def test_score_sklearn(self): from sasctl.services import microanalytic_score as mas m = mas.get_module(SCIKIT_MODEL_NAME.replace(' ', '')) m = mas.define_steps(m) r = m.predict(sepalwidth=1, sepallength=2, petallength=3, petalwidth=4) assert r == 'virginica'
def test_score_mas(self, iris_dataset, request): from sasctl.services import microanalytic_score as mas module_name = request.config.cache.get('MAS_MODULE_NAME', None) assert module_name is not None # Retrieve the module from MAS module = mas.get_module(module_name) assert module.name == module_name # Create Python methods for the model steps module = mas.define_steps(module) # Call .predict() x = iris_dataset.iloc[0, :] assert hasattr(module, 'predict') result = module.predict(x) assert isinstance(result, six.string_types) assert result in ('setosa', 'virginica', 'versicolor') # Call .predict_proba() assert hasattr(module, 'predict_proba') probs = module.predict_proba(x) assert len(probs) == 3 assert all(isinstance(p, float) for p in probs) assert round(sum(probs), 5) == 1.0
def test_score_sklearn(self): from sasctl.services import microanalytic_score as mas m = mas.get_module(SCIKIT_MODEL_NAME.replace(' ', '')) m = mas.define_steps(m) r = m.score(sepalwidth=1, sepallength=2, petallength=3, petalwidth=4) assert isinstance(r, tuple) pytest.xfail('PyMAS integration not yet working.') assert r['rc'] is None
def test_score_mas(self, boston_dataset, request): from sasctl.services import microanalytic_score as mas module_name = request.config.cache.get('MAS_MODULE_NAME', None) assert module_name is not None # Retrieve the module from MAS module = mas.get_module(module_name) assert module.name == module_name # Create Python methods for the model steps module = mas.define_steps(module) assert hasattr(module, 'score') result = module.score(boston_dataset.iloc[0, :]) assert round(result, 4) == 30.0038
def run_inference_for_base64(base64img): host = os.getenv('OPENMM_HOST', '') user = os.getenv('OPENMM_USER', '') password = os.getenv('OPENMM_PASSWORD', '') model = os.getenv('OPENMM_MODEL', '') try: img = np.array( Image.open(BytesIO(base64.decodebytes(base64img.encode())))) with Session(host, user, password, verify_ssl=False, protocol='http'): mod = mas.get_module(model) response = mas.execute_module_step(mod, 'score', image_names='test_image', image_strings=base64img) return transform_openmm_detections(response, img=img) except: e = sys.exc_info()[0] print(e)
def test_score_mas(self, boston_dataset, request): from sasctl.services import microanalytic_score as mas module_name = request.config.cache.get('MAS_MODULE_NAME', None) assert module_name is not None # Retrieve the module from MAS module = mas.get_module(module_name) assert module.name == module_name # Create Python methods for the model steps module = mas.define_steps(module) assert hasattr(module, 'predict') result = module.predict(boston_dataset.iloc[0, :]) # Don't think order of rows is guaranteed. assert isinstance(result, float) assert result > 1
project = 'iris_os' user = '******' password = '******' #astore_table = 'gb_astore' #astore_caslib = 'public' ################################### ####### Getting astore table ###### s = Session(host, user, password, verify_ssl=False) module = mas.get_module(modelname) module = mas.define_steps(module) steps = mas.list_module_steps(module) steps[0]['id'] steps[0]['links'] print(help(module.predict)) res = module.predict(5.0, 2.0, 3.5, 1.0) res2 = module.predict_proba(5.0, 2.0, 3.5, 1.0) print(res, res2) """
def test_delete_module(self): assert mas.get_module(self.MODULE_NAME) is not None mas.delete_module(self.MODULE_NAME) assert mas.get_module(self.MODULE_NAME) is None
def test_get_module(self): module = mas.get_module(self.MODULE_NAME) assert module.id == self.MODULE_NAME