# In[3]: f = sa.fluid(option) f.diff_matrix() f.set_couette() f.integ_matrix() f.set_operator_variables() f.solve_eig() f.adjoint_spectrum('cont') f.solve_eig_adj() f.save_sim('cou_cont') # In[4]: v = po.viz('cou_cont.npz') v.plot_velocity() v.plot_spectrum() # In[5]: # 56 62 73 om = sn.sensitivity('cou_cont.npz', 73) a, b, c, d = om.c_per(obj='norm') print(a, b, c, d) #om.sens_spectrum('ke_cd_N001_puv.png', 1e-7, 1e-4, 189, obj='u', shape='gauss') # eps, gamma om.validation(1, 1e-7, 1e-4, 69, 'gauss')
f.set_operator_variables() f.solve_eig() f.adjoint_spectrum_v_eta('disc') f.solve_eig_adj() f.save_sim('200_puv_disc') #f.check_adj() v = po.viz('200_puv_disc.npz') v.plot_velocity() v.plot_spectrum() # f.omega_alpha_curves(0.0001,2,5 idx = np.argmax(np.imag(f.eigv)) om = sn.sensitivity('200_puv_disc.npz', idx) om.c_per(obj='norm') #om.sens_spectrum('ke_cd_N001_puv.png', 1e-3, 1e-2, obj='u', shape='sin') # eps, gamma #om.validation(1, 1e-2, 1, 17, 'tanh') """ # PROCEDURE TO ANALYZE THE SINGLE MODES IN THE SPECTRUM # it needs to be implemented in the "fluid" class and generalyzed in the # interface a = np.linspace(0.0001,2,50) omega_sel = np.zeros(len(a)) for i in np.arange(len(a)): f.set_perturbation(a[i],160) f.LNS() f.solve_eig()
f = sa.fluid(option) f.diff_matrix() f.set_couette() f.integ_matrix() f.set_operator_variables() f.solve_eig() f.adjoint_spectrum('cont') f.solve_eig_adj() f.save_sim('cou_cont') # In[4]: v = po.viz('cou_cont.npz') v.plot_velocity() v.plot_spectrum() # In[5]: # 56 62 73 om = sn.sensitivity('cou_cont.npz', 73) a, b, c, d = om.c_per(obj='norm') print (a, b, c,d) #om.sens_spectrum('ke_cd_N001_puv.png', 1e-7, 1e-4, 189, obj='u', shape='gauss') # eps, gamma om.validation(1, 1e-7, 1e-4, 69, 'gauss')
f.diff_matrix() f.integ_matrix() f.read_velocity_profile() f.mapping() f.interpolate() f.set_operator_variables() f.solve_eig() idx = np.argmax(np.imag(f.eigv)) #print idx eigv_sel[i] = f.eigv[idx] f.adjoint_spectrum('cont') f.solve_eig_adj() f.save_sim("temp") om = sn.sensitivity("temp", idx, show_f=False) #norm_guRe[i], norm_guIm[i], norm_gcdRe[i], norm_gcdIm[i] = om.c_per(obj='norm') norm_guRe[i], norm_guIm[i], norm_gK11Re[i], norm_gK11Im[i], norm_gK22Re[i], norm_gK22Im[i] = om.c_per(obj='norm') file_name = option['flow'][-5]+"_"+str(option['Re']) np.savez('norm_alpha_'+file_name, alpha=a, norm_guRe=norm_guRe, norm_guIm=norm_guIm, norm_gK11Re=norm_gK11Re, norm_gK11Im=norm_gK11Im, norm_gK22Re=norm_gK22Re, norm_gK22Im=norm_gK22Im) #header = 'alpha Gu_r Gu_i Gcd_r Gcd_i' #np.savetxt('norm_alpha'+name_file+'.txt' ,np.transpose([a, norm_guRe, norm_guIm, norm_gcdRe, norm_gcdIm]), fmt='%.4e', delimiter=' ', newline='\n', header=header) fig, ay = plt.subplots(dpi = 100) lines = ay.plot(a, norm_guRe, 'r', a, norm_guIm, 'g', a, norm_gK11Re, 'm', a, norm_gK11Im, 'y', a, norm_gK22Re, 'g', a, norm_gK22Im, 'c', lw = 2) #ay.set_ylabel(r'$c_i$',fontsize = 32) ay.set_xlabel(r'$\alpha$',fontsize = 32)
# f.set_hyptan() # f.set_poiseuille() f.set_operator_variables() f.solve_eig() f.adjoint_spectrum('cont') f.solve_eig_adj() file_name = option['flow'][-5]+"_"+str(option['Re']) f.save_sim(file_name) #f.check_adj() v = po.viz(file_name) v.plot_velocity() v.plot_spectrum() #f.omega_alpha_curves(0.1, 1, 20, 0.9, 1.1, 'G_RE_1e5') idx = np.argmax(np.imag(f.eigv)) om = sn.sensitivity(file_name, idx, show_f=False) a, b, c, d, e, g= om.c_per(obj='norm') print (a, b, c,d, e, g) f.omega_alpha_curves(0.1, 1, 20, 0.5, 1.4, name_file=file_name) #om.sens_spectrum('ke_cd_N001_puv.png', 1e-7, 1e-4, 189, obj='u', shape='gauss') # eps, gamma #om.validation(1, 1e-7, 1e-4, idx, 'gauss')
f.diff_matrix() f.integ_matrix() f.read_velocity_profile() f.mapping() f.interpolate() f.set_operator_variables() f.solve_eig() idx = np.argmax(np.imag(f.eigv)) #print idx eigv_sel[i] = f.eigv[idx] f.adjoint_spectrum('cont') f.solve_eig_adj() f.save_sim("temp") om = sn.sensitivity("temp", idx, show_f=False) #norm_guRe[i], norm_guIm[i], norm_gcdRe[i], norm_gcdIm[i] = om.c_per(obj='norm') norm_guRe[i], norm_guIm[i], norm_gK11Re[i], norm_gK11Im[i], norm_gK22Re[ i], norm_gK22Im[i] = om.c_per(obj='norm') file_name = option['flow'][-5] + "_" + str(option['Re']) np.savez('norm_alpha_' + file_name, alpha=a, norm_guRe=norm_guRe, norm_guIm=norm_guIm, norm_gK11Re=norm_gK11Re, norm_gK11Im=norm_gK11Im, norm_gK22Re=norm_gK22Re, norm_gK22Im=norm_gK22Im)
f = sa.fluid(option) f.diff_matrix() f.set_couette() f.integ_matrix() f.set_operator_variables() f.solve_eig() f.adjoint_spectrum_v_eta('disc') f.solve_eig_adj() f.save_sim('cou_disc') f.check_adj() # In[13]: v = po.viz('cou_disc.npz') v.plot_velocity() v.plot_spectrum() # In[14]: om = sn.sensitivity(0.00001, 'cou_disc.npz', 378) #om.u_pert(0.4, 0.2) #om.cd_pert(0.5, 0.1) #om.c_per() #om.sens_spectrum('ke_u_N01_ve.png', per_variab='u') om.validation(0, 0.01, 378)
f.diff_matrix() f.set_couette() f.integ_matrix() f.set_operator_variables() f.solve_eig() f.adjoint_spectrum_v_eta('disc') f.solve_eig_adj() f.save_sim('cou_disc') f.check_adj() # In[13]: v = po.viz('cou_disc.npz') v.plot_velocity() v.plot_spectrum() # In[14]: om = sn.sensitivity(0.00001, 'cou_disc.npz', 378) #om.u_pert(0.4, 0.2) #om.cd_pert(0.5, 0.1) #om.c_per() #om.sens_spectrum('ke_u_N01_ve.png', per_variab='u') om.validation(0, 0.01, 378)
f.solve_eig() f.adjoint_spectrum_v_eta('disc') f.solve_eig_adj() f.save_sim('200_puv_disc') #f.check_adj() v = po.viz('200_puv_disc.npz') v.plot_velocity() v.plot_spectrum() # f.omega_alpha_curves(0.0001,2,5 idx = np.argmax(np.imag(f.eigv)) om = sn.sensitivity('200_puv_disc.npz', idx) om.c_per(obj='norm') #om.sens_spectrum('ke_cd_N001_puv.png', 1e-3, 1e-2, obj='u', shape='sin') # eps, gamma #om.validation(1, 1e-2, 1, 17, 'tanh') """ # PROCEDURE TO ANALYZE THE SINGLE MODES IN THE SPECTRUM # it needs to be implemented in the "fluid" class and generalyzed in the # interface a = np.linspace(0.0001,2,50) omega_sel = np.zeros(len(a))