_layer: normalized_xs_var})

            means_var = normalized_means_var * y_std_var + y_mean_var
            log_stds_var = normalized_log_stds_var + tf.log(y_std_var)

            normalized_old_means_var = (old_means_var - y_mean_var) / y_std_var
            normalized_old_log_stds_var = old_log_stds_var - tf.log(y_std_var)

            dist = self._dist = DiagonalGaussian(output_dim)

            normalized_dist_info_vars = dict(mean=normalized_means_var, log_std=normalized_log_stds_var)

            mean_kl = tf.reduce_mean(dist.kl_sym(
                dict(mean=normalized_old_means_var, log_std=normalized_old_log_stds_var),
                normalized_dist_info_vars,
            ))

            loss = - tf.reduce_mean(dist.log_likelihood_sym(normalized_ys_var, normalized_dist_info_vars))

            self._f_predict = tensor_utils.compile_function([xs_var], means_var)
            self._f_pdists = tensor_utils.compile_function([xs_var], [means_var, log_stds_var])
            self._l_mean = l_mean
            self._l_log_std = l_log_std

            optimizer_args = dict(
                loss=loss,
                target=self,
                network_outputs=[normalized_means_var, normalized_log_stds_var],
            )

            if use_trust_region:
                optimizer_args["leq_constraint"] = (mean_kl, step_size)
                optimizer_args["inputs"] = [xs_var, ys_var, old_means_var, old_log_stds_var]
            else:
                optimizer_args["inputs"] = [xs_var, ys_var]

            self._optimizer.update_opt(**optimizer_args)

            self._use_trust_region = use_trust_region
            self._name = name

            self._normalize_inputs = normalize_inputs
            self._normalize_outputs = normalize_outputs
            self._mean_network = mean_network
            self._x_mean_var = x_mean_var
            self._x_std_var = x_std_var
            self._y_mean_var = y_mean_var
            self._y_std_var = y_std_var

            self.input_dim = input_shape[0]
            self.output_dim = output_dim
Example #8
0
    def __init__(
            self,
            env,
            policy,
            baseline,
            scope=None,
            n_itr=500,
            start_itr=0,
            # Note that the number of trajectories for grad upate = batch_size
            # Defaults are 10 trajectories of length 500 for gradient update
            batch_size=100,
            max_path_length=500,
            meta_batch_size = 100,
            num_grad_updates=1,
            discount=0.99,
            gae_lambda=1,
            plot=False,
            pause_for_plot=False,
            center_adv=True,
            positive_adv=False,
            store_paths=False,
            whole_paths=True,
            fixed_horizon=False,
            sampler_cls=None,
            sampler_args=None,
            force_batch_sampler=False,
            load_policy=None,
            latent_dim=4,
            num_total_tasks=100,
            kl_weighting=0,
            kl_scheme=None,
            plottingFolder = None,
            visitationFolder = None,
            visitationFile = None,
            load_policy_vals = None,
            reset_step = 'False',
            **kwargs
    ):
        """
        :param env: Environment
        :param policy: Policy
        :type policy: Policy
        :param baseline: Baseline
        :param scope: Scope for identifying the algorithm. Must be specified if running multiple algorithms
        simultaneously, each using different environments and policies
        :param n_itr: Number of iterations.
        :param start_itr: Starting iteration.
        :param batch_size: Number of samples per iteration.  #
        :param max_path_length: Maximum length of a single rollout.
        :param meta_batch_size: Number of tasks sampled per meta-update
        :param num_grad_updates: Number of fast gradient updates
        :param discount: Discount.
        :param gae_lambda: Lambda used for generalized advantage estimation.
        :param plot: Plot evaluation run after each iteration.
        :param pause_for_plot: Whether to pause before contiuing when plotting.
        :param center_adv: Whether to rescale the advantages so that they have mean 0 and standard deviation 1.
        :param positive_adv: Whether to shift the advantages so that they are always positive. When used in
        conjunction with center_adv the advantages will be standardized before shifting.
        :param store_paths: Whether to save all paths data to the snapshot.
        :return:
        """
        self.env = env
        self.latent_dim = latent_dim
        self.kl_weighting = kl_weighting
        self.kl_scheme = kl_scheme
        self.num_total_tasks = num_total_tasks
        self.policy = policy
        self.load_policy=load_policy
        self.baseline = baseline
        self.scope = scope
        self.n_itr = n_itr
        self.start_itr = start_itr
        # batch_size is the number of trajectories for one fast grad update.
        # self.batch_size is the number of total transitions to collect.
        self.num_trajs = batch_size
        self.batch_size = batch_size * max_path_length * meta_batch_size
        self.max_path_length = max_path_length
        self.discount = discount
        self.gae_lambda = gae_lambda
        self.plot = plot
        self.pause_for_plot = pause_for_plot
        self.center_adv = center_adv
        self.positive_adv = positive_adv
        self.store_paths = store_paths
        self.whole_paths = whole_paths
        self.fixed_horizon = fixed_horizon
        self.meta_batch_size = meta_batch_size # number of tasks
        self.num_grad_updates = num_grad_updates # number of gradient steps during training
        self.latent_dist = DiagonalGaussian(self.latent_dim)
        self.plottingFolder = plottingFolder
        self.visitationFolder = visitationFolder
        self.visitationFile = visitationFile
        self.load_policy_vals = load_policy_vals
        self.reset_step = reset_step

        if sampler_cls is None:
            if singleton_pool.n_parallel > 1:
                assert False , 'parallel sampling not implemented'
            else:
                sampler_cls = VectorizedSampler
        if sampler_args is None:
            sampler_args = dict()
        sampler_args['n_envs'] = self.meta_batch_size
        sampler_args['latent_dim'] = self.latent_dim
        self.sampler = sampler_cls(self, **sampler_args)
Example #9
0
    def __init__(
            self,
            name,
            input_shape,
            output_dim,
            mean_network=None,
            hidden_sizes=(32, 32),
            hidden_nonlinearity=tf.nn.tanh,
            output_nonlinearity=lambda x: x * 0.0 + tf.Variable(
                initial_value=-1.0, dtype=tf.float32),
            # output_nonlinearity=tf.identity,
            optimizer=None,
            use_trust_region=True,
            step_size=0.01,
            learn_std=True,
            init_std=1.0,
            adaptive_std=False,
            std_share_network=False,
            std_hidden_sizes=(32, 32),
            std_nonlinearity=None,
            normalize_inputs=True,
            normalize_outputs=True,
            subsample_factor=1.0):
        """
        :param input_shape: Shape of the input data.
        :param output_dim: Dimension of output.
        :param hidden_sizes: Number of hidden units of each layer of the mean network.
        :param hidden_nonlinearity: Non-linearity used for each layer of the mean network.
        :param optimizer: Optimizer for minimizing the negative log-likelihood.
        :param use_trust_region: Whether to use trust region constraint.
        :param step_size: KL divergence constraint for each iteration
        :param learn_std: Whether to learn the standard deviations. Only effective if adaptive_std is False. If
        adaptive_std is True, this parameter is ignored, and the weights for the std network are always learned.
        :param adaptive_std: Whether to make the std a function of the states.
        :param std_share_network: Whether to use the same network as the mean.
        :param std_hidden_sizes: Number of hidden units of each layer of the std network. Only used if
        `std_share_network` is False. It defaults to the same architecture as the mean.
        :param std_nonlinearity: Non-linearity used for each layer of the std network. Only used if `std_share_network`
        is False. It defaults to the same non-linearity as the mean.
        """
        Serializable.quick_init(self, locals())

        with tf.variable_scope(name):

            if optimizer is None:
                if use_trust_region:
                    optimizer = PenaltyLbfgsOptimizer("optimizer")
                else:
                    optimizer = LbfgsOptimizer("optimizer")

            self._optimizer = optimizer
            self._subsample_factor = subsample_factor

            if mean_network is None:

                mean_network = create_MLP(
                    name="mean_network",
                    output_dim=1,
                    hidden_sizes=hidden_sizes,
                    hidden_nonlinearity=hidden_nonlinearity,
                    output_nonlinearity=output_nonlinearity,
                )
                forward_mean = lambda x, params, is_train: self.forward_MLP(
                    'mean_network',
                    all_params=params,
                    input_tensor=x,
                    is_training=is_train)[1]
            else:
                raise NotImplementedError('Not supported.')

            #     print("Debug2, mean network is defined here")
            #     mean_network = L.ParamLayer(
            #         incoming=L.InputLayer(
            #             shape=(None,) + input_shape,
            #             name="input_layer"),
            #         num_units=1,
            #         param=tf.constant_initializer(-200.0),
            #         name="mean_network",
            #         trainable=True,
            #     ),
            #     print(mean_network.input_layer)
            # print("debug4", isinstance(L.InputLayer(
            #             shape=(None,) + input_shape,
            #             name="input_layer"), tuple))
            #
            # l_mean = mean_network

            # mean_network = MLP(
            #         name="mean_network",
            #         input_shape=input_shape,
            #         output_dim=output_dim,
            #         hidden_sizes=hidden_sizes,
            #         hidden_nonlinearity=hidden_nonlinearity,
            #         output_nonlinearity=output_nonlinearity,
            #     )
            #
            # l_mean = mean_network.output_layer

            if adaptive_std:
                # l_log_std = MLP(
                #     name="log_std_network",
                #     input_shape=input_shape,
                #     input_var=mean_network.input_layer.input_var,
                #     output_dim=output_dim,
                #     hidden_sizes=std_hidden_sizes,
                #     hidden_nonlinearity=std_nonlinearity,
                #     output_nonlinearity=None,
                # ).output_layer
                raise NotImplementedError('Not supported.')
            else:
                # l_log_std = L.ParamLayer(
                #     mean_network.input_layer,
                #     num_units=output_dim,
                #     param=tf.constant_initializer(np.log(init_std)),
                #     name="output_log_std",
                #     trainable=learn_std,
                # )
                self.all_params['std_param'] = make_param_layer(
                    num_units=1,
                    param=tf.constant_initializer(init_std),
                    name="output_std_param",
                    trainable=learn_std,
                )
                forward_std = lambda x, params: forward_param_layer(
                    x, params['std_param'])
            self.all_param_vals = None

            LayersPowered.__init__(self, [l_mean, l_log_std])

            xs_var = mean_network.input_layer.input_var
            ys_var = tf.placeholder(dtype=tf.float32,
                                    name="ys",
                                    shape=(None, output_dim))
            old_means_var = tf.placeholder(dtype=tf.float32,
                                           name="ys",
                                           shape=(None, output_dim))
            old_log_stds_var = tf.placeholder(dtype=tf.float32,
                                              name="old_log_stds",
                                              shape=(None, output_dim))

            x_mean_var = tf.Variable(
                np.zeros((1, ) + input_shape, dtype=np.float32),
                name="x_mean",
            )
            x_std_var = tf.Variable(
                np.ones((1, ) + input_shape, dtype=np.float32),
                name="x_std",
            )
            y_mean_var = tf.Variable(
                np.zeros((1, output_dim), dtype=np.float32),
                name="y_mean",
            )
            y_std_var = tf.Variable(
                np.ones((1, output_dim), dtype=np.float32),
                name="y_std",
            )

            normalized_xs_var = (xs_var - x_mean_var) / x_std_var
            normalized_ys_var = (ys_var - y_mean_var) / y_std_var

            normalized_means_var = L.get_output(
                l_mean, {mean_network.input_layer: normalized_xs_var})
            normalized_log_stds_var = L.get_output(
                l_log_std, {mean_network.input_layer: normalized_xs_var})

            means_var = normalized_means_var * y_std_var + y_mean_var
            log_stds_var = normalized_log_stds_var + tf.log(y_std_var)

            normalized_old_means_var = (old_means_var - y_mean_var) / y_std_var
            normalized_old_log_stds_var = old_log_stds_var - tf.log(y_std_var)

            ## code added for symbolic prediction, used in constructing the meta-learning objective
            def normalized_means_var_sym(xs, params):
                inputs = OrderedDict({mean_network.input_layer: xs})
                inputs.update(params)
                return L.get_output(layer_or_layers=l_mean, inputs=inputs)

            # normalized_means_var_sym = lambda xs, params: L.get_output(layer_or_layers=l_mean, inputs=OrderedDict({mean_network.input_layer:xs}.)  #mean_network.input_layer: (xs-x_mean_var)/x_std_var,
            # normalized_log_stds_var_sym = L.get_output(l_log_std, {mean_network.input_layer: normalized_xs_var})
            means_var_sym = lambda xs, params: normalized_means_var_sym(
                xs=xs, params=params) * y_std_var + y_mean_var
            # log_stds_var = normalized_log_stds_var + tf.log(y_std_var)

            dist = self._dist = DiagonalGaussian(output_dim)

            normalized_dist_info_vars = dict(mean=normalized_means_var,
                                             log_std=normalized_log_stds_var)

            mean_kl = tf.reduce_mean(
                dist.kl_sym(
                    dict(mean=normalized_old_means_var,
                         log_std=normalized_old_log_stds_var),
                    normalized_dist_info_vars,
                ))

            # loss = - tf.reduce_mean(dist.log_likelihood_sym(normalized_ys_var, normalized_dist_info_vars))
            loss = tf.nn.l2_loss(normalized_ys_var - normalized_means_var
                                 ) + tf.nn.l2_loss(normalized_log_stds_var)
            self._f_predict = tensor_utils.compile_function([xs_var],
                                                            means_var)
            self._f_pdists = tensor_utils.compile_function(
                [xs_var], [means_var, log_stds_var])
            self._l_mean = l_mean
            self._l_log_std = l_log_std

            self._f_predict_sym = means_var_sym
            self.loss_sym = loss
            optimizer_args = dict(
                loss=loss,
                target=self,
                network_outputs=[
                    normalized_means_var, normalized_log_stds_var
                ],
            )

            if use_trust_region:
                optimizer_args["leq_constraint"] = (mean_kl, step_size)
                optimizer_args["inputs"] = [
                    xs_var, ys_var, old_means_var, old_log_stds_var
                ]
            else:
                optimizer_args["inputs"] = [xs_var, ys_var]

            self._optimizer.update_opt(**optimizer_args)

            self._use_trust_region = use_trust_region
            self._name = name

            self._normalize_inputs = normalize_inputs
            self._normalize_outputs = normalize_outputs
            self._mean_network = mean_network
            self._x_mean_var = x_mean_var
            self._x_std_var = x_std_var
            self._y_mean_var = y_mean_var
            self._y_std_var = y_std_var
    def __init__(self,
                 name,
                 env_spec,
                 hidden_sizes=(32, 32),
                 learn_std=True,
                 init_std=1.0,
                 adaptive_std=False,
                 std_share_network=False,
                 std_hidden_sizes=(32, 32),
                 min_std=1e-6,
                 std_hidden_nonlinearity=tf.nn.tanh,
                 hidden_nonlinearity=tf.nn.tanh,
                 output_nonlinearity=tf.identity,
                 mean_network=None,
                 std_network=None,
                 std_parametrization='exp'):
        """
        :param env_spec:
        :param hidden_sizes: list of sizes for the fully-connected hidden layers
        :param learn_std: Is std trainable
        :param init_std: Initial std
        :param adaptive_std:
        :param std_share_network:
        :param std_hidden_sizes: list of sizes for the fully-connected layers for std
        :param min_std: whether to make sure that the std is at least some threshold value, to avoid numerical issues
        :param std_hidden_nonlinearity:
        :param hidden_nonlinearity: nonlinearity used for each hidden layer
        :param output_nonlinearity: nonlinearity for the output layer
        :param mean_network: custom network for the output mean
        :param std_network: custom network for the output log std
        :param std_parametrization: how the std should be parametrized. There are a few options:
            - exp: the logarithm of the std will be stored, and applied a exponential transformation
            - softplus: the std will be computed as log(1+exp(x))
        :return:
        """
        Serializable.quick_init(self, locals())
        assert isinstance(env_spec.action_space, Box)

        obs_dim = env_spec.observation_space.flat_dim
        action_dim = env_spec.action_space.flat_dim

        self.all_param_vals = False

        print('obs_dim ', obs_dim, flush=True)
        # create network
        if mean_network is None:
            self.mean_params = mean_params = self.create_MLP(
                name="mean_network",
                input_shape=(
                    None,
                    obs_dim,
                ),
                output_dim=action_dim,
                hidden_sizes=hidden_sizes,
            )
            input_tensor, mean_tensor = self.forward_MLP(
                'mean_network',
                mean_params,
                n_hidden=len(hidden_sizes),
                input_shape=(obs_dim, ),
                hidden_nonlinearity=hidden_nonlinearity,
                output_nonlinearity=output_nonlinearity,
                reuse=None  # Needed for batch norm
            )
            # if you want to input your own thing.
            self._forward_mean = lambda x, is_train: self.forward_MLP(
                'mean_network',
                mean_params,
                n_hidden=len(hidden_sizes),
                hidden_nonlinearity=hidden_nonlinearity,
                output_nonlinearity=output_nonlinearity,
                input_tensor=x,
                is_training=is_train)[1]
        else:
            raise NotImplementedError('Chelsea does not support this.')

        if std_network is not None:
            raise NotImplementedError(
                'Minimal Gaussian MLP does not support this.')
        else:
            if adaptive_std:
                # NOTE - this branch isn't tested
                raise NotImplementedError(
                    'Minimal Gaussian MLP doesnt have a tested version of this.'
                )
                self.std_params = std_params = self.create_MLP(
                    name="std_network",
                    input_shape=(
                        None,
                        obs_dim,
                    ),
                    output_dim=action_dim,
                    hidden_sizes=std_hidden_sizes,
                )
                # if you want to input your own thing.
                self._forward_std = lambda x: self.forward_MLP(
                    'std_network',
                    std_params,
                    n_hidden=len(hidden_sizes),
                    hidden_nonlinearity=std_hidden_nonlinearity,
                    output_nonlinearity=tf.identity,
                    input_tensor=x)[1]
            else:
                if std_parametrization == 'exp':
                    init_std_param = np.log(init_std)
                elif std_parametrization == 'softplus':
                    init_std_param = np.log(np.exp(init_std) - 1)
                else:
                    raise NotImplementedError
                self.std_params = make_param_layer(
                    num_units=action_dim,
                    param=tf.constant_initializer(init_std_param),
                    name="output_std_param",
                    trainable=learn_std,
                )
                self._forward_std = lambda x: forward_param_layer(
                    x, self.std_params)

        self.std_parametrization = std_parametrization

        if std_parametrization == 'exp':
            min_std_param = np.log(min_std)
        elif std_parametrization == 'softplus':
            min_std_param = np.log(np.exp(min_std) - 1)
        else:
            raise NotImplementedError

        self.min_std_param = min_std_param

        self._dist = DiagonalGaussian(action_dim)

        self._cached_params = {}

        super(GaussianMLPPolicy, self).__init__(env_spec)

        dist_info_sym = self.dist_info_sym(input_tensor,
                                           dict(),
                                           is_training=False)
        mean_var = dist_info_sym["mean"]
        log_std_var = dist_info_sym["log_std"]

        self._f_dist = tensor_utils.compile_function(
            inputs=[input_tensor],
            outputs=[mean_var, log_std_var],
        )
Example #11
0
class GaussianMLPPolicy(StochasticPolicy, Serializable):
    def __init__(self,
                 name,
                 env_spec,
                 hidden_sizes=(32, 32),
                 learn_std=True,
                 init_std=1.0,
                 adaptive_std=False,
                 std_share_network=False,
                 std_hidden_sizes=(32, 32),
                 min_std=1e-6,
                 std_hidden_nonlinearity=tf.nn.tanh,
                 hidden_nonlinearity=tf.nn.tanh,
                 output_nonlinearity=tf.identity,
                 mean_network=None,
                 std_network=None,
                 std_parametrization='exp'):
        """
        :param env_spec:
        :param hidden_sizes: list of sizes for the fully-connected hidden layers
        :param learn_std: Is std trainable
        :param init_std: Initial std
        :param adaptive_std:
        :param std_share_network:
        :param std_hidden_sizes: list of sizes for the fully-connected layers for std
        :param min_std: whether to make sure that the std is at least some threshold value, to avoid numerical issues
        :param std_hidden_nonlinearity:
        :param hidden_nonlinearity: nonlinearity used for each hidden layer
        :param output_nonlinearity: nonlinearity for the output layer
        :param mean_network: custom network for the output mean
        :param std_network: custom network for the output log std
        :param std_parametrization: how the std should be parametrized. There are a few options:
            - exp: the logarithm of the std will be stored, and applied a exponential transformation
            - softplus: the std will be computed as log(1+exp(x))
        :return:
        """
        Serializable.quick_init(self, locals())
        assert isinstance(env_spec.action_space, Box)

        obs_dim = env_spec.observation_space.flat_dim
        action_dim = env_spec.action_space.flat_dim

        # create network
        self.varScope = name
        with tf.variable_scope(name):
            if mean_network is None:
                self.mean_params = mean_params = self.create_MLP(
                    name="mean_network",
                    input_shape=(
                        None,
                        obs_dim,
                    ),
                    output_dim=action_dim,
                    hidden_sizes=hidden_sizes,
                )
                input_tensor, mean_tensor = self.forward_MLP(
                    'mean_network',
                    mean_params,
                    n_hidden=len(hidden_sizes),
                    input_shape=(obs_dim, ),
                    hidden_nonlinearity=hidden_nonlinearity,
                    output_nonlinearity=output_nonlinearity,
                    reuse=None  # Needed for batch norm
                )
                # if you want to input your own thing.
                self._forward_mean = lambda x, is_train: self.forward_MLP(
                    'mean_network',
                    mean_params,
                    n_hidden=len(hidden_sizes),
                    hidden_nonlinearity=hidden_nonlinearity,
                    output_nonlinearity=output_nonlinearity,
                    input_tensor=x,
                    is_training=is_train)[1]
            else:
                raise NotImplementedError('Chelsea does not support this.')

            if std_network is not None:
                raise NotImplementedError(
                    'Minimal Gaussian MLP does not support this.')
            else:
                if adaptive_std:
                    # NOTE - this branch isn't tested
                    raise NotImplementedError(
                        'Minimal Gaussian MLP doesnt have a tested version of this.'
                    )
                    self.std_params = std_params = self.create_MLP(
                        name="std_network",
                        input_shape=(
                            None,
                            obs_dim,
                        ),
                        output_dim=action_dim,
                        hidden_sizes=std_hidden_sizes,
                    )
                    # if you want to input your own thing.
                    self._forward_std = lambda x: self.forward_MLP(
                        'std_network',
                        std_params,
                        n_hidden=len(hidden_sizes),
                        hidden_nonlinearity=std_hidden_nonlinearity,
                        output_nonlinearity=tf.identity,
                        input_tensor=x)[1]
                else:
                    if std_parametrization == 'exp':
                        init_std_param = np.log(init_std)
                    elif std_parametrization == 'softplus':
                        init_std_param = np.log(np.exp(init_std) - 1)
                    else:
                        raise NotImplementedError
                    self.std_params = make_param_layer(
                        num_units=action_dim,
                        param=tf.constant_initializer(init_std_param),
                        name="output_std_param",
                        trainable=learn_std,
                    )
                    self._forward_std = lambda x: forward_param_layer(
                        x, self.std_params)

        self.std_parametrization = std_parametrization

        if std_parametrization == 'exp':
            min_std_param = np.log(min_std)
        elif std_parametrization == 'softplus':
            min_std_param = np.log(np.exp(min_std) - 1)
        else:
            raise NotImplementedError

        self.min_std_param = min_std_param

        self._dist = DiagonalGaussian(action_dim)

        self._cached_params = {}

        super(GaussianMLPPolicy, self).__init__(env_spec)

        dist_info_sym = self.dist_info_sym(input_tensor,
                                           dict(),
                                           is_training=False)
        mean_var = dist_info_sym["mean"]
        log_std_var = dist_info_sym["log_std"]

        self._f_dist = tensor_utils.compile_function(
            inputs=[input_tensor],
            outputs=[mean_var, log_std_var],
        )

    @property
    def vectorized(self):
        return True

    def compute_stateAction_log_likelihood(self, observations, actions):

        flat_obs = self.observation_space.flatten_n(observations)
        means, log_stds = self._f_dist(
            flat_obs)  # _f_dist runs the network forward.

        return self._dist.log_likelihood(actions, {
            "mean": means,
            "log_std": log_stds
        })

        # rnd = np.random.normal(size=means.shape)
        # actions = rnd * np.exp(log_stds) + means
        # return actions, dict(mean=means, log_std=log_stds)

    def dist_info_sym(self, obs_var, state_info_vars=None, is_training=True):
        # This function constructs the tf graph, only called during beginning of training
        # obs_var - observation tensor
        # mean_var - tensor for policy mean
        # std_param_var - tensor for policy std before output
        mean_var = self._forward_mean(obs_var, is_training)
        std_param_var = self._forward_std(obs_var)
        if self.min_std_param is not None:
            std_param_var = tf.maximum(std_param_var, self.min_std_param)
        if self.std_parametrization == 'exp':
            log_std_var = std_param_var
        elif self.std_parametrization == 'softplus':
            log_std_var = tf.log(tf.log(1. + tf.exp(std_param_var)))
        else:
            raise NotImplementedError
        return dict(mean=mean_var, log_std=log_std_var)

    @overrides
    def get_action(self, observation):
        flat_obs = self.observation_space.flatten(observation)
        mean, log_std = [x[0] for x in self._f_dist([flat_obs])]
        rnd = np.random.normal(size=mean.shape)
        action = rnd * np.exp(log_std) + mean
        return action, dict(mean=mean, log_std=log_std)

    def get_actions(self, observations):
        flat_obs = self.observation_space.flatten_n(observations)
        means, log_stds = self._f_dist(
            flat_obs)  # _f_dist runs the network forward.
        rnd = np.random.normal(size=means.shape)
        actions = rnd * np.exp(log_stds) + means
        return actions, dict(mean=means, log_std=log_stds)

    @property
    def distribution(self):
        return self._dist

    def get_params_internal(self, **tags):
        if tags.get('trainable', False):
            params = tf.trainable_variables()
        else:
            params = tf.all_variables()

        # TODO - this is hacky...
        params = [
            p for p in params
            if p.name.startswith(self.varScope + '/mean_network')
            or p.name.startswith(self.varScope + '/output_std_param')
        ]
        params = [p for p in params if 'Adam' not in p.name]
        return params

    # This makes all of the parameters.
    def create_MLP(
        self,
        name,
        output_dim,
        hidden_sizes,
        hidden_W_init=L.XavierUniformInitializer(),
        hidden_b_init=tf.zeros_initializer,
        output_W_init=L.XavierUniformInitializer(),
        output_b_init=tf.zeros_initializer,
        input_shape=None,
        weight_normalization=False,
    ):
        assert input_shape is not None
        cur_shape = input_shape
        with tf.variable_scope(name):
            all_params = {}
            for idx, hidden_size in enumerate(hidden_sizes):
                W, b, cur_shape = make_dense_layer(
                    cur_shape,
                    num_units=hidden_size,
                    name="hidden_%d" % idx,
                    W=hidden_W_init,
                    b=hidden_b_init,
                    weight_norm=weight_normalization,
                )
                all_params['W' + str(idx)] = W
                all_params['b' + str(idx)] = b
            W, b, _ = make_dense_layer(
                cur_shape,
                num_units=output_dim,
                name='output',
                W=output_W_init,
                b=output_b_init,
                weight_norm=weight_normalization,
            )
            all_params['W' + str(len(hidden_sizes))] = W
            all_params['b' + str(len(hidden_sizes))] = b

            return all_params

    def forward_MLP(self,
                    name,
                    all_params,
                    input_tensor=None,
                    input_shape=None,
                    n_hidden=-1,
                    hidden_nonlinearity=tf.identity,
                    output_nonlinearity=tf.identity,
                    batch_normalization=False,
                    reuse=True,
                    is_training=False):
        # is_training and reuse are for batch norm, irrelevant if batch_norm set to False
        # set reuse to False if the first time this func is called.
        with tf.variable_scope(name):
            if input_tensor is None:
                assert input_shape is not None
                l_in = make_input(shape=(None, ) + input_shape,
                                  input_var=None,
                                  name='input')
            else:
                l_in = input_tensor
            l_hid = l_in
            for idx in range(n_hidden):
                l_hid = forward_dense_layer(l_hid,
                                            all_params['W' + str(idx)],
                                            all_params['b' + str(idx)],
                                            batch_norm=batch_normalization,
                                            nonlinearity=hidden_nonlinearity,
                                            scope=str(idx),
                                            reuse=reuse,
                                            is_training=is_training)
            output = forward_dense_layer(
                l_hid,
                all_params['W' + str(n_hidden)],
                all_params['b' + str(n_hidden)],
                batch_norm=False,
                nonlinearity=output_nonlinearity,
            )
            return l_in, output

    def get_params(self, **tags):
        """
        Get the list of parameters (symbolically), filtered by the provided tags.
        Some common tags include 'regularizable' and 'trainable'
        """
        tag_tuple = tuple(sorted(list(tags.items()), key=lambda x: x[0]))
        if tag_tuple not in self._cached_params:
            self._cached_params[tag_tuple] = self.get_params_internal(**tags)
        return self._cached_params[tag_tuple]

    def get_param_values(self, **tags):
        params = self.get_params(**tags)
        param_values = tf.get_default_session().run(params)
        return flatten_tensors(param_values)

    def log_diagnostics(self, paths):
        log_stds = np.vstack(
            [path["agent_infos"]["log_std"] for path in paths])
        logger.record_tabular('AveragePolicyStd', np.mean(np.exp(log_stds)))

    #### code not used after here, uunless loading policy ####
    def get_reparam_action_sym(self, obs_var, action_var, old_dist_info_vars):
        """
        Given observations, old actions, and distribution of old actions, return a symbolically reparameterized
        representation of the actions in terms of the policy parameters
        :param obs_var:
        :param action_var:
        :param old_dist_info_vars:
        :return:
        """
        # Not used
        print(
            '--this really shouldnt be used, not updated from non-minimal policy--'
        )
        new_dist_info_vars = self.dist_info_sym(obs_var, action_var)
        new_mean_var, new_log_std_var = new_dist_info_vars[
            "mean"], new_dist_info_vars["log_std"]
        old_mean_var, old_log_std_var = old_dist_info_vars[
            "mean"], old_dist_info_vars["log_std"]
        epsilon_var = (action_var - old_mean_var) / (tf.exp(old_log_std_var) +
                                                     1e-8)
        new_action_var = new_mean_var + epsilon_var * tf.exp(new_log_std_var)
        return new_action_var

    def get_param_dtypes(self, **tags):
        # Not used.
        tag_tuple = tuple(sorted(list(tags.items()), key=lambda x: x[0]))
        if tag_tuple not in self._cached_param_dtypes:
            params = self.get_params(**tags)
            param_values = tf.get_default_session().run(params)
            self._cached_param_dtypes[tag_tuple] = [
                val.dtype for val in param_values
            ]
        return self._cached_param_dtypes[tag_tuple]

    def get_param_shapes(self, **tags):
        tag_tuple = tuple(sorted(list(tags.items()), key=lambda x: x[0]))
        if tag_tuple not in self._cached_param_shapes:
            params = self.get_params(**tags)
            param_values = tf.get_default_session().run(params)
            self._cached_param_shapes[tag_tuple] = [
                val.shape for val in param_values
            ]
        return self._cached_param_shapes[tag_tuple]

    def set_param_values(self, flattened_params, **tags):
        debug = tags.pop("debug", False)
        param_values = unflatten_tensors(flattened_params,
                                         self.get_param_shapes(**tags))
        ops = []
        feed_dict = dict()
        for param, dtype, value in zip(self.get_params(**tags),
                                       self.get_param_dtypes(**tags),
                                       param_values):
            if param not in self._cached_assign_ops:
                assign_placeholder = tf.placeholder(
                    dtype=param.dtype.base_dtype)
                assign_op = tf.assign(param, assign_placeholder)
                self._cached_assign_ops[param] = assign_op
                self._cached_assign_placeholders[param] = assign_placeholder
            ops.append(self._cached_assign_ops[param])
            feed_dict[self._cached_assign_placeholders[param]] = value.astype(
                dtype)
            if debug:
                print("setting value of %s" % param.name)
        tf.get_default_session().run(ops, feed_dict=feed_dict)

    def flat_to_params(self, flattened_params, **tags):
        return unflatten_tensors(flattened_params,
                                 self.get_param_shapes(**tags))

    def __getstate__(self):
        d = Serializable.__getstate__(self)
        global load_params
        if load_params:
            d["params"] = self.get_param_values()
        return d

    def __setstate__(self, d):
        Serializable.__setstate__(self, d)
        global load_params
        if load_params:
            tf.get_default_session().run(
                tf.initialize_variables(self.get_params()))
            self.set_param_values(d["params"])
Example #12
0
 def __init__(self,
              env,
              policy,
              baseline,
              scope=None,
              n_itr=500,
              start_itr=0,
              batch_size=5000,
              max_path_length=500,
              discount=0.99,
              gae_lambda=1,
              plot=False,
              pause_for_plot=False,
              center_adv=True,
              positive_adv=False,
              store_paths=False,
              whole_paths=True,
              fixed_horizon=False,
              sampler_cls=None,
              sampler_args=None,
              force_batch_sampler=False,
              load_policy=None,
              reset_arg=None,
              latent_dim=4,
              num_total_tasks=10,
              noise_opt=False,
              joint_opt=False,
              improve=False,
              **kwargs):
     """
     :param env: Environment
     :param policy: Policy
     :type policy: Policy
     :param baseline: Baseline
     :param scope: Scope for identifying the algorithm. Must be specified if running multiple algorithms
     simultaneously, each using different environments and policies
     :param n_itr: Number of iterations.
     :param start_itr: Starting iteration.
     :param batch_size: Number of samples per iteration.
     :param max_path_length: Maximum length of a single rollout.
     :param discount: Discount.
     :param gae_lambda: Lambda used for generalized advantage estimation.
     :param plot: Plot evaluation run after each iteration.
     :param pause_for_plot: Whether to pause before contiuing when plotting.
     :param center_adv: Whether to rescale the advantages so that they have mean 0 and standard deviation 1.
     :param positive_adv: Whether to shift the advantages so that they are always positive. When used in
     conjunction with center_adv the advantages will be standardized before shifting.
     :param store_paths: Whether to save all paths data to the snapshot.
     :return:
     """
     self.env = env
     self.noise_opt = noise_opt
     self.joint_opt = joint_opt
     self.latent_dim = latent_dim
     self.num_total_tasks = num_total_tasks
     self.policy = policy
     self.load_policy = load_policy
     self.baseline = baseline
     self.scope = scope
     self.n_itr = n_itr
     self.start_itr = start_itr
     self.batch_size = batch_size
     self.max_path_length = max_path_length
     self.discount = discount
     self.gae_lambda = gae_lambda
     self.plot = plot
     self.pause_for_plot = pause_for_plot
     self.center_adv = center_adv
     self.positive_adv = positive_adv
     self.store_paths = store_paths
     self.whole_paths = whole_paths
     self.fixed_horizon = fixed_horizon
     self.improve = improve
     if sampler_cls is None:
         #sampler_cls = VectorizedSampler
         sampler_cls = BatchSampler
     if sampler_args is None:
         sampler_args = dict()
     self.sampler = sampler_cls(self, **sampler_args)
     self.reset_arg = reset_arg
     self.latent_dist = DiagonalGaussian(self.latent_dim)
Example #13
0
class MAMLGaussianMLPPolicy(StochasticPolicy, Serializable):
    def __init__(
            self,
            name,
            env_spec,
            hidden_sizes=(32, 32),
            learn_std=True,
            init_std=1.0,
            adaptive_std=False,
            std_share_network=False,
            std_hidden_sizes=(32, 32),
            min_std=1e-6,
            std_hidden_nonlinearity=tf.nn.tanh,
            hidden_nonlinearity=tf.nn.tanh,
            output_nonlinearity=tf.identity,
            mean_network=None,
            std_network=None,
            std_parametrization='exp',
            grad_step_size=1.0,
            stop_grad=False,
    ):
        """
        :param env_spec:
        :param hidden_sizes: list of sizes for the fully-connected hidden layers
        :param learn_std: Is std trainable
        :param init_std: Initial std
        :param adaptive_std:
        :param std_share_network:
        :param std_hidden_sizes: list of sizes for the fully-connected layers for std
        :param min_std: whether to make sure that the std is at least some threshold value, to avoid numerical issues
        :param std_hidden_nonlinearity:
        :param hidden_nonlinearity: nonlinearity used for each hidden layer
        :param output_nonlinearity: nonlinearity for the output layer
        :param mean_network: custom network for the output mean
        :param std_network: custom network for the output log std
        :param std_parametrization: how the std should be parametrized. There are a few options:
            - exp: the logarithm of the std will be stored, and applied a exponential transformation
            - softplus: the std will be computed as log(1+exp(x))
        :param grad_step_size: the step size taken in the learner's gradient update, sample uniformly if it is a range e.g. [0.1,1]
        :param stop_grad: whether or not to stop the gradient through the gradient.
        :return:
        """
        Serializable.quick_init(self, locals())

       
        assert isinstance(env_spec.action_space, Box)

        obs_dim = env_spec.observation_space.flat_dim
        self.action_dim = env_spec.action_space.flat_dim
        self.n_hidden = len(hidden_sizes)
        self.hidden_nonlinearity = hidden_nonlinearity
        self.output_nonlinearity = output_nonlinearity
        self.input_shape = (None, obs_dim,)
        self.step_size = grad_step_size
        self.stop_grad = stop_grad
        if type(self.step_size) == list:
            raise NotImplementedError('removing this since it didnt work well')

        # create network
        if mean_network is None:
            self.all_params = self.create_MLP(  # TODO: this should not be a method of the policy! --> helper
                name="mean_network",
                output_dim=self.action_dim,
                hidden_sizes=hidden_sizes,
            )
            self.input_tensor, _ = self.forward_MLP('mean_network', self.all_params,
                reuse=None # Need to run this for batch norm
            )
            forward_mean = lambda x, params, is_train: self.forward_MLP('mean_network', params,
                input_tensor=x, is_training=is_train)[1]
        else:
            raise NotImplementedError('Not supported.')

        if std_network is not None:
            raise NotImplementedError('Not supported.')
        else:
            if adaptive_std:
                raise NotImplementedError('Not supported.')
            else:
                if std_parametrization == 'exp':
                    init_std_param = np.log(init_std)
                elif std_parametrization == 'softplus':
                    init_std_param = np.log(np.exp(init_std) - 1)
                else:
                    raise NotImplementedError
                self.all_params['std_param'] = make_param_layer(
                    num_units=self.action_dim,
                    param=tf.constant_initializer(init_std_param),
                    name="output_std_param",
                    trainable=learn_std,
                )
                forward_std = lambda x, params: forward_param_layer(x, params['std_param'])
            self.all_param_vals = None

            # unify forward mean and forward std into a single function
            self._forward = lambda obs, params, is_train: (
                    forward_mean(obs, params, is_train), forward_std(obs, params))

            self.std_parametrization = std_parametrization

            if std_parametrization == 'exp':
                min_std_param = np.log(min_std)
            elif std_parametrization == 'softplus':
                min_std_param = np.log(np.exp(min_std) - 1)
            else:
                raise NotImplementedError

            self.min_std_param = min_std_param

            self._dist = DiagonalGaussian(self.action_dim)

            self._cached_params = {}

            super(MAMLGaussianMLPPolicy, self).__init__(env_spec)

            dist_info_sym = self.dist_info_sym(self.input_tensor, dict(), is_training=False)
            mean_var = dist_info_sym["mean"]
            log_std_var = dist_info_sym["log_std"]

            # pre-update policy
            self._init_f_dist = tensor_utils.compile_function(
                inputs=[self.input_tensor],
                outputs=[mean_var, log_std_var],
            )
            self._cur_f_dist = self._init_f_dist


    @property
    def vectorized(self):
        return True

    def set_init_surr_obj(self, input_list, surr_objs_tensor):
        """ Set the surrogate objectives used the update the policy
        """
        self.input_list_for_grad = input_list
        self.surr_objs = surr_objs_tensor


    def compute_updated_dists(self, samples):
        """ Compute fast gradients once per iteration and pull them out of tensorflow for sampling with the post-update policy.
        """
        start = time.time()
        num_tasks = len(samples)
        param_keys = self.all_params.keys()
        update_param_keys = param_keys
        no_update_param_keys = []

        sess = tf.get_default_session()

        obs_list, action_list, adv_list = [], [], []
        for i in range(num_tasks):
            inputs = ext.extract(samples[i],
                    'observations', 'actions', 'advantages')
            obs_list.append(inputs[0])
            action_list.append(inputs[1])
            adv_list.append(inputs[2])

        inputs = obs_list + action_list + adv_list

        # To do a second update, replace self.all_params below with the params that were used to collect the policy.
        init_param_values = None
        if self.all_param_vals is not None:
            init_param_values = self.get_variable_values(self.all_params)

        step_size = self.step_size
        for i in range(num_tasks):
            if self.all_param_vals is not None:
                self.assign_params(self.all_params, self.all_param_vals[i])

        if 'all_fast_params_tensor' not in dir(self):
            # make computation graph once
            self.all_fast_params_tensor = []
            for i in range(num_tasks):
                gradients = dict(zip(update_param_keys, tf.gradients(self.surr_objs[i], [self.all_params[key] for key in update_param_keys])))
                fast_params_tensor = OrderedDict(zip(update_param_keys, [self.all_params[key] - step_size*gradients[key] for key in update_param_keys]))
                for k in no_update_param_keys:
                    fast_params_tensor[k] = self.all_params[k]
                self.all_fast_params_tensor.append(fast_params_tensor)

        # pull new param vals out of tensorflow, so gradient computation only done once ## first is the vars, second the values
        # these are the updated values of the params after the gradient step
        self.all_param_vals = sess.run(self.all_fast_params_tensor, feed_dict=dict(list(zip(self.input_list_for_grad, inputs))))

        if init_param_values is not None:
            self.assign_params(self.all_params, init_param_values)

        outputs = []
        self._cur_f_dist_i = {}
        inputs = tf.split(self.input_tensor, num_tasks, 0)
        for i in range(num_tasks):
            # TODO - use a placeholder to feed in the params, so that we don't have to recompile every time.
            task_inp = inputs[i]
            info, _ = self.dist_info_sym(task_inp, dict(), all_params=self.all_param_vals[i],
                    is_training=False)

            outputs.append([info['mean'], info['log_std']])

        self._cur_f_dist = tensor_utils.compile_function(
            inputs = [self.input_tensor],
            outputs = outputs,
        )
        total_time = time.time() - start
        logger.record_tabular("ComputeUpdatedDistTime", total_time)

    def get_variable_values(self, tensor_dict):
        sess = tf.get_default_session()
        result = sess.run(tensor_dict)
        return result

    def assign_params(self, tensor_dict, param_values):
        if 'assign_placeholders' not in dir(self):
            # make computation graph, if it doesn't exist; then cache it for future use.
            self.assign_placeholders = {}
            self.assign_ops = {}
            for key in tensor_dict.keys():
                self.assign_placeholders[key] = tf.placeholder(tf.float32)
                self.assign_ops[key] = tf.assign(tensor_dict[key], self.assign_placeholders[key])

        feed_dict = {self.assign_placeholders[key]:param_values[key] for key in tensor_dict.keys()}
        sess = tf.get_default_session()
        sess.run(self.assign_ops, feed_dict)


    def switch_to_init_dist(self):
        # switch cur policy distribution to pre-update policy
        self._cur_f_dist = self._init_f_dist
        self._cur_f_dist_i = None
        self.all_param_vals = None

    def dist_info_sym(self, obs_var, state_info_vars=None, all_params=None, is_training=True):
        # This function constructs the tf graph, only called during beginning of meta-training
        # obs_var - observation tensor
        # mean_var - tensor for policy mean
        # std_param_var - tensor for policy std before output
        return_params=True
        if all_params is None:
            return_params=False
            all_params = self.all_params

        mean_var, std_param_var = self._forward(obs_var, all_params, is_training)
        if self.min_std_param is not None:
            std_param_var = tf.maximum(std_param_var, self.min_std_param)
        if self.std_parametrization == 'exp':
            log_std_var = std_param_var
        elif self.std_parametrization == 'softplus':
            log_std_var = tf.log(tf.log(1. + tf.exp(std_param_var)))
        else:
            raise NotImplementedError
        if return_params:
            return dict(mean=mean_var, log_std=log_std_var), all_params
        else:
            return dict(mean=mean_var, log_std=log_std_var)

    def updated_dist_info_sym(self, task_id, surr_obj, new_obs_var, params_dict=None, is_training=True):
        """ symbolically create MAML graph, for the meta-optimization, only called at the beginning of meta-training.
        Called more than once if you want to do more than one grad step.
        """
        old_params_dict = params_dict

        step_size = self.step_size

        if old_params_dict == None:
            old_params_dict = self.all_params
        param_keys = self.all_params.keys()
        update_param_keys = param_keys
        no_update_param_keys = []

        grads = tf.gradients(surr_obj, [old_params_dict[key] for key in update_param_keys])
        if self.stop_grad:
            grads = [tf.stop_gradient(grad) for grad in grads]

        gradients = dict(zip(update_param_keys, grads))
        params_dict = dict(zip(update_param_keys, [old_params_dict[key] - step_size*gradients[key] for key in update_param_keys]))
        for k in no_update_param_keys:
            params_dict[k] = old_params_dict[k]

        return self.dist_info_sym(new_obs_var, all_params=params_dict, is_training=is_training)



    def get_deterministic_action(self, observation, idx=None):
        # this function takes a numpy array observations and outputs randomly sampled actions.
        # idx: index corresponding to the task/updated policy.


        
        flat_obs = self.observation_space.flatten(observation)
        f_dist = self._cur_f_dist
        mean, log_std = [x[0] for x in f_dist([flat_obs])]
        rnd = np.random.normal(size=mean.shape)
        action =  mean
        return action, dict(mean=mean, log_std=log_std)


    @overrides
    def get_action(self, observation, idx=None):
        # this function takes a numpy array observations and outputs randomly sampled actions.
        # idx: index corresponding to the task/updated policy.


       
        flat_obs = self.observation_space.flatten(observation)
        f_dist = self._cur_f_dist
        mean, log_std = [x[0] for x in f_dist([flat_obs])]
        rnd = np.random.normal(size=mean.shape)
        action = rnd * np.exp(log_std) + mean
        return action, dict(mean=mean, log_std=log_std)

    def get_actions(self, observations):
        # this function takes a numpy array observations and outputs sampled actions.
        # Assumes that there is one observation per post-update policy distr
        

        flat_obs = self.observation_space.flatten_n(observations)
        result = self._cur_f_dist(flat_obs)

        if len(result) == 2:
            # NOTE - this code assumes that there aren't 2 meta tasks in a batch
            means, log_stds = result
        else:
           
            means = np.array([res[0] for res in result])[:,0,:]
            log_stds = np.array([res[1] for res in result])[:,0,:]

        rnd = np.random.normal(size=means.shape)
        actions = rnd * np.exp(log_stds) + means
        return actions, dict(mean=means, log_std=log_stds)

    def compute_preUpdatePolicy_logLikelihood(self, observations ,actions):
        # this function takes a numpy array observations and outputs sampled actions.
        # Assumes that there is one observation per post-update policy distr
       
        flat_obs = self.observation_space.flatten_n(observations)
        means, log_stds = self._cur_f_dist(flat_obs)
        
        result =  self._dist.log_likelihood(actions, {"mean" : means , "log_std" : log_stds})
       
        return result
    @property
    def distribution(self):
        return self._dist

    def get_params_internal(self, all_params=False, **tags):
        if tags.get('trainable', False):
            params = tf.trainable_variables()
        else:
            params = tf.global_variables()

       
        params = [p for p in params if p.name.startswith('mean_network') or p.name.startswith('output_std_param')]
        params = [p for p in params if 'Adam' not in p.name]
       
        return params


    # This makes all of the parameters.
    def create_MLP(self, name, output_dim, hidden_sizes,
                   hidden_W_init=tf_layers.xavier_initializer(), hidden_b_init=tf.zeros_initializer(),
                   output_W_init=tf_layers.xavier_initializer(), output_b_init=tf.zeros_initializer(),
                   weight_normalization=False,
                   ):
        all_params = OrderedDict()

        cur_shape = self.input_shape
        with tf.variable_scope(name):
            for idx, hidden_size in enumerate(hidden_sizes):
                W, b, cur_shape = make_dense_layer(
                    cur_shape,
                    num_units=hidden_size,
                    name="hidden_%d" % idx,
                    W=hidden_W_init,
                    b=hidden_b_init,
                    weight_norm=weight_normalization,
                )
                all_params['W' + str(idx)] = W
                all_params['b' + str(idx)] = b
            W, b, _ = make_dense_layer(
                cur_shape,
                num_units=output_dim,
                name='output',
                W=output_W_init,
                b=output_b_init,
                weight_norm=weight_normalization,
            )
            all_params['W' + str(len(hidden_sizes))] = W
            all_params['b'+str(len(hidden_sizes))] = b

        return all_params

    def forward_MLP(self, name, all_params, input_tensor=None,
                    batch_normalization=False, reuse=True, is_training=False):
        # is_training and reuse are for batch norm, irrelevant if batch_norm set to False
        # set reuse to False if the first time this func is called.
        with tf.variable_scope(name):
            if input_tensor is None:
                l_in = make_input(shape=self.input_shape, input_var=None, name='input')
            else:
                l_in = input_tensor

            l_hid = l_in

            for idx in range(self.n_hidden):
                l_hid = forward_dense_layer(l_hid, all_params['W'+str(idx)], all_params['b'+str(idx)],
                                            batch_norm=batch_normalization,
                                            nonlinearity=self.hidden_nonlinearity,
                                            scope=str(idx), reuse=reuse,
                                            is_training=is_training
                                            )
            output = forward_dense_layer(l_hid, all_params['W'+str(self.n_hidden)], all_params['b'+str(self.n_hidden)],
                                         batch_norm=False, nonlinearity=self.output_nonlinearity,
                                         )
            return l_in, output

    def get_params(self, all_params=False, **tags):
        """
        Get the list of parameters (symbolically), filtered by the provided tags.
        Some common tags include 'regularizable' and 'trainable'
        """
        tag_tuple = tuple(sorted(list(tags.items()), key=lambda x: x[0]))
        if tag_tuple not in self._cached_params:
            self._cached_params[tag_tuple] = self.get_params_internal(all_params, **tags)
        return self._cached_params[tag_tuple]

    def get_param_values(self, all_params=False, **tags):
        params = self.get_params(all_params, **tags)
        param_values = tf.get_default_session().run(params)
        return flatten_tensors(param_values)

    def log_diagnostics(self, paths, prefix=''):
        log_stds = np.vstack([path["agent_infos"]["log_std"] for path in paths])
        logger.record_tabular(prefix+'AveragePolicyStd', np.mean(np.exp(log_stds)))

    #### code largely not used after here except when resuming/loading a policy. ####
    def get_reparam_action_sym(self, obs_var, action_var, old_dist_info_vars):
        """
        Given observations, old actions, and distribution of old actions, return a symbolically reparameterized
        representation of the actions in terms of the policy parameters
        :param obs_var:
        :param action_var:
        :param old_dist_info_vars:
        :return:
        """
        # Not used
        import pdb; pdb.set_trace()
        new_dist_info_vars = self.dist_info_sym(obs_var, action_var)
        new_mean_var, new_log_std_var = new_dist_info_vars["mean"], new_dist_info_vars["log_std"]
        old_mean_var, old_log_std_var = old_dist_info_vars["mean"], old_dist_info_vars["log_std"]
        epsilon_var = (action_var - old_mean_var) / (tf.exp(old_log_std_var) + 1e-8)
        new_action_var = new_mean_var + epsilon_var * tf.exp(new_log_std_var)
        return new_action_var

    def get_param_dtypes(self, all_params=False, **tags):
        tag_tuple = tuple(sorted(list(tags.items()), key=lambda x: x[0]))
        if tag_tuple not in self._cached_param_dtypes:
            params = self.get_params(all_params, **tags)
            param_values = tf.get_default_session().run(params)
            self._cached_param_dtypes[tag_tuple] = [val.dtype for val in param_values]
        return self._cached_param_dtypes[tag_tuple]

    def get_param_shapes(self, all_params=False, **tags):
        tag_tuple = tuple(sorted(list(tags.items()), key=lambda x: x[0]))
        if tag_tuple not in self._cached_param_shapes:
            params = self.get_params(all_params, **tags)
            param_values = tf.get_default_session().run(params)
            self._cached_param_shapes[tag_tuple] = [val.shape for val in param_values]
        return self._cached_param_shapes[tag_tuple]

    def set_param_values(self, flattened_params, all_params=False, **tags):
        debug = tags.pop("debug", False)
        param_values = unflatten_tensors(
            flattened_params, self.get_param_shapes(all_params, **tags))
        ops = []
        feed_dict = dict()
        for param, dtype, value in zip(
                self.get_params(all_params, **tags),
                self.get_param_dtypes(all_params, **tags),
                param_values):
            if param not in self._cached_assign_ops:
                assign_placeholder = tf.placeholder(dtype=param.dtype.base_dtype)
                assign_op = tf.assign(param, assign_placeholder)
                self._cached_assign_ops[param] = assign_op
                self._cached_assign_placeholders[param] = assign_placeholder
            ops.append(self._cached_assign_ops[param])
            feed_dict[self._cached_assign_placeholders[param]] = value.astype(dtype)
            if debug:
                print("setting value of %s" % param.name)
        tf.get_default_session().run(ops, feed_dict=feed_dict)

    def flat_to_params(self, flattened_params, all_params=False, **tags):
        return unflatten_tensors(flattened_params, self.get_param_shapes(all_params, **tags))

    def __getstate__(self):
        d = Serializable.__getstate__(self)
        global load_params
        if load_params:
            d["params"] = self.get_param_values(all_params=True)
        return d

    def __setstate__(self, d):
        Serializable.__setstate__(self, d)
        global load_params
        if load_params:
            tf.get_default_session().run(tf.variables_initializer(self.get_params(all_params=True)))
            self.set_param_values(d["params"], all_params=True)