Example #1
0
def simulate_toy(sbml_path, out_dir, dts=[0.1, 1.0, 5.0], figures=True, tend=50, ode_integrator="cvode"):
    """ Simulate the diauxic growth model.

    :return: solution data frame
    """
    plot_kwargs = {
        'markersize': 4,
        'marker': 's',
        'alpha': 0.5
    }
    dfs = []
    for dt in dts:
        df, dfba_model, dfba_simulator = simulate_dfba(sbml_path, tend=tend, dt=dt, ode_integrator=ode_integrator)
        dfs.append(df)

        analyse_uniqueness(dfba_simulator)

        # generic analysis
        analysis = DFBAAnalysis(df=df, ode_model=dfba_simulator.ode_model)

        if figures:
            analysis.plot_reactions(os.path.join(out_dir, "fig_reactions_generic_dt{}.png".format(dt)),
                                    **plot_kwargs)
            analysis.plot_species(os.path.join(out_dir, "fig_species_generic_dt{}.png".format(dt)),
                                  **plot_kwargs)
            analysis.save_csv(os.path.join(out_dir, "data_simulation_generic_dt{}.csv".format(dt)))

    # custom model plots
    if figures:
        print_species(dfs=dfs, filepath=os.path.join(out_dir, "fig_species.png"), **plot_kwargs)
        print_fluxes(dfs=dfs, filepath=os.path.join(out_dir, "fig_fluxes.png"), **plot_kwargs)
    return dfs
Example #2
0
def simulate_diauxic_growth(sbml_path, out_dir, dts=[0.01, 0.1], figures=True):
    """ Simulate the diauxic growth model.

    :return: solution data frame
    """
    tend = 15
    dfs = []
    for dt in dts:
        df, dfba_model, dfba_simulator = simulate_dfba(sbml_path, tend=tend, dt=dt, pfba=False)
        dfs.append(df)

        # uniqueness of solution
        analyse_uniqueness(dfba_simulator)

        # generic analysis
        # analysis = DFBAAnalysis(df=df, rr_comp=dfba_simulator.ode_model)
        # analysis.plot_reactions(os.path.join(out_dir, "fig_reactions_generic_dt{}.png".format(dt)),
        #                         **plot_kwargs)
        # analysis.plot_species(os.path.join(out_dir, "fig_species_generic_dt{}.png".format(dt)),
        #                       **plot_kwargs)
        # analysis.save_csv(os.path.join(out_dir, "data_simulation_generic_dt{}.csv".format(dt)))

    if figures:
        # custom model plots
        plot_kwargs = {
            'markersize': 4,
            'marker': 'None',
            'alpha': 0.5
        }
        analyse.print_species(filepath=os.path.join(out_dir, "fig_species.png"), dfs=dfs, **plot_kwargs)
        analyse.print_fluxes(filepath=os.path.join(out_dir, "fig_fluxes.png"), dfs=dfs, **plot_kwargs)
    return dfs
Example #3
0
def simulate_toy(sbml_path,
                 out_dir,
                 dts=[0.1, 1.0, 5.0],
                 figures=True,
                 tend=50,
                 ode_integrator="cvode"):
    """ Simulate the diauxic growth model.

    :return: solution data frame
    """
    plot_kwargs = {'markersize': 4, 'marker': 's', 'alpha': 0.5}
    dfs = []
    for dt in dts:
        df, dfba_model, dfba_simulator = simulate_dfba(
            sbml_path, tend=tend, dt=dt, ode_integrator=ode_integrator)
        dfs.append(df)

        analyse_uniqueness(dfba_simulator)

        # generic analysis
        analysis = DFBAAnalysis(df=df, ode_model=dfba_simulator.ode_model)

        if figures:
            analysis.plot_reactions(
                os.path.join(out_dir,
                             "fig_reactions_generic_dt{}.png".format(dt)),
                **plot_kwargs)
            analysis.plot_species(
                os.path.join(out_dir,
                             "fig_species_generic_dt{}.png".format(dt)),
                **plot_kwargs)
            analysis.save_csv(
                os.path.join(out_dir,
                             "data_simulation_generic_dt{}.csv".format(dt)))

    # custom model plots
    if figures:
        print_species(dfs=dfs,
                      filepath=os.path.join(out_dir, "fig_species.png"),
                      **plot_kwargs)
        print_fluxes(dfs=dfs,
                     filepath=os.path.join(out_dir, "fig_fluxes.png"),
                     **plot_kwargs)
    return dfs
Example #4
0
# In[3]:

# get the absolute path to the top model
from sbmlutils.dfba.toy_wholecell import settings as toysettings
from sbmlutils.dfba.toy_wholecell import model_factory as toyfactory
from sbmlutils.dfba.toy_wholecell import simulate as toysimulate

sbml_path = os.path.join(
    utils.versioned_directory(toysettings.OUT_DIR, toysettings.VERSION),
    toysettings.TOP_LOCATION)
print(sbml_path)

# run simulation with the top model
from sbmlutils.dfba.simulator import simulate_dfba
df, dfba_model, dfba_simulator = simulate_dfba(sbml_path, tend=50, dt=5.0)
df

# ## Toy example

# In[4]:

from sbmlutils.dfba.toy_wholecell import settings as toysettings
from sbmlutils.dfba.toy_wholecell import model_factory as toyfactory
from sbmlutils.dfba.toy_wholecell import simulate as toysimulate

import tempfile
test_dir = tempfile.mkdtemp()

# create the toy model
toyfactory.create_model(test_dir)
Example #5
0
# In[3]:


# get the absolute path to the top model
from sbmlutils.dfba.toy_wholecell import settings as toysettings
from sbmlutils.dfba.toy_wholecell import model_factory as toyfactory
from sbmlutils.dfba.toy_wholecell import simulate as toysimulate

sbml_path = os.path.join(utils.versioned_directory(toysettings.OUT_DIR, toysettings.VERSION), 
                         toysettings.TOP_LOCATION)
print(sbml_path)

# run simulation with the top model
from sbmlutils.dfba.simulator import simulate_dfba
df, dfba_model, dfba_simulator = simulate_dfba(sbml_path, tend=50, dt=5.0)
df


# ## Toy example

# In[4]:


from sbmlutils.dfba.toy_wholecell import settings as toysettings
from sbmlutils.dfba.toy_wholecell import model_factory as toyfactory
from sbmlutils.dfba.toy_wholecell import simulate as toysimulate

import tempfile
test_dir = tempfile.mkdtemp()