layer_5_de=SigmoidConvLayer(filter_size=(1,1), num_filters=64, num_channels=64, fm_size=(1,1), batch_size=batch_size, border_mode="same") # learning rate formula: # r = 1 - 0.5*(ni/ntot)*(ni/ntot) # ni = ith layer; ntot = number of layers # layer_0 model_0=ConvAutoEncoder(layers=[layer_0_en, MaxPoolingSameSize(pool_size=(4,4)), layer_0_de]) out_0=model_0.fprop(images, corruption_level=corruption_level) cost_0=mean_square_cost(out_0[-1], images)+L2_regularization(model_0.params, 0.005) updates_0=gd_updates(cost=cost_0, params=model_0.params, method="sgd", learning_rate=0.1) # layer_0 --> layer_1 model_0_to_1=FeedForward(layers=[layer_0_en, MaxPooling(pool_size=(2,2))]); out_0_to_1=model_0_to_1.fprop(images); # layer_1 model_1=ConvAutoEncoder(layers=[layer_1_en, MaxPoolingSameSize(pool_size=(2,2)), layer_1_de]) out_1=model_1.fprop(out_0_to_1[-1], corruption_level=corruption_level) cost_1=mean_square_cost(out_1[-1], out_0_to_1[-1])+L2_regularization(model_1.params, 0.005) updates_1=gd_updates(cost=cost_1, params=model_1.params, method="sgd", learning_rate=0.1) # layer_1 --> layer_2 model_1_to_2=FeedForward(layers=[layer_1_en, MaxPooling(pool_size=(4,4))]); out_1_to_2=model_1_to_2.fprop(images);
batch_size=batch_size, border_mode="same") layer_4_de = SigmoidConvLayer(filter_size=(1, 1), num_filters=128, num_channels=128, fm_size=(1, 1), batch_size=batch_size, border_mode="same") # layer_0 model_0 = ConvAutoEncoder( layers=[layer_0_en, MaxPoolingSameSize(pool_size=(4, 4)), layer_0_de]) out_0 = model_0.fprop(images, corruption_level=corruption_level) cost_0 = mean_square_cost(out_0[-1], images) + L2_regularization( model_0.params, 0.005) updates_0 = gd_updates(cost=cost_0, params=model_0.params, method="sgd", learning_rate=0.1) # layer_0 --> layer_1 model_0_to_1 = FeedForward( layers=[layer_0_en, MaxPooling(pool_size=(4, 4))]) out_0_to_1 = model_0_to_1.fprop(images) # layer_1 model_1 = ConvAutoEncoder( layers=[layer_1_en, MaxPoolingSameSize(pool_size=(2, 2)), layer_1_de])
layer_3_en=ReLUConvLayer(filter_size=(3,3), num_filters=50, num_channels=50, fm_size=(18,18), batch_size=batch_size) layer_3_de=SigmoidConvLayer(filter_size=(3,3), num_filters=50, num_channels=50, fm_size=(16,16), batch_size=batch_size, border_mode="full") model_0=ConvAutoEncoder(layers=[layer_0_en, layer_0_de]) out_0=model_0.fprop(images, corruption_level=corruption_level) cost_0=mean_square_cost(out_0[-1], images)+L2_regularization(model_0.params, 0.005) updates_0=gd_updates(cost=cost_0, params=model_0.params, method="sgd", learning_rate=0.1) model_1=ConvAutoEncoder(layers=[layer_1_en, layer_1_de]) out_1=model_1.fprop(out_0[0], corruption_level=corruption_level) cost_1=mean_square_cost(out_1[-1], out_0[0])+L2_regularization(model_1.params, 0.005) updates_1=gd_updates(cost=cost_1, params=model_1.params, method="sgd", learning_rate=0.1) model_2=ConvAutoEncoder(layers=[layer_2_en, layer_2_de]) out_2=model_2.fprop(out_1[0], corruption_level=corruption_level) cost_2=mean_square_cost(out_2[-1], out_1[0])+L2_regularization(model_2.params, 0.005) updates_2=gd_updates(cost=cost_2, params=model_2.params, method="sgd", learning_rate=0.1) model_3=ConvAutoEncoder(layers=[layer_3_en, layer_3_de]) out_3=model_3.fprop(out_2[0], corruption_level=corruption_level) cost_3=mean_square_cost(out_3[-1], out_2[0])+L2_regularization(model_3.params, 0.005)
# layer_3_en=ReLUConvLayer(filter_size=(3,3), # num_filters=50, # num_channels=50, # fm_size=(18,18), # batch_size=batch_size) # layer_3_de=SigmoidConvLayer(filter_size=(3,3), # num_filters=50, # num_channels=50, # fm_size=(16,16), # batch_size=batch_size, # border_mode="full") model_0=ConvAutoEncoder(layers=[layer_0_en, layer_0_de]) out_0=model_0.fprop(images, corruption_level=corruption_level) cost_0=mean_square_cost(out_0[-1], images)+L2_regularization(model_0.params, 0.005) updates_0=gd_updates(cost=cost_0, params=model_0.params, method="sgd", learning_rate=0.1) ## append a max-pooling layer model_trans=FeedForward(layers=[layer_0_en, MaxPooling(pool_size=(2,2))]); out_trans=model_trans.fprop(images); model_1=ConvAutoEncoder(layers=[layer_1_en, layer_1_de]) out_1=model_1.fprop(out_trans[-1], corruption_level=corruption_level) cost_1=mean_square_cost(out_1[-1], out_trans[-1])+L2_regularization(model_1.params, 0.005) updates_1=gd_updates(cost=cost_1, params=model_1.params, method="sgd", learning_rate=0.1) # model_2=ConvAutoEncoder(layers=[layer_2_en, layer_2_de]) # out_2=model_2.fprop(out_1[0], corruption_level=corruption_level)
# layer_3_en=ReLUConvLayer(filter_size=(3,3), # num_filters=50, # num_channels=50, # fm_size=(18,18), # batch_size=batch_size) # layer_3_de=SigmoidConvLayer(filter_size=(3,3), # num_filters=50, # num_channels=50, # fm_size=(16,16), # batch_size=batch_size, # border_mode="full") model_0 = ConvAutoEncoder(layers=[layer_0_en, layer_0_de]) out_0 = model_0.fprop(images, corruption_level=corruption_level) cost_0 = mean_square_cost(out_0[-1], images) + L2_regularization( model_0.params, 0.005) updates_0 = gd_updates(cost=cost_0, params=model_0.params, method="sgd", learning_rate=0.1) ## append a max-pooling layer model_trans = FeedForward( layers=[layer_0_en, MaxPooling(pool_size=(2, 2))]) out_trans = model_trans.fprop(images) model_1 = ConvAutoEncoder(layers=[layer_1_en, layer_1_de]) out_1 = model_1.fprop(out_trans[-1], corruption_level=corruption_level) cost_1 = mean_square_cost(out_1[-1], out_trans[-1]) + L2_regularization(
num_channels=50, fm_size=(8,8), batch_size=batch_size, border_mode="same") layer_1_de=SigmoidConvLayer(filter_size=(2,2), num_filters=50, num_channels=50, fm_size=(8,8), batch_size=batch_size, border_mode="same") model_0=ConvAutoEncoder(layers=[layer_0_en, MaxPoolingSameSize(pool_size=(4,4)), layer_0_de]) out_0=model_0.fprop(images, corruption_level=corruption_level) cost_0=mean_square_cost(out_0[-1], images)+L2_regularization(model_0.params, 0.005) updates_0=gd_updates(cost=cost_0, params=model_0.params, method="sgd", learning_rate=0.1) ## append a max-pooling layer model_trans=FeedForward(layers=[layer_0_en, MaxPooling(pool_size=(4,4))]); out_trans=model_trans.fprop(images); model_1=ConvAutoEncoder(layers=[layer_1_en, MaxPoolingSameSize(pool_size=(2,2)), layer_1_de]) out_1=model_1.fprop(out_trans[-1], corruption_level=corruption_level) cost_1=mean_square_cost(out_1[-1], out_trans[-1])+L2_regularization(model_1.params, 0.005) updates_1=gd_updates(cost=cost_1, params=model_1.params, method="sgd", learning_rate=0.1) train_0=theano.function(inputs=[idx, corruption_level],
layer_3_en = ReLUConvLayer(filter_size=(3, 3), num_filters=50, num_channels=50, fm_size=(18, 18), batch_size=batch_size) layer_3_de = SigmoidConvLayer(filter_size=(3, 3), num_filters=50, num_channels=50, fm_size=(16, 16), batch_size=batch_size, border_mode="full") model_0 = ConvAutoEncoder(layers=[layer_0_en, layer_0_de]) out_0 = model_0.fprop(images, corruption_level=corruption_level) cost_0 = mean_square_cost(out_0[-1], images) + L2_regularization( model_0.params, 0.005) updates_0 = gd_updates(cost=cost_0, params=model_0.params, method="sgd", learning_rate=0.1) model_1 = ConvAutoEncoder(layers=[layer_1_en, layer_1_de]) out_1 = model_1.fprop(out_0[0], corruption_level=corruption_level) cost_1 = mean_square_cost(out_1[-1], out_0[0]) + L2_regularization( model_1.params, 0.005) updates_1 = gd_updates(cost=cost_1, params=model_1.params, method="sgd", learning_rate=0.1)