Example #1
0
         'use_attention': use_attention
     })
 if use_attention:
     if use_hypernet:
         gnn_conf = MultiStepInputNetworkConfig(
             hist_rnn_conf={
                 'input_size': node_input_dim,
                 'hidden_size': rnn_hidden_size
             },
             hist_enc_conf={
                 'num_layers': enc_gnn_num_layer,
                 'model_dim': node_input_dim,
                 'use_hypernet': use_hypernet,
                 'hypernet_input_dim': num_relations,
                 'num_relations': None,
                 'num_neurons': num_neurons,
                 'num_head': num_attn_head
             },
             curr_enc_conf={
                 'num_layers': enc_gnn_num_layer,
                 'model_dim': node_input_dim,
                 'use_hypernet': use_hypernet,
                 'hypernet_input_dim': num_relations,
                 'num_relations': None,
                 'num_neurons': num_neurons,
                 'num_head': num_attn_head
             })
     else:
         gnn_conf = MultiStepInputNetworkConfig(
             hist_rnn_conf={
                 'input_size': node_input_dim,
Example #2
0
    reward_name = 'victory_if_zero_enemy'

    qnet_conf = HierarchicalMultiStepInputQnetConfig(
        multi_step_input_qnet_conf={'exploration_method': 'clustered_random'},
        qnet_actor_conf={
            'spectral_norm': spectral_norm,
            'node_input_dim': node_input_dim,
            'pooling_op': pooling_op,
            'use_concat_input': use_concat_input,
            'init_node_dim': node_input_dim,
            'pooling_init': pooling_init,
            'num_neurons': num_neurons
        },
        mixer_conf={'rectifier': mixer_rectifier})
    if use_attention:
        gnn_conf = MultiStepInputNetworkConfig()
    else:
        gnn_conf = MultiStepInputGraphNetworkConfig(
            hist_rnn_conf={'input_size': node_input_dim},
            hist_enc_conf={
                'spectral_norm': spectral_norm,
                'model_dim': node_input_dim,
                'use_concat': use_concat_input_gnn,
                'num_neurons': num_neurons
            },
            curr_enc_conf={
                'spectral_norm': spectral_norm,
                'model_dim': node_input_dim,
                'use_concat': use_concat_input_gnn,
                'num_neurons': num_neurons
            })