Example #1
0
    def get_file_contents(self):
        """
        Get the contents of the file

        :raise RuntimeError: when the file can't be opened
        :raise ValueError: when the length of the data vectors are inconsistent
        """
        buff = self.readall()
        filepath = self.f_open.name
        lines = buff.splitlines()
        self.output = []
        self.current_datainfo = DataInfo()
        self.current_datainfo.filename = filepath
        detector = Detector()
        data_line = 0
        self.reset_data_list(len(lines))
        self.current_datainfo.detector.append(detector)
        self.current_datainfo.filename = filepath

        is_info = False
        is_center = False
        is_data_started = False

        base_q_unit = '1/A'
        base_i_unit = '1/cm'
        data_conv_q = Converter(base_q_unit)
        data_conv_i = Converter(base_i_unit)

        for line in lines:
            # Information line 1
            if is_info:
                is_info = False
                line_toks = line.split()

                # Wavelength in Angstrom
                try:
                    value = float(line_toks[1])
                    if self.current_datainfo.source.wavelength_unit != 'A':
                        conv = Converter('A')
                        self.current_datainfo.source.wavelength = conv(
                            value,
                            units=self.current_datainfo.source.wavelength_unit)
                    else:
                        self.current_datainfo.source.wavelength = value
                except KeyError:
                    msg = "ABSReader cannot read wavelength from %s" % filepath
                    self.current_datainfo.errors.append(msg)

                # Detector distance in meters
                try:
                    value = float(line_toks[3])
                    if detector.distance_unit != 'm':
                        conv = Converter('m')
                        detector.distance = conv(value,
                                                 units=detector.distance_unit)
                    else:
                        detector.distance = value
                except Exception:
                    msg = "ABSReader cannot read SDD from %s" % filepath
                    self.current_datainfo.errors.append(msg)

                # Transmission
                try:
                    self.current_datainfo.sample.transmission = \
                        float(line_toks[4])
                except ValueError:
                    # Transmission isn't always in the header
                    pass

                # Sample thickness in mm
                try:
                    # ABS writer adds 'C' with no space to the end of the
                    # thickness column.  Remove it if it is there before
                    # converting the thickness.
                    if line_toks[5][-1] not in '012345679.':
                        value = float(line_toks[5][:-1])
                    else:
                        value = float(line_toks[5])
                    if self.current_datainfo.sample.thickness_unit != 'cm':
                        conv = Converter('cm')
                        self.current_datainfo.sample.thickness = conv(
                            value,
                            units=self.current_datainfo.sample.thickness_unit)
                    else:
                        self.current_datainfo.sample.thickness = value
                except ValueError:
                    # Thickness is not a mandatory entry
                    pass

            # MON CNT  LAMBDA  DET ANG  DET DIST  TRANS  THICK  AVE   STEP
            if line.count("LAMBDA") > 0:
                is_info = True

            # Find center info line
            if is_center:
                is_center = False
                line_toks = line.split()
                # Center in bin number
                center_x = float(line_toks[0])
                center_y = float(line_toks[1])

                # Bin size
                if detector.pixel_size_unit != 'mm':
                    conv = Converter('mm')
                    detector.pixel_size.x = conv(
                        5.08, units=detector.pixel_size_unit)
                    detector.pixel_size.y = conv(
                        5.08, units=detector.pixel_size_unit)
                else:
                    detector.pixel_size.x = 5.08
                    detector.pixel_size.y = 5.08

                # Store beam center in distance units
                # Det 640 x 640 mm
                if detector.beam_center_unit != 'mm':
                    conv = Converter('mm')
                    detector.beam_center.x = conv(
                        center_x * 5.08, units=detector.beam_center_unit)
                    detector.beam_center.y = conv(
                        center_y * 5.08, units=detector.beam_center_unit)
                else:
                    detector.beam_center.x = center_x * 5.08
                    detector.beam_center.y = center_y * 5.08

                # Detector type
                try:
                    detector.name = line_toks[7]
                except:
                    # Detector name is not a mandatory entry
                    pass

            # BCENT(X,Y)  A1(mm)  A2(mm)  A1A2DIST(m)  DL/L  BSTOP(mm)  DET_TYP
            if line.count("BCENT") > 0:
                is_center = True

            # Parse the data
            if is_data_started:
                toks = line.split()

                try:
                    _x = float(toks[0])
                    _y = float(toks[1])
                    _dy = float(toks[2])
                    _dx = float(toks[3])

                    if data_conv_q is not None:
                        _x = data_conv_q(_x, units=base_q_unit)
                        _dx = data_conv_q(_dx, units=base_q_unit)

                    if data_conv_i is not None:
                        _y = data_conv_i(_y, units=base_i_unit)
                        _dy = data_conv_i(_dy, units=base_i_unit)

                    self.current_dataset.x[data_line] = _x
                    self.current_dataset.y[data_line] = _y
                    self.current_dataset.dy[data_line] = _dy
                    if _dx > 0:
                        self.current_dataset.dx[data_line] = _dx
                    else:
                        if data_line == 0:
                            self.current_dataset.dx = None
                            self.current_dataset.dxl = np.zeros(len(lines))
                            self.current_dataset.dxw = np.zeros(len(lines))
                        self.current_dataset.dxl[data_line] = abs(_dx)
                        self.current_dataset.dxw[data_line] = 0
                    data_line += 1

                except ValueError:
                    # Could not read this data line. If we are here
                    # it is because we are in the data section. Just
                    # skip it.
                    pass

            # SANS Data:
            # The 6 columns are | Q (1/A) | I(Q) (1/cm) | std. dev.
            # I(Q) (1/cm) | sigmaQ | meanQ | ShadowFactor|
            # USANS Data:
            # EMP LEVEL: <value> ; BKG LEVEL: <value>
            if line.startswith("The 6 columns") or line.startswith(
                    "EMP LEVEL"):
                is_data_started = True

        self.remove_empty_q_values()

        # Sanity check
        if not len(self.current_dataset.y) == len(self.current_dataset.dy):
            self.set_all_to_none()
            msg = "abs_reader: y and dy have different length"
            raise ValueError(msg)
        # If the data length is zero, consider this as
        # though we were not able to read the file.
        if len(self.current_dataset.x) == 0:
            self.set_all_to_none()
            raise ValueError("ascii_reader: could not load file")

        if data_conv_q is not None:
            self.current_dataset.xaxis("\\rm{Q}", base_q_unit)
        else:
            self.current_dataset.xaxis("\\rm{Q}", 'A^{-1}')
        if data_conv_i is not None:
            self.current_dataset.yaxis("\\rm{Intensity}", base_i_unit)
        else:
            self.current_dataset.yaxis("\\rm{Intensity}", "cm^{-1}")

        # Store loading process information
        self.current_datainfo.meta_data['loader'] = self.type_name
        self.send_to_output()
Example #2
0
    def read(self, filename=None):
        """ Read file """
        if not os.path.isfile(filename):
            raise ValueError, \
            "Specified file %s is not a regular file" % filename

        # Read file
        f = open(filename, 'r')
        buf = f.read()
        f.close()
        # Instantiate data object
        output = Data2D()
        output.filename = os.path.basename(filename)
        detector = Detector()
        if len(output.detector) > 0:
            print str(output.detector[0])
        output.detector.append(detector)

        # Get content
        dataStarted = False

        ## Defaults
        lines = buf.split('\n')
        x = []
        y = []

        wavelength = None
        distance = None
        transmission = None

        pixel_x = None
        pixel_y = None

        isInfo = False
        isCenter = False

        data_conv_q = None
        data_conv_i = None

        # Set units: This is the unit assumed for Q and I in the data file.
        if has_converter == True and output.Q_unit != '1/A':
            data_conv_q = Converter('1/A')
            # Test it
            data_conv_q(1.0, output.Q_unit)

        if has_converter == True and output.I_unit != '1/cm':
            data_conv_i = Converter('1/cm')
            # Test it
            data_conv_i(1.0, output.I_unit)

        # Remove the last lines before the for loop if the lines are empty
        # to calculate the exact number of data points
        count = 0
        while (len(lines[len(lines) - (count + 1)].lstrip().rstrip()) < 1):
            del lines[len(lines) - (count + 1)]
            count = count + 1

        #Read Header and find the dimensions of 2D data
        line_num = 0
        # Old version NIST files: 0
        ver = 0
        for line in lines:
            line_num += 1
            ## Reading the header applies only to IGOR/NIST 2D q_map data files
            # Find setup info line
            if isInfo:
                isInfo = False
                line_toks = line.split()
                # Wavelength in Angstrom
                try:
                    wavelength = float(line_toks[1])
                    # Units
                    if has_converter == True and \
                    output.source.wavelength_unit != 'A':
                        conv = Converter('A')
                        wavelength = conv(wavelength,
                                          units=output.source.wavelength_unit)
                except:
                    #Not required
                    pass
                # Distance in mm
                try:
                    distance = float(line_toks[3])
                    # Units
                    if has_converter == True and detector.distance_unit != 'm':
                        conv = Converter('m')
                        distance = conv(distance, units=detector.distance_unit)
                except:
                    #Not required
                    pass

                # Distance in meters
                try:
                    transmission = float(line_toks[4])
                except:
                    #Not required
                    pass

            if line.count("LAMBDA") > 0:
                isInfo = True

            # Find center info line
            if isCenter:
                isCenter = False
                line_toks = line.split()
                # Center in bin number
                center_x = float(line_toks[0])
                center_y = float(line_toks[1])

            if line.count("BCENT") > 0:
                isCenter = True
            # Check version
            if line.count("Data columns") > 0:
                if line.count("err(I)") > 0:
                    ver = 1
            # Find data start
            if line.count("ASCII data") > 0:
                dataStarted = True
                continue

            ## Read and get data.
            if dataStarted == True:
                line_toks = line.split()
                if len(line_toks) == 0:
                    #empty line
                    continue
                # the number of columns must be stayed same
                col_num = len(line_toks)
                break
        # Make numpy array to remove header lines using index
        lines_array = numpy.array(lines)

        # index for lines_array
        lines_index = numpy.arange(len(lines))

        # get the data lines
        data_lines = lines_array[lines_index >= (line_num - 1)]
        # Now we get the total number of rows (i.e., # of data points)
        row_num = len(data_lines)
        # make it as list again to control the separators
        data_list = " ".join(data_lines.tolist())
        # split all data to one big list w/" "separator
        data_list = data_list.split()

        # Check if the size is consistent with data, otherwise
        #try the tab(\t) separator
        # (this may be removed once get the confidence
        #the former working all cases).
        if len(data_list) != (len(data_lines)) * col_num:
            data_list = "\t".join(data_lines.tolist())
            data_list = data_list.split()

        # Change it(string) into float
        #data_list = map(float,data_list)
        data_list1 = map(check_point, data_list)

        # numpy array form
        data_array = numpy.array(data_list1)
        # Redimesion based on the row_num and col_num,
        #otherwise raise an error.
        try:
            data_point = data_array.reshape(row_num, col_num).transpose()
        except:
            msg = "red2d_reader: Can't read this file: Not a proper file format"
            raise ValueError, msg
        ## Get the all data: Let's HARDcoding; Todo find better way
        # Defaults
        dqx_data = numpy.zeros(0)
        dqy_data = numpy.zeros(0)
        err_data = numpy.ones(row_num)
        qz_data = numpy.zeros(row_num)
        mask = numpy.ones(row_num, dtype=bool)
        # Get from the array
        qx_data = data_point[0]
        qy_data = data_point[1]
        data = data_point[2]
        if ver == 1:
            if col_num > (2 + ver):
                err_data = data_point[(2 + ver)]
        if col_num > (3 + ver):
            qz_data = data_point[(3 + ver)]
        if col_num > (4 + ver):
            dqx_data = data_point[(4 + ver)]
        if col_num > (5 + ver):
            dqy_data = data_point[(5 + ver)]
        #if col_num > (6 + ver): mask[data_point[(6 + ver)] < 1] = False
        q_data = numpy.sqrt(qx_data * qx_data + qy_data * qy_data +
                            qz_data * qz_data)

        # Extra protection(it is needed for some data files):
        # If all mask elements are False, put all True
        if not mask.any():
            mask[mask == False] = True

        # Store limits of the image in q space
        xmin = numpy.min(qx_data)
        xmax = numpy.max(qx_data)
        ymin = numpy.min(qy_data)
        ymax = numpy.max(qy_data)

        # units
        if has_converter == True and output.Q_unit != '1/A':
            xmin = data_conv_q(xmin, units=output.Q_unit)
            xmax = data_conv_q(xmax, units=output.Q_unit)
            ymin = data_conv_q(ymin, units=output.Q_unit)
            ymax = data_conv_q(ymax, units=output.Q_unit)

        ## calculate the range of the qx and qy_data
        x_size = math.fabs(xmax - xmin)
        y_size = math.fabs(ymax - ymin)

        # calculate the number of pixels in the each axes
        npix_y = math.floor(math.sqrt(len(data)))
        npix_x = math.floor(len(data) / npix_y)

        # calculate the size of bins
        xstep = x_size / (npix_x - 1)
        ystep = y_size / (npix_y - 1)

        # store x and y axis bin centers in q space
        x_bins = numpy.arange(xmin, xmax + xstep, xstep)
        y_bins = numpy.arange(ymin, ymax + ystep, ystep)

        # get the limits of q values
        xmin = xmin - xstep / 2
        xmax = xmax + xstep / 2
        ymin = ymin - ystep / 2
        ymax = ymax + ystep / 2

        #Store data in outputs
        #TODO: Check the lengths
        output.data = data
        if (err_data == 1).all():
            output.err_data = numpy.sqrt(numpy.abs(data))
            output.err_data[output.err_data == 0.0] = 1.0
        else:
            output.err_data = err_data

        output.qx_data = qx_data
        output.qy_data = qy_data
        output.q_data = q_data
        output.mask = mask

        output.x_bins = x_bins
        output.y_bins = y_bins

        output.xmin = xmin
        output.xmax = xmax
        output.ymin = ymin
        output.ymax = ymax

        output.source.wavelength = wavelength

        # Store pixel size in mm
        detector.pixel_size.x = pixel_x
        detector.pixel_size.y = pixel_y

        # Store the sample to detector distance
        detector.distance = distance

        # optional data: if all of dq data == 0, do not pass to output
        if len(dqx_data) == len(qx_data) and dqx_data.any() != 0:
            # if no dqx_data, do not pass dqy_data.
            #(1 axis dq is not supported yet).
            if len(dqy_data) == len(qy_data) and dqy_data.any() != 0:
                # Currently we do not support dq parr, perp.
                # tranfer the comp. to cartesian coord. for newer version.
                if ver != 1:
                    diag = numpy.sqrt(qx_data * qx_data + qy_data * qy_data)
                    cos_th = qx_data / diag
                    sin_th = qy_data / diag
                    output.dqx_data = numpy.sqrt((dqx_data * cos_th) * \
                                                 (dqx_data * cos_th) \
                                                 + (dqy_data * sin_th) * \
                                                  (dqy_data * sin_th))
                    output.dqy_data = numpy.sqrt((dqx_data * sin_th) * \
                                                 (dqx_data * sin_th) \
                                                 + (dqy_data * cos_th) * \
                                                  (dqy_data * cos_th))
                else:
                    output.dqx_data = dqx_data
                    output.dqy_data = dqy_data

        # Units of axes
        if data_conv_q is not None:
            output.xaxis("\\rm{Q_{x}}", output.Q_unit)
            output.yaxis("\\rm{Q_{y}}", output.Q_unit)
        else:
            output.xaxis("\\rm{Q_{x}}", 'A^{-1}')
            output.yaxis("\\rm{Q_{y}}", 'A^{-1}')
        if data_conv_i is not None:
            output.zaxis("\\rm{Intensity}", output.I_unit)
        else:
            output.zaxis("\\rm{Intensity}", "cm^{-1}")

        # Store loading process information
        output.meta_data['loader'] = self.type_name

        return output
Example #3
0
    def read(self, path):
        """ 
        Load data file.
        
        :param path: file path
        
        :return: Data1D object, or None
        
        :raise RuntimeError: when the file can't be opened
        :raise ValueError: when the length of the data vectors are inconsistent
        """
        if os.path.isfile(path):
            basename = os.path.basename(path)
            root, extension = os.path.splitext(basename)
            if extension.lower() in self.ext:
                try:
                    input_f = open(path,'r')
                except:
                    raise  RuntimeError, "abs_reader: cannot open %s" % path
                buff = input_f.read()
                lines = buff.split('\n')
                x  = numpy.zeros(0)
                y  = numpy.zeros(0)
                dy = numpy.zeros(0)
                dx = numpy.zeros(0)
                output = Data1D(x, y, dy=dy, dx=dx)
                detector = Detector()
                output.detector.append(detector)
                output.filename = basename
                
                is_info = False
                is_center = False
                is_data_started = False
                
                data_conv_q = None
                data_conv_i = None
                
                if has_converter == True and output.x_unit != '1/A':
                    data_conv_q = Converter('1/A')
                    # Test it
                    data_conv_q(1.0, output.x_unit)
                    
                if has_converter == True and output.y_unit != '1/cm':
                    data_conv_i = Converter('1/cm')
                    # Test it
                    data_conv_i(1.0, output.y_unit)
                
                for line in lines:
                    
                    # Information line 1
                    if is_info == True:
                        is_info = False
                        line_toks = line.split()
                        
                        # Wavelength in Angstrom
                        try:
                            value = float(line_toks[1])
                            if has_converter == True and \
                                output.source.wavelength_unit != 'A':
                                conv = Converter('A')
                                output.source.wavelength = conv(value,
                                        units=output.source.wavelength_unit)
                            else:
                                output.source.wavelength = value
                        except:
                            #goes to ASC reader
                            msg = "abs_reader: cannot open %s" % path
                            raise  RuntimeError, msg
                        
                        # Distance in meters
                        try:
                            value = float(line_toks[3])
                            if has_converter == True and \
                                detector.distance_unit != 'm':
                                conv = Converter('m')
                                detector.distance = conv(value,
                                                units=detector.distance_unit)
                            else:
                                detector.distance = value
                        except:
                            #goes to ASC reader
                            msg = "abs_reader: cannot open %s" % path
                            raise  RuntimeError, msg
                        # Transmission
                        try:
                            output.sample.transmission = float(line_toks[4])
                        except:
                            # Transmission is not a mandatory entry
                            pass
                    
                        # Thickness in mm
                        try:
                            value = float(line_toks[5])
                            if has_converter == True and \
                                output.sample.thickness_unit != 'cm':
                                conv = Converter('cm')
                                output.sample.thickness = conv(value,
                                            units=output.sample.thickness_unit)
                            else:
                                output.sample.thickness = value
                        except:
                            # Thickness is not a mandatory entry
                            pass
                    
                    #MON CNT   LAMBDA   DET ANG   DET DIST   TRANS   THICK 
                    #  AVE   STEP
                    if line.count("LAMBDA") > 0:
                        is_info = True
                        
                    # Find center info line
                    if is_center == True:
                        is_center = False
                        line_toks = line.split()
                        # Center in bin number
                        center_x = float(line_toks[0])
                        center_y = float(line_toks[1])
                        
                        # Bin size
                        if has_converter == True and \
                            detector.pixel_size_unit != 'mm':
                            conv = Converter('mm')
                            detector.pixel_size.x = conv(5.0,
                                                units=detector.pixel_size_unit)
                            detector.pixel_size.y = conv(5.0,
                                                units=detector.pixel_size_unit)
                        else:
                            detector.pixel_size.x = 5.0
                            detector.pixel_size.y = 5.0
                        
                        # Store beam center in distance units
                        # Det 640 x 640 mm
                        if has_converter == True and \
                            detector.beam_center_unit != 'mm':
                            conv = Converter('mm')
                            detector.beam_center.x = conv(center_x * 5.0,
                                             units=detector.beam_center_unit)
                            detector.beam_center.y = conv(center_y * 5.0,
                                            units=detector.beam_center_unit)
                        else:
                            detector.beam_center.x = center_x * 5.0
                            detector.beam_center.y = center_y * 5.0
                        
                        # Detector type
                        try:
                            detector.name = line_toks[7]
                        except:
                            # Detector name is not a mandatory entry
                            pass
                    
                    #BCENT(X,Y)   A1(mm)   A2(mm)   A1A2DIST(m)   DL/L
                    #  BSTOP(mm)   DET_TYP
                    if line.count("BCENT") > 0:
                        is_center = True
                        
                    # Parse the data
                    if is_data_started == True:
                        toks = line.split()

                        try:
                            _x  = float(toks[0])
                            _y  = float(toks[1])
                            _dy = float(toks[2])
                            _dx = float(toks[3])
                            
                            if data_conv_q is not None:
                                _x = data_conv_q(_x, units=output.x_unit)
                                _dx = data_conv_i(_dx, units=output.x_unit)
                                
                            if data_conv_i is not None:
                                _y = data_conv_i(_y, units=output.y_unit)
                                _dy = data_conv_i(_dy, units=output.y_unit)
                           
                            x = numpy.append(x, _x)
                            y = numpy.append(y, _y)
                            dy = numpy.append(dy, _dy)
                            dx = numpy.append(dx, _dx)
                            
                        except:
                            # Could not read this data line. If we are here
                            # it is because we are in the data section. Just
                            # skip it.
                            pass
                            
                    #The 6 columns are | Q (1/A) | I(Q) (1/cm) | std. dev.
                    # I(Q) (1/cm) | sigmaQ | meanQ | ShadowFactor|
                    if line.count("The 6 columns") > 0:
                        is_data_started = True
            
                # Sanity check
                if not len(y) == len(dy):
                    msg = "abs_reader: y and dy have different length"
                    raise ValueError, msg
                # If the data length is zero, consider this as
                # though we were not able to read the file.
                if len(x) == 0:
                    raise ValueError, "ascii_reader: could not load file"
                
                output.x = x[x != 0]
                output.y = y[x != 0]
                output.dy = dy[x != 0]
                output.dx = dx[x != 0]
                if data_conv_q is not None:
                    output.xaxis("\\rm{Q}", output.x_unit)
                else:
                    output.xaxis("\\rm{Q}", 'A^{-1}')
                if data_conv_i is not None:
                    output.yaxis("\\rm{Intensity}", output.y_unit)
                else:
                    output.yaxis("\\rm{Intensity}", "cm^{-1}")
                    
                # Store loading process information
                output.meta_data['loader'] = self.type_name
                return output
        else:
            raise RuntimeError, "%s is not a file" % path
        return None
Example #4
0
    def get_file_contents(self):
        # Read file
        buf = self.readall()
        self.f_open.close()
        # Instantiate data object
        self.current_dataset = plottable_2D()
        self.current_datainfo = DataInfo()
        self.current_datainfo.filename = os.path.basename(self.f_open.name)
        self.current_datainfo.detector.append(Detector())

        # Get content
        data_started = False

        ## Defaults
        lines = buf.split('\n')
        x = []
        y = []

        wavelength = None
        distance = None
        transmission = None

        pixel_x = None
        pixel_y = None

        is_info = False
        is_center = False

        # Remove the last lines before the for loop if the lines are empty
        # to calculate the exact number of data points
        count = 0
        while (len(lines[len(lines) - (count + 1)].lstrip().rstrip()) < 1):
            del lines[len(lines) - (count + 1)]
            count = count + 1

        #Read Header and find the dimensions of 2D data
        line_num = 0
        # Old version NIST files: 0
        ver = 0
        for line in lines:
            line_num += 1
            ## Reading the header applies only to IGOR/NIST 2D q_map data files
            # Find setup info line
            if is_info:
                is_info = False
                line_toks = line.split()
                # Wavelength in Angstrom
                try:
                    wavelength = float(line_toks[1])
                    # Wavelength is stored in angstroms; convert if necessary
                    if self.current_datainfo.source.wavelength_unit != 'A':
                        conv = Converter('A')
                        wavelength = conv(
                            wavelength,
                            units=self.current_datainfo.source.wavelength_unit)
                except Exception:
                    pass  # Not required
                try:
                    distance = float(line_toks[3])
                    # Distance is stored in meters; convert if necessary
                    if self.current_datainfo.detector[0].distance_unit != 'm':
                        conv = Converter('m')
                        distance = conv(distance,
                                        units=self.current_datainfo.
                                        detector[0].distance_unit)
                except Exception:
                    pass  # Not required

                try:
                    transmission = float(line_toks[4])
                except Exception:
                    pass  # Not required

            if line.count("LAMBDA") > 0:
                is_info = True

            # Find center info line
            if is_center:
                is_center = False
                line_toks = line.split()
                # Center in bin number
                center_x = float(line_toks[0])
                center_y = float(line_toks[1])

            if line.count("BCENT") > 0:
                is_center = True
            # Check version
            if line.count("Data columns") > 0:
                if line.count("err(I)") > 0:
                    ver = 1
            # Find data start
            if line.count("ASCII data") > 0:
                data_started = True
                continue

            ## Read and get data.
            if data_started:
                line_toks = line.split()
                if len(line_toks) == 0:
                    #empty line
                    continue
                # the number of columns must be stayed same
                col_num = len(line_toks)
                break

        # Make numpy array to remove header lines using index
        lines_array = np.array(lines)

        # index for lines_array
        lines_index = np.arange(len(lines))

        # get the data lines
        data_lines = lines_array[lines_index >= (line_num - 1)]
        # Now we get the total number of rows (i.e., # of data points)
        row_num = len(data_lines)
        # make it as list again to control the separators
        data_list = " ".join(data_lines.tolist())
        # split all data to one big list w/" "separator
        data_list = data_list.split()

        # Check if the size is consistent with data, otherwise
        #try the tab(\t) separator
        # (this may be removed once get the confidence
        #the former working all cases).
        if len(data_list) != (len(data_lines)) * col_num:
            data_list = "\t".join(data_lines.tolist())
            data_list = data_list.split()

        # Change it(string) into float
        #data_list = map(float,data_list)
        data_list1 = list(map(check_point, data_list))

        # numpy array form
        data_array = np.array(data_list1)
        # Redimesion based on the row_num and col_num,
        #otherwise raise an error.
        try:
            data_point = data_array.reshape(row_num, col_num).transpose()
        except Exception:
            msg = "red2d_reader can't read this file: Incorrect number of data points provided."
            raise FileContentsException(msg)
        ## Get the all data: Let's HARDcoding; Todo find better way
        # Defaults
        dqx_data = np.zeros(0)
        dqy_data = np.zeros(0)
        err_data = np.ones(row_num)
        qz_data = np.zeros(row_num)
        mask = np.ones(row_num, dtype=bool)
        # Get from the array
        qx_data = data_point[0]
        qy_data = data_point[1]
        data = data_point[2]
        if ver == 1:
            if col_num > (2 + ver):
                err_data = data_point[(2 + ver)]
        if col_num > (3 + ver):
            qz_data = data_point[(3 + ver)]
        if col_num > (4 + ver):
            dqx_data = data_point[(4 + ver)]
        if col_num > (5 + ver):
            dqy_data = data_point[(5 + ver)]
        # Column '6 + ver' is the shadow factor value. A separate mask column
        #   was added to account for self-drawn masks.
        # if col_num > (6 + ver): mask[data_point[(6 + ver)] < 1] = False
        if col_num > (7 + ver):
            mask = np.invert(np.asarray(data_point[(7 + ver)], dtype=bool))
        q_data = np.sqrt(qx_data * qx_data + qy_data * qy_data +
                         qz_data * qz_data)

        # Store limits of the image in q space
        xmin = np.min(qx_data)
        xmax = np.max(qx_data)
        ymin = np.min(qy_data)
        ymax = np.max(qy_data)

        # Find unique Qx and Qy values for data binning and visualization
        # len(x_bins) * len(y_bins) ~= len(qx_data) ~= len(qy_data)
        x_bins = np.unique(qx_data)
        y_bins = np.unique(qy_data)
        # For non-uniform qx_data and/or qy_data
        #  Cases: Rotated detectors, floating point variations
        if round(len(x_bins) * len(y_bins) / len(qx_data)) >= 2:
            # qx_data increases along rows => travel along a single pixel line
            num_qx = np.argmax(np.hstack((qx_data[1:] < qx_data[:-1], True)))
            x_bins = qx_data[:num_qx + 1]
            # qy_data increases along columns => transpose qx_data shape
            qy = np.reshape(qy_data,
                            (len(qx_data) // len(x_bins), len(x_bins)))
            y_bins = np.transpose(qy)[0].tolist()

        # Store data in outputs
        self.current_dataset.data = data
        if (err_data == 1).all():
            self.current_dataset.err_data = np.sqrt(np.abs(data))
            self.current_dataset.err_data[self.current_dataset.err_data ==
                                          0.0] = 1.0
        else:
            self.current_dataset.err_data = err_data

        self.current_dataset.qx_data = qx_data
        self.current_dataset.qy_data = qy_data
        self.current_dataset.q_data = q_data
        self.current_dataset.mask = mask

        self.current_dataset.x_bins = x_bins
        self.current_dataset.y_bins = y_bins

        self.current_dataset.xmin = xmin
        self.current_dataset.xmax = xmax
        self.current_dataset.ymin = ymin
        self.current_dataset.ymax = ymax

        self.current_datainfo.source.wavelength = wavelength

        # Store pixel size in mm
        self.current_datainfo.detector[0].pixel_size.x = pixel_x
        self.current_datainfo.detector[0].pixel_size.y = pixel_y

        # Store the sample to detector distance
        self.current_datainfo.detector[0].distance = distance

        # optional data: if all of dq data == 0, do not pass to output
        if len(dqx_data) == len(qx_data) and dqx_data.any() != 0:
            # if no dqx_data, do not pass dqy_data.
            # (1 axis dq is not supported yet).
            if len(dqy_data) == len(qy_data) and dqy_data.any() != 0:
                # Currently we do not support dq parr, perp.
                # transfer the comp. to cartesian coord. for newer version.
                if ver != 1:
                    diag = np.sqrt(qx_data * qx_data + qy_data * qy_data)
                    cos_th = qx_data / diag
                    sin_th = qy_data / diag
                    self.current_dataset.dqx_data = np.sqrt(
                        (dqx_data * cos_th)**2 + (dqy_data * sin_th)**2)
                    self.current_dataset.dqy_data = np.sqrt(
                        (dqx_data * sin_th)**2 + (dqy_data * cos_th)**2)
                else:
                    self.current_dataset.dqx_data = dqx_data
                    self.current_dataset.dqy_data = dqy_data

        # Units of axes
        self.current_dataset = self.set_default_2d_units(self.current_dataset)

        # Store loading process information
        self.current_datainfo.meta_data['loader'] = self.type_name

        self.send_to_output()
Example #5
0
    def read(self, filename=None):
        """
        Open and read the data in a file
        @param file: path of the file
        """

        read_it = False
        for item in self.ext:
            if filename.lower().find(item) >= 0:
                read_it = True

        if read_it:
            try:
                datafile = open(filename, 'r')
            except:
                raise RuntimeError, "danse_reader cannot open %s" % (filename)

            # defaults
            # wavelength in Angstrom
            wavelength = 10.0
            # Distance in meter
            distance = 11.0
            # Pixel number of center in x
            center_x = 65
            # Pixel number of center in y
            center_y = 65
            # Pixel size [mm]
            pixel = 5.0
            # Size in x, in pixels
            size_x = 128
            # Size in y, in pixels
            size_y = 128
            # Format version
            fversion = 1.0

            output = Data2D()
            output.filename = os.path.basename(filename)
            detector = Detector()
            output.detector.append(detector)

            output.data = np.zeros([size_x, size_y])
            output.err_data = np.zeros([size_x, size_y])

            data_conv_q = None
            data_conv_i = None

            if has_converter == True and output.Q_unit != '1/A':
                data_conv_q = Converter('1/A')
                # Test it
                data_conv_q(1.0, output.Q_unit)

            if has_converter == True and output.I_unit != '1/cm':
                data_conv_i = Converter('1/cm')
                # Test it
                data_conv_i(1.0, output.I_unit)

            read_on = True
            while read_on:
                line = datafile.readline()
                if line.find("DATA:") >= 0:
                    read_on = False
                    break
                toks = line.split(':')
                if toks[0] == "FORMATVERSION":
                    fversion = float(toks[1])
                if toks[0] == "WAVELENGTH":
                    wavelength = float(toks[1])
                elif toks[0] == "DISTANCE":
                    distance = float(toks[1])
                elif toks[0] == "CENTER_X":
                    center_x = float(toks[1])
                elif toks[0] == "CENTER_Y":
                    center_y = float(toks[1])
                elif toks[0] == "PIXELSIZE":
                    pixel = float(toks[1])
                elif toks[0] == "SIZE_X":
                    size_x = int(toks[1])
                elif toks[0] == "SIZE_Y":
                    size_y = int(toks[1])

            # Read the data
            data = []
            error = []
            if fversion == 1.0:
                data_str = datafile.readline()
                data = data_str.split(' ')
            else:
                read_on = True
                while read_on:
                    data_str = datafile.readline()
                    if len(data_str) == 0:
                        read_on = False
                    else:
                        toks = data_str.split()
                        try:
                            val = float(toks[0])
                            err = float(toks[1])
                            if data_conv_i is not None:
                                val = data_conv_i(val, units=output._yunit)
                                err = data_conv_i(err, units=output._yunit)
                            data.append(val)
                            error.append(err)
                        except:
                            logger.info("Skipping line:%s,%s" %
                                        (data_str, sys.exc_value))

            # Initialize
            x_vals = []
            y_vals = []
            ymin = None
            ymax = None
            xmin = None
            xmax = None

            # Qx and Qy vectors
            theta = pixel / distance / 100.0
            stepq = 4.0 * math.pi / wavelength * math.sin(theta / 2.0)
            for i_x in range(size_x):
                theta = (i_x - center_x + 1) * pixel / distance / 100.0
                qx = 4.0 * math.pi / wavelength * math.sin(theta / 2.0)

                if has_converter == True and output.Q_unit != '1/A':
                    qx = data_conv_q(qx, units=output.Q_unit)

                x_vals.append(qx)
                if xmin is None or qx < xmin:
                    xmin = qx
                if xmax is None or qx > xmax:
                    xmax = qx

            ymin = None
            ymax = None
            for i_y in range(size_y):
                theta = (i_y - center_y + 1) * pixel / distance / 100.0
                qy = 4.0 * math.pi / wavelength * math.sin(theta / 2.0)

                if has_converter == True and output.Q_unit != '1/A':
                    qy = data_conv_q(qy, units=output.Q_unit)

                y_vals.append(qy)
                if ymin is None or qy < ymin:
                    ymin = qy
                if ymax is None or qy > ymax:
                    ymax = qy

            # Store the data in the 2D array
            i_x = 0
            i_y = -1

            for i_pt in range(len(data)):
                try:
                    value = float(data[i_pt])
                except:
                    # For version 1.0, the data were still
                    # stored as strings at this point.
                    msg = "Skipping entry (v1.0):%s,%s" % (str(
                        data[i_pt]), sys.exc_value)
                    logger.info(msg)

                # Get bin number
                if math.fmod(i_pt, size_x) == 0:
                    i_x = 0
                    i_y += 1
                else:
                    i_x += 1

                output.data[i_y][i_x] = value
                if fversion > 1.0:
                    output.err_data[i_y][i_x] = error[i_pt]

            # Store all data
            # Store wavelength
            if has_converter == True and output.source.wavelength_unit != 'A':
                conv = Converter('A')
                wavelength = conv(wavelength,
                                  units=output.source.wavelength_unit)
            output.source.wavelength = wavelength

            # Store distance
            if has_converter == True and detector.distance_unit != 'm':
                conv = Converter('m')
                distance = conv(distance, units=detector.distance_unit)
            detector.distance = distance

            # Store pixel size
            if has_converter == True and detector.pixel_size_unit != 'mm':
                conv = Converter('mm')
                pixel = conv(pixel, units=detector.pixel_size_unit)
            detector.pixel_size.x = pixel
            detector.pixel_size.y = pixel

            # Store beam center in distance units
            detector.beam_center.x = center_x * pixel
            detector.beam_center.y = center_y * pixel

            # Store limits of the image (2D array)
            xmin = xmin - stepq / 2.0
            xmax = xmax + stepq / 2.0
            ymin = ymin - stepq / 2.0
            ymax = ymax + stepq / 2.0

            if has_converter == True and output.Q_unit != '1/A':
                xmin = data_conv_q(xmin, units=output.Q_unit)
                xmax = data_conv_q(xmax, units=output.Q_unit)
                ymin = data_conv_q(ymin, units=output.Q_unit)
                ymax = data_conv_q(ymax, units=output.Q_unit)
            output.xmin = xmin
            output.xmax = xmax
            output.ymin = ymin
            output.ymax = ymax

            # Store x and y axis bin centers
            output.x_bins = x_vals
            output.y_bins = y_vals

            # Units
            if data_conv_q is not None:
                output.xaxis("\\rm{Q_{x}}", output.Q_unit)
                output.yaxis("\\rm{Q_{y}}", output.Q_unit)
            else:
                output.xaxis("\\rm{Q_{x}}", 'A^{-1}')
                output.yaxis("\\rm{Q_{y}}", 'A^{-1}')

            if data_conv_i is not None:
                output.zaxis("\\rm{Intensity}", output.I_unit)
            else:
                output.zaxis("\\rm{Intensity}", "cm^{-1}")

            if not fversion >= 1.0:
                msg = "Danse_reader can't read this file %s" % filename
                raise ValueError, msg
            else:
                logger.info("Danse_reader Reading %s \n" % filename)

            # Store loading process information
            output.meta_data['loader'] = self.type_name
            output = reader2D_converter(output)
            return output

        return None
Example #6
0
    def get_file_contents(self):
        self.current_datainfo = DataInfo()
        self.current_dataset = plottable_2D()
        self.output = []

        loaded_correctly = True
        error_message = ""

        # defaults
        # wavelength in Angstrom
        wavelength = 10.0
        # Distance in meter
        distance   = 11.0
        # Pixel number of center in x
        center_x   = 65
        # Pixel number of center in y
        center_y   = 65
        # Pixel size [mm]
        pixel      = 5.0
        # Size in x, in pixels
        size_x     = 128
        # Size in y, in pixels
        size_y     = 128
        # Format version
        fversion   = 1.0

        self.current_datainfo.filename = os.path.basename(self.f_open.name)
        detector = Detector()
        self.current_datainfo.detector.append(detector)

        self.current_dataset.data = np.zeros([size_x, size_y])
        self.current_dataset.err_data = np.zeros([size_x, size_y])

        read_on = True
        data_start_line = 1
        while read_on:
            line = self.nextline()
            data_start_line += 1
            if line.find("DATA:") >= 0:
                read_on = False
                break
            toks = line.split(':')
            try:
                if toks[0] == "FORMATVERSION":
                    fversion = float(toks[1])
                elif toks[0] == "WAVELENGTH":
                    wavelength = float(toks[1])
                elif toks[0] == "DISTANCE":
                    distance = float(toks[1])
                elif toks[0] == "CENTER_X":
                    center_x = float(toks[1])
                elif toks[0] == "CENTER_Y":
                    center_y = float(toks[1])
                elif toks[0] == "PIXELSIZE":
                    pixel = float(toks[1])
                elif toks[0] == "SIZE_X":
                    size_x = int(toks[1])
                elif toks[0] == "SIZE_Y":
                    size_y = int(toks[1])
            except ValueError as e:
                error_message += "Unable to parse {}. Default value used.\n".format(toks[0])
                loaded_correctly = False

        # Read the data
        data = []
        error = []
        if not fversion >= 1.0:
            msg = "danse_reader can't read this file {}".format(self.f_open.name)
            raise FileContentsException(msg)

        for line_num, data_str in enumerate(self.nextlines()):
            toks = data_str.split()
            try:
                val = float(toks[0])
                err = float(toks[1])
                data.append(val)
                error.append(err)
            except ValueError as exc:
                msg = "Unable to parse line {}: {}".format(line_num + data_start_line, data_str.strip())
                raise FileContentsException(msg)

        num_pts = size_x * size_y
        if len(data) < num_pts:
            msg = "Not enough data points provided. Expected {} but got {}".format(
                size_x * size_y, len(data))
            raise FileContentsException(msg)
        elif len(data) > num_pts:
            error_message += ("Too many data points provided. Expected {0} but"
                " got {1}. Only the first {0} will be used.\n").format(num_pts, len(data))
            loaded_correctly = False
            data = data[:num_pts]
            error = error[:num_pts]

        # Qx and Qy vectors
        theta = pixel / distance / 100.0
        i_x = np.arange(size_x)
        theta = (i_x - center_x + 1) * pixel / distance / 100.0
        x_vals = 4.0 * np.pi / wavelength * np.sin(theta / 2.0)
        xmin = x_vals.min()
        xmax = x_vals.max()

        i_y = np.arange(size_y)
        theta = (i_y - center_y + 1) * pixel / distance / 100.0
        y_vals = 4.0 * np.pi / wavelength * np.sin(theta / 2.0)
        ymin = y_vals.min()
        ymax = y_vals.max()

        self.current_dataset.data = np.array(data, dtype=np.float64).reshape((size_y, size_x))
        if fversion > 1.0:
            self.current_dataset.err_data = np.array(error, dtype=np.float64).reshape((size_y, size_x))

        # Store all data
        # Store wavelength
        if has_converter and self.current_datainfo.source.wavelength_unit != 'A':
            conv = Converter('A')
            wavelength = conv(wavelength,
                              units=self.current_datainfo.source.wavelength_unit)
        self.current_datainfo.source.wavelength = wavelength

        # Store distance
        if has_converter and detector.distance_unit != 'm':
            conv = Converter('m')
            distance = conv(distance, units=detector.distance_unit)
        detector.distance = distance

        # Store pixel size
        if has_converter and detector.pixel_size_unit != 'mm':
            conv = Converter('mm')
            pixel = conv(pixel, units=detector.pixel_size_unit)
        detector.pixel_size.x = pixel
        detector.pixel_size.y = pixel

        # Store beam center in distance units
        detector.beam_center.x = center_x * pixel
        detector.beam_center.y = center_y * pixel


        self.current_dataset.xaxis("\\rm{Q_{x}}", 'A^{-1}')
        self.current_dataset.yaxis("\\rm{Q_{y}}", 'A^{-1}')
        self.current_dataset.zaxis("\\rm{Intensity}", "cm^{-1}")

        self.current_dataset.x_bins = x_vals
        self.current_dataset.y_bins = y_vals

        # Reshape data
        x_vals = np.tile(x_vals, (size_y, 1)).flatten()
        y_vals = np.tile(y_vals, (size_x, 1)).T.flatten()
        if (np.all(self.current_dataset.err_data == None)
                or np.any(self.current_dataset.err_data <= 0)):
            new_err_data = np.sqrt(np.abs(self.current_dataset.data))
        else:
            new_err_data = self.current_dataset.err_data.flatten()

        self.current_dataset.err_data = new_err_data
        self.current_dataset.qx_data = x_vals
        self.current_dataset.qy_data = y_vals
        self.current_dataset.q_data = np.sqrt(x_vals**2 + y_vals**2)
        self.current_dataset.mask = np.ones(len(x_vals), dtype=bool)

        # Store loading process information
        self.current_datainfo.meta_data['loader'] = self.type_name

        self.send_to_output()

        if not loaded_correctly:
            raise DataReaderException(error_message)
Example #7
0
    def read(self, path):
        """ 
        Load data file
        
        :param path: file path
        
        :return: Data1D object, or None
        
        :raise RuntimeError: when the file can't be opened
        :raise ValueError: when the length of the data vectors are inconsistent
        """
        if os.path.isfile(path):
            basename = os.path.basename(path)
            root, extension = os.path.splitext(basename)
            if extension.lower() in self.ext:
                try:
                    input_f = open(path,'r')
                except:
                    raise  RuntimeError, "hfir1d_reader: cannot open %s" % path
                buff = input_f.read()
                lines = buff.split('\n')
                x = numpy.zeros(0)
                y = numpy.zeros(0)
                dx = numpy.zeros(0)
                dy = numpy.zeros(0)
                output = Data1D(x, y, dx=dx, dy=dy)
                self.filename = output.filename = basename
           
                data_conv_q = None
                data_conv_i = None
                
                if has_converter == True and output.x_unit != '1/A':
                    data_conv_q = Converter('1/A')
                    # Test it
                    data_conv_q(1.0, output.x_unit)
                    
                if has_converter == True and output.y_unit != '1/cm':
                    data_conv_i = Converter('1/cm')
                    # Test it
                    data_conv_i(1.0, output.y_unit)
                           
                for line in lines:
                    toks = line.split()
                    try:
                        _x = float(toks[0])
                        _y = float(toks[1])
                        _dx = float(toks[3])
                        _dy = float(toks[2])
                        
                        if data_conv_q is not None:
                            _x = data_conv_q(_x, units=output.x_unit)
                            _dx = data_conv_q(_dx, units=output.x_unit)
                            
                        if data_conv_i is not None:
                            _y = data_conv_i(_y, units=output.y_unit)
                            _dy = data_conv_i(_dy, units=output.y_unit)
                                                    
                        x = numpy.append(x, _x)
                        y = numpy.append(y, _y)
                        dx = numpy.append(dx, _dx)
                        dy = numpy.append(dy, _dy)
                    except:
                        # Couldn't parse this line, skip it 
                        pass
                         
                # Sanity check
                if not len(y) == len(dy):
                    msg = "hfir1d_reader: y and dy have different length"
                    raise RuntimeError, msg
                if not len(x) == len(dx):
                    msg = "hfir1d_reader: x and dx have different length"
                    raise RuntimeError, msg

                # If the data length is zero, consider this as
                # though we were not able to read the file.
                if len(x) == 0:
                    raise RuntimeError, "hfir1d_reader: could not load file"
               
                output.x = x
                output.y = y
                output.dy = dy
                output.dx = dx
                if data_conv_q is not None:
                    output.xaxis("\\rm{Q}", output.x_unit)
                else:
                    output.xaxis("\\rm{Q}", 'A^{-1}')
                if data_conv_i is not None:
                    output.yaxis("\\rm{Intensity}", output.y_unit)
                else:
                    output.yaxis("\\rm{Intensity}", "cm^{-1}")
                
                # Store loading process information
                output.meta_data['loader'] = self.type_name
                return output
        else:
            raise RuntimeError, "%s is not a file" % path
        return None
Example #8
0
    def read(self, filename=None):
        """ Read file """
        if not os.path.isfile(filename):
            raise ValueError, \
            "Specified file %s is not a regular file" % filename
        
        # Read file
        f = open(filename, 'r')
        buf = f.read()
        
        # Instantiate data object
        output = Data2D()
        output.filename = os.path.basename(filename)
        detector = Detector()
        if len(output.detector) > 0:
            print str(output.detector[0])
        output.detector.append(detector)
                
        # Get content
        dataStarted = False
        
        lines = buf.split('\n')
        itot = 0
        x = []
        y = []
        
        ncounts = 0
        
        xmin = None
        xmax = None
        ymin = None
        ymax = None
        
        i_x = 0
        i_y = -1
        i_tot_row = 0
        
        isInfo = False
        isCenter = False
       
        data_conv_q = None
        data_conv_i = None
        
        if has_converter == True and output.Q_unit != '1/A':
            data_conv_q = Converter('1/A')
            # Test it
            data_conv_q(1.0, output.Q_unit)
            
        if has_converter == True and output.I_unit != '1/cm':
            data_conv_i = Converter('1/cm')
            # Test it
            data_conv_i(1.0, output.I_unit)
         
        for line in lines:
            
            # Find setup info line
            if isInfo:
                isInfo = False
                line_toks = line.split()
                # Wavelength in Angstrom
                try:
                    wavelength = float(line_toks[1])
                except:
                    msg = "IgorReader: can't read this file, missing wavelength"
                    raise ValueError, msg
                
            #Find # of bins in a row assuming the detector is square.
            if dataStarted == True:
                try:
                    value = float(line)
                except:
                    # Found a non-float entry, skip it
                    continue
                
                # Get total bin number
                
            i_tot_row += 1
        i_tot_row = math.ceil(math.sqrt(i_tot_row)) - 1
        #print "i_tot", i_tot_row
        size_x = i_tot_row  # 192#128
        size_y = i_tot_row  # 192#128
        output.data = numpy.zeros([size_x, size_y])
        output.err_data = numpy.zeros([size_x, size_y])
     
        #Read Header and 2D data
        for line in lines:
            # Find setup info line
            if isInfo:
                isInfo = False
                line_toks = line.split()
                # Wavelength in Angstrom
                try:
                    wavelength = float(line_toks[1])
                except:
                    msg = "IgorReader: can't read this file, missing wavelength"
                    raise ValueError, msg
                # Distance in meters
                try:
                    distance = float(line_toks[3])
                except:
                    msg = "IgorReader: can't read this file, missing distance"
                    raise ValueError, msg
                
                # Distance in meters
                try:
                    transmission = float(line_toks[4])
                except:
                    msg = "IgorReader: can't read this file, "
                    msg += "missing transmission"
                    raise ValueError, msg
                                            
            if line.count("LAMBDA") > 0:
                isInfo = True
                
            # Find center info line
            if isCenter:
                isCenter = False
                line_toks = line.split()
                
                # Center in bin number: Must substrate 1 because
                #the index starts from 1
                center_x = float(line_toks[0]) - 1
                center_y = float(line_toks[1]) - 1

            if line.count("BCENT") > 0:
                isCenter = True
                
            # Find data start
            if line.count("***")>0:
                dataStarted = True
                
                # Check that we have all the info
                if wavelength == None \
                    or distance == None \
                    or center_x == None \
                    or center_y == None:
                    msg = "IgorReader:Missing information in data file"
                    raise ValueError, msg
                
            if dataStarted == True:
                try:
                    value = float(line)
                except:
                    # Found a non-float entry, skip it
                    continue
                
                # Get bin number
                if math.fmod(itot, i_tot_row) == 0:
                    i_x = 0
                    i_y += 1
                else:
                    i_x += 1
                    
                output.data[i_y][i_x] = value
                ncounts += 1
                
                # Det 640 x 640 mm
                # Q = 4pi/lambda sin(theta/2)
                # Bin size is 0.5 cm 
                #REmoved +1 from theta = (i_x-center_x+1)*0.5 / distance
                # / 100.0 and 
                #REmoved +1 from theta = (i_y-center_y+1)*0.5 /
                # distance / 100.0
                #ToDo: Need  complete check if the following
                # covert process is consistent with fitting.py.
                theta = (i_x - center_x) * 0.5 / distance / 100.0
                qx = 4.0 * math.pi / wavelength * math.sin(theta/2.0)

                if has_converter == True and output.Q_unit != '1/A':
                    qx = data_conv_q(qx, units=output.Q_unit)

                if xmin == None or qx < xmin:
                    xmin = qx
                if xmax == None or qx > xmax:
                    xmax = qx
                
                theta = (i_y - center_y) * 0.5 / distance / 100.0
                qy = 4.0 * math.pi / wavelength * math.sin(theta / 2.0)

                if has_converter == True and output.Q_unit != '1/A':
                    qy = data_conv_q(qy, units=output.Q_unit)
                
                if ymin == None or qy < ymin:
                    ymin = qy
                if ymax == None or qy > ymax:
                    ymax = qy
                
                if not qx in x:
                    x.append(qx)
                if not qy in y:
                    y.append(qy)
                
                itot += 1
                  
                  
        theta = 0.25 / distance / 100.0
        xstep = 4.0 * math.pi / wavelength * math.sin(theta / 2.0)
        
        theta = 0.25 / distance / 100.0
        ystep = 4.0 * math.pi/ wavelength * math.sin(theta / 2.0)
        
        # Store all data ######################################
        # Store wavelength
        if has_converter == True and output.source.wavelength_unit != 'A':
            conv = Converter('A')
            wavelength = conv(wavelength, units=output.source.wavelength_unit)
        output.source.wavelength = wavelength

        # Store distance
        if has_converter == True and detector.distance_unit != 'm':
            conv = Converter('m')
            distance = conv(distance, units=detector.distance_unit)
        detector.distance = distance
  
        # Store transmission
        output.sample.transmission = transmission
        
        # Store pixel size
        pixel = 5.0
        if has_converter == True and detector.pixel_size_unit != 'mm':
            conv = Converter('mm')
            pixel = conv(pixel, units=detector.pixel_size_unit)
        detector.pixel_size.x = pixel
        detector.pixel_size.y = pixel
  
        # Store beam center in distance units
        detector.beam_center.x = center_x * pixel
        detector.beam_center.y = center_y * pixel
        
        # Store limits of the image (2D array)
        xmin = xmin - xstep / 2.0
        xmax = xmax + xstep / 2.0
        ymin = ymin - ystep / 2.0
        ymax = ymax + ystep / 2.0
        if has_converter == True and output.Q_unit != '1/A':
            xmin = data_conv_q(xmin, units=output.Q_unit)
            xmax = data_conv_q(xmax, units=output.Q_unit)
            ymin = data_conv_q(ymin, units=output.Q_unit)
            ymax = data_conv_q(ymax, units=output.Q_unit)
        output.xmin = xmin
        output.xmax = xmax
        output.ymin = ymin
        output.ymax = ymax
        
        # Store x and y axis bin centers
        output.x_bins = x
        output.y_bins = y
        
        # Units
        if data_conv_q is not None:
            output.xaxis("\\rm{Q_{x}}", output.Q_unit)
            output.yaxis("\\rm{Q_{y}}", output.Q_unit)
        else:
            output.xaxis("\\rm{Q_{x}}", 'A^{-1}')
            output.yaxis("\\rm{Q_{y}}", 'A^{-1}')
            
        if data_conv_i is not None:
            output.zaxis("\\rm{Intensity}", output.I_unit)
        else:
            output.zaxis("\\rm{Intensity}", "cm^{-1}")
    
        # Store loading process information
        output.meta_data['loader'] = self.type_name
        output = reader2D_converter(output)

        return output