flattened.extend(s)
    flattened = DataFrame({
        "text": flattened,
        "group": list(fr.group) * len(columns)
    })

    if local:
        l = [
            leave_one_out(fr.spatial, fr.group, "spatial_loo_svm"),
            leave_one_out(fr.social, fr.group, "social_loo_svm"),
            leave_one_out(fr.hypothetical, fr.group, "hypothetical_loo_svm"),
            leave_one_out(fr.control, fr.group, "control_loo_svm"),
            leave_one_out(fr.temporal, fr.group, "temporal_loo_svm"),
            leave_one_out(flattened.text, flattened.group, "all_loo_svm")
        ]
        print(l)
        df = DataFrame(l)
        df.to_csv("classifier_performance.csv")
    else:
        import sbatch

        sbatch.load("leave_one_out",
                    [fr.temporal, fr.group, "temporal_loo_svm"])
        sbatch.load("leave_one_out", [fr.spatial, fr.group, "spatial_loo_svm"])
        sbatch.load("leave_one_out", [fr.social, fr.group, "social_loo_svm"])
        sbatch.load("leave_one_out",
                    [fr.hypothetical, fr.group, "hypothetical_loo_svm"])
        sbatch.load("leave_one_out", [fr.control, fr.group, "control_loo_svm"])
        sbatch.load("leave_one_out",
                    [flattened.text, flattened.group, "all_loo_svm"])
        sbatch.launch()
        fr.control,
        fr.temporal
    ]

    names = [
        "spatial",
        "social",
        "hypothetical",
        "control",
        "temporal"
    ]

    get_shared_features(dims, names, fr.group).to_csv("features_for_each_domain.csv")
    get_shared_features(dims, names, fr.group, across=True).to_csv("shared_features.csv")

    if local:
        outs = []
        for i1 in range(len(dims)):
            for i2 in range(len(dims)):
                outs.append(cross_decode(dims[i1], fr.group, dims[i2], fr.group, names[i1] + "_to_" + names[i2]))
        df = DataFrame(outs)
        df.to_csv("cross_encoding_performance.csv")
    else:
        import sbatch
        for i1 in range(len(dims)):
            for i2 in range(len(dims)):
                sbatch.load("cross_decode", [dims[i1], fr.group, dims[i2], fr.group, names[i1] + "_to_" + names[i2]])
        sbatch.launch()
        print("jobs submitted to the cluster. Run the collation scripts when they're done!")