Example #1
0
def get_curve_circle_points(x1, xd1, x2, xd2, r1, rd1, r2, rd2, xi, dmag, side, elementsCountAround):
    '''
    :param dmag: Magnitude of derivative on curve.
    :param side: Vector in side direction of first node around.
    Need not be unit or exactly normal to curve at xi.
    :return: x[], d1[] around, d2[] along
    '''
    cx = interpolateCubicHermite(x1, xd1, x2, xd2, xi)
    cxd = interpolateCubicHermiteDerivative(x1, xd1, x2, xd2, xi)
    mag_cxd = magnitude(cxd)
    cxd2 = interpolateCubicHermiteSecondDerivative(x1, xd1, x2, xd2, xi)
    mag_cxd2 = magnitude(cxd2)
    r = interpolateCubicHermite([ r1 ], [ rd1 ], [ r2 ], [ rd2 ], xi)[0]
    rd = interpolateCubicHermiteDerivative([ r1 ], [ rd1 ], [ r2 ], [ rd2 ], xi)[0]
    axis1 = normalize(cxd)
    axis3 = normalize(cross(axis1, side))
    axis2 = cross(axis3, axis1)
    x, d1 = createCirclePoints(cx, mult(axis2, r), mult(axis3, r), elementsCountAround)
    curvatureVector = mult(cxd2, 1.0/(mag_cxd*mag_cxd))
    d2 = []
    radialGrowth = rd/(mag_cxd*r)
    for e in range(elementsCountAround):
        radialVector = sub(x[e], cx)
        dmagFinal = dmag*(1.0 - dot(radialVector, curvatureVector))
        # add curvature and radius change components:
        d2.append(add(mult(cxd, dmagFinal/mag_cxd), mult(radialVector, dmagFinal*radialGrowth)))
    return x, d1, d2
    def generateBaseMesh(cls,
                         region,
                         options,
                         baseCentre=[0.0, 0.0, 0.0],
                         axisSide1=[0.0, -1.0, 0.0],
                         axisUp=[0.0, 0.0, 1.0]):
        """
        Generate the base bicubic-linear Hermite mesh. See also generateMesh().
        Optional extra parameters allow centre and axes to be set.
        :param region: Zinc region to define model in. Must be empty.
        :param options: Dict containing options. See getDefaultOptions().
        :param baseCentre: Centre of valve on ventriculo-arterial junction.
        :param axisSide: Unit vector in first side direction where angle around starts.
        :param axisUp: Unit vector in outflow direction of valve.
        :return: list of AnnotationGroup
         """
        unitScale = options['Unit scale']
        outerHeight = unitScale * options['Outer height']
        innerDepth = unitScale * options['Inner depth']
        cuspHeight = unitScale * options['Cusp height']
        innerRadius = unitScale * 0.5 * options['Inner diameter']
        sinusRadialDisplacement = unitScale * options[
            'Sinus radial displacement']
        wallThickness = unitScale * options['Wall thickness']
        cuspThickness = unitScale * options['Cusp thickness']
        aorticNotPulmonary = options['Aortic not pulmonary']
        useCrossDerivatives = False

        fm = region.getFieldmodule()
        fm.beginChange()
        coordinates = zinc_utils.getOrCreateCoordinateField(fm)
        cache = fm.createFieldcache()

        if aorticNotPulmonary:
            arterialRootGroup = AnnotationGroup(region,
                                                'root of aorta',
                                                FMANumber=3740,
                                                lyphID='Lyph ID unknown')
            cuspGroups = [
                AnnotationGroup(region,
                                'posterior cusp of aortic valve',
                                FMANumber=7253,
                                lyphID='Lyph ID unknown'),
                AnnotationGroup(region,
                                'right cusp of aortic valve',
                                FMANumber=7252,
                                lyphID='Lyph ID unknown'),
                AnnotationGroup(region,
                                'left cusp of aortic valve',
                                FMANumber=7251,
                                lyphID='Lyph ID unknown')
            ]
        else:
            arterialRootGroup = AnnotationGroup(region,
                                                'root of pulmonary trunk',
                                                FMANumber=8612,
                                                lyphID='Lyph ID unknown')
            cuspGroups = [
                AnnotationGroup(region,
                                'right cusp of pulmonary valve',
                                FMANumber=7250,
                                lyphID='Lyph ID unknown'),
                AnnotationGroup(region,
                                'anterior cusp of pulmonary valve',
                                FMANumber=7249,
                                lyphID='Lyph ID unknown'),
                AnnotationGroup(region,
                                'left cusp of pulmonary valve',
                                FMANumber=7247,
                                lyphID='Lyph ID unknown')
            ]

        allGroups = [arterialRootGroup
                     ]  # groups that all elements in scaffold will go in
        annotationGroups = allGroups + cuspGroups

        # annotation fiducial points
        fiducialGroup = zinc_utils.getOrCreateGroupField(fm, 'fiducial')
        fiducialCoordinates = zinc_utils.getOrCreateCoordinateField(
            fm, 'fiducial_coordinates')
        fiducialLabel = zinc_utils.getOrCreateLabelField(fm, 'fiducial_label')
        #fiducialElementXi = zinc_utils.getOrCreateElementXiField(fm, 'fiducial_element_xi')

        datapoints = fm.findNodesetByFieldDomainType(
            Field.DOMAIN_TYPE_DATAPOINTS)
        fiducialPoints = zinc_utils.getOrCreateNodesetGroup(
            fiducialGroup, datapoints)
        datapointTemplateExternal = datapoints.createNodetemplate()
        datapointTemplateExternal.defineField(fiducialCoordinates)
        datapointTemplateExternal.defineField(fiducialLabel)

        #################
        # Create nodes
        #################

        nodes = fm.findNodesetByFieldDomainType(Field.DOMAIN_TYPE_NODES)

        nodetemplate = nodes.createNodetemplate()
        nodetemplate.defineField(coordinates)
        nodetemplate.setValueNumberOfVersions(coordinates, -1,
                                              Node.VALUE_LABEL_VALUE, 1)
        nodetemplate.setValueNumberOfVersions(coordinates, -1,
                                              Node.VALUE_LABEL_D_DS1, 1)
        nodetemplate.setValueNumberOfVersions(coordinates, -1,
                                              Node.VALUE_LABEL_D_DS2, 1)
        nodetemplate.setValueNumberOfVersions(coordinates, -1,
                                              Node.VALUE_LABEL_D_DS3, 1)
        # most nodes in this scaffold do not have a DS3 derivative
        nodetemplateLinearS3 = nodes.createNodetemplate()
        nodetemplateLinearS3.defineField(coordinates)
        nodetemplateLinearS3.setValueNumberOfVersions(coordinates, -1,
                                                      Node.VALUE_LABEL_VALUE,
                                                      1)
        nodetemplateLinearS3.setValueNumberOfVersions(coordinates, -1,
                                                      Node.VALUE_LABEL_D_DS1,
                                                      1)
        nodetemplateLinearS3.setValueNumberOfVersions(coordinates, -1,
                                                      Node.VALUE_LABEL_D_DS2,
                                                      1)
        # several only have a DS1 derivative
        nodetemplateLinearS2S3 = nodes.createNodetemplate()
        nodetemplateLinearS2S3.defineField(coordinates)
        nodetemplateLinearS2S3.setValueNumberOfVersions(
            coordinates, -1, Node.VALUE_LABEL_VALUE, 1)
        nodetemplateLinearS2S3.setValueNumberOfVersions(
            coordinates, -1, Node.VALUE_LABEL_D_DS1, 1)

        nodeIdentifier = max(1, zinc_utils.getMaximumNodeIdentifier(nodes) + 1)

        elementsCountAround = 6
        radiansPerElementAround = 2.0 * math.pi / elementsCountAround
        axisSide2 = vector.crossproduct3(axisUp, axisSide1)
        outerRadius = innerRadius + wallThickness
        cuspOuterLength2 = 0.5 * getApproximateEllipsePerimeter(
            innerRadius, cuspHeight)
        cuspOuterWallArcLength = cuspOuterLength2 * innerRadius / (
            innerRadius + cuspHeight)
        noduleOuterAxialArcLength = cuspOuterLength2 - cuspOuterWallArcLength
        noduleOuterRadialArcLength = innerRadius
        cuspOuterWalld1 = interp.interpolateLagrangeHermiteDerivative(
            [innerRadius, outerHeight + innerDepth - cuspHeight], [0.0, 0.0],
            [-innerRadius, 0.0], 0.0)

        sin60 = math.sin(math.pi / 3.0)
        cuspThicknessLowerFactor = 4.5  # GRC fudge factor
        cuspInnerLength2 = 0.5 * getApproximateEllipsePerimeter(
            innerRadius - cuspThickness / sin60,
            cuspHeight - cuspThicknessLowerFactor * cuspThickness)

        noduleInnerAxialArcLength = cuspInnerLength2 * (
            cuspHeight - cuspThicknessLowerFactor * cuspThickness) / (
                innerRadius - cuspThickness / sin60 + cuspHeight -
                cuspThicknessLowerFactor * cuspThickness)
        noduleInnerRadialArcLength = innerRadius - cuspThickness / math.tan(
            math.pi / 3.0)
        nMidCusp = 0 if aorticNotPulmonary else 1

        # lower points
        ix, id1 = createCirclePoints(
            [(baseCentre[c] - axisUp[c] * innerDepth) for c in range(3)],
            [axisSide1[c] * innerRadius for c in range(3)],
            [axisSide2[c] * innerRadius
             for c in range(3)], elementsCountAround)
        ox, od1 = getSemilunarValveSinusPoints(baseCentre,
                                               axisSide1,
                                               axisSide2,
                                               outerRadius,
                                               sinusRadialDisplacement,
                                               startMidCusp=aorticNotPulmonary)
        lowerx, lowerd1 = [ix, ox], [id1, od1]

        # upper points
        topCentre = [(baseCentre[c] + axisUp[c] * outerHeight)
                     for c in range(3)]
        # twice as many on inner:
        ix, id1 = createCirclePoints(
            topCentre, [axisSide1[c] * innerRadius for c in range(3)],
            [axisSide2[c] * innerRadius
             for c in range(3)], elementsCountAround * 2)
        # tweak inner points so elements attached to cusps are narrower
        cuspRadiansFactor = 0.25  # GRC fudge factor
        midDerivativeFactor = 1.0 + 0.5 * (1.0 - cuspRadiansFactor
                                           )  # GRC test compromise
        cuspAttachmentRadians = cuspRadiansFactor * radiansPerElementAround
        cuspAttachmentRadialDisplacement = wallThickness * 0.333  # GRC fudge factor
        cuspAttachmentRadius = innerRadius - cuspAttachmentRadialDisplacement
        for cusp in range(3):
            n1 = cusp * 2 - 1 + nMidCusp
            n2 = n1 * 2
            id1[n2 + 2] = [2.0 * d for d in id1[n2 + 2]]
            # side 1
            radiansAround = n1 * radiansPerElementAround + cuspAttachmentRadians
            rcosRadiansAround = cuspAttachmentRadius * math.cos(radiansAround)
            rsinRadiansAround = cuspAttachmentRadius * math.sin(radiansAround)
            ix[n2 + 1] = [(topCentre[c] + rcosRadiansAround * axisSide1[c] +
                           rsinRadiansAround * axisSide2[c]) for c in range(3)]
            id1[n2 + 1] = interp.interpolateLagrangeHermiteDerivative(
                ix[n2 + 1], ix[n2 + 2], id1[n2 + 2], 0.0)
            # side 2
            n1 = ((cusp + 1) * 2 - 1 + nMidCusp) % elementsCountAround
            n2 = n1 * 2
            radiansAround = n1 * radiansPerElementAround - cuspAttachmentRadians
            rcosRadiansAround = cuspAttachmentRadius * math.cos(radiansAround)
            rsinRadiansAround = cuspAttachmentRadius * math.sin(radiansAround)
            ix[n2 - 1] = [(topCentre[c] + rcosRadiansAround * axisSide1[c] +
                           rsinRadiansAround * axisSide2[c]) for c in range(3)]
            id1[n2 - 1] = interp.interpolateHermiteLagrangeDerivative(
                ix[n2 - 2], id1[n2 - 2], ix[n2 - 1], 1.0)
        ox, od1 = createCirclePoints(
            topCentre, [axisSide1[c] * outerRadius for c in range(3)],
            [axisSide2[c] * outerRadius
             for c in range(3)], elementsCountAround)
        upperx, upperd1 = [ix, ox], [id1, od1]

        # get lower and upper derivative 2
        zero = [0.0, 0.0, 0.0]
        upperd2factor = outerHeight
        upd2 = [d * upperd2factor for d in axisUp]
        lowerOuterd2 = interp.smoothCubicHermiteDerivativesLine(
            [lowerx[1][nMidCusp], upperx[1][nMidCusp]], [upd2, upd2],
            fixStartDirection=True,
            fixEndDerivative=True)[0]
        lowerd2factor = 2.0 * (outerHeight + innerDepth) - upperd2factor
        lowerInnerd2 = [d * lowerd2factor for d in axisUp]
        lowerd2 = [[lowerInnerd2] * elementsCountAround,
                   [lowerOuterd2] * elementsCountAround
                   ]  # some lowerd2[0] to be fitted below
        upperd2 = [[upd2] * (elementsCountAround * 2),
                   [upd2] * elementsCountAround]

        # get lower and upper derivative 1 or 2 pointing to/from cusps
        for n1 in range(elementsCountAround):
            radiansAround = n1 * radiansPerElementAround
            cosRadiansAround = math.cos(radiansAround)
            sinRadiansAround = math.sin(radiansAround)
            if (n1 % 2) == nMidCusp:
                lowerd2[0][n1] = [
                    -cuspOuterWallArcLength *
                    (cosRadiansAround * axisSide1[c] +
                     sinRadiansAround * axisSide2[c]) for c in range(3)
                ]
            else:
                upperd1[0][n1 * 2] = [
                    (cuspOuterWalld1[0] * (cosRadiansAround * axisSide1[c] +
                                           sinRadiansAround * axisSide2[c]) +
                     cuspOuterWalld1[1] * axisUp[c]) for c in range(3)
                ]

        # inner wall and mid sinus points; only every second one is used
        sinusDepth = innerDepth - cuspThicknessLowerFactor * cuspThickness  # GRC test
        sinusCentre = [(baseCentre[c] - sinusDepth * axisUp[c])
                       for c in range(3)]
        sinusx, sinusd1 = createCirclePoints(
            sinusCentre, [axisSide1[c] * innerRadius for c in range(3)],
            [axisSide2[c] * innerRadius
             for c in range(3)], elementsCountAround)
        # get sinusd2, parallel to lower inclined lines
        sd2 = interp.smoothCubicHermiteDerivativesLine(
            [[innerRadius, -sinusDepth], [innerRadius, outerHeight]],
            [[wallThickness + sinusRadialDisplacement, innerDepth],
             [0.0, upperd2factor]],
            fixStartDirection=True,
            fixEndDerivative=True)[0]
        sinusd2 = [None] * elementsCountAround
        for cusp in range(3):
            n1 = cusp * 2 + nMidCusp
            radiansAround = n1 * radiansPerElementAround
            cosRadiansAround = math.cos(radiansAround)
            sinRadiansAround = math.sin(radiansAround)
            sinusd2[n1] = [(sd2[0] * (cosRadiansAround * axisSide1[c] +
                                      sinRadiansAround * axisSide2[c]) +
                            sd2[1] * axisUp[c]) for c in range(3)]

        # get points on arc between mid sinus and upper cusp points
        arcx = []
        arcd1 = []
        scaled1 = 2.5  # GRC fudge factor
        for cusp in range(3):
            n1 = cusp * 2 + nMidCusp
            n1m = n1 - 1
            n1p = (n1 + 1) % elementsCountAround
            n2m = n1m * 2 + 1
            n2p = n1p * 2 - 1
            ax, ad1 = interp.sampleCubicHermiteCurves(
                [upperx[0][n2m], sinusx[n1]],
                [[-scaled1 * d for d in upperd2[0][n2m]],
                 [scaled1 * d for d in sinusd1[n1]]],
                elementsCountOut=2,
                addLengthStart=0.5 * vector.magnitude(upperd2[0][n2m]),
                lengthFractionStart=0.5,
                addLengthEnd=0.5 * vector.magnitude(sinusd1[n1]),
                lengthFractionEnd=0.5,
                arcLengthDerivatives=False)[0:2]
            arcx.append(ax[1])
            arcd1.append(ad1[1])
            ax, ad1 = interp.sampleCubicHermiteCurves(
                [
                    sinusx[n1],
                    upperx[0][n2p],
                ], [[scaled1 * d for d in sinusd1[n1]],
                    [scaled1 * d for d in upperd2[0][n2p]]],
                elementsCountOut=2,
                addLengthStart=0.5 * vector.magnitude(sinusd1[n1]),
                lengthFractionStart=0.5,
                addLengthEnd=0.5 * vector.magnitude(upperd2[0][n2p]),
                lengthFractionEnd=0.5,
                arcLengthDerivatives=False)[0:2]
            arcx.append(ax[1])
            arcd1.append(ad1[1])
        if nMidCusp == 0:
            arcx.append(arcx.pop(0))
            arcd1.append(arcd1.pop(0))

        # cusp nodule points
        noduleCentre = [(baseCentre[c] + axisUp[c] * (cuspHeight - innerDepth))
                        for c in range(3)]
        nodulex = [[], []]
        noduled1 = [[], []]
        noduled2 = [[], []]
        noduled3 = [[], []]
        cuspRadialThickness = cuspThickness / sin60
        for i in range(3):
            nodulex[0].append(noduleCentre)
            n1 = i * 2 + nMidCusp
            radiansAround = n1 * radiansPerElementAround
            cosRadiansAround = math.cos(radiansAround)
            sinRadiansAround = math.sin(radiansAround)
            nodulex[1].append([(noduleCentre[c] + cuspRadialThickness *
                                (cosRadiansAround * axisSide1[c] +
                                 sinRadiansAround * axisSide2[c]))
                               for c in range(3)])
            n1 = i * 2 - 1 + nMidCusp
            radiansAround = n1 * radiansPerElementAround
            cosRadiansAround = math.cos(radiansAround)
            sinRadiansAround = math.sin(radiansAround)
            noduled1[0].append([
                noduleOuterRadialArcLength * (cosRadiansAround * axisSide1[c] +
                                              sinRadiansAround * axisSide2[c])
                for c in range(3)
            ])
            noduled1[1].append(
                vector.setMagnitude(noduled1[0][i],
                                    noduleInnerRadialArcLength))
            n1 = i * 2 + 1 + nMidCusp
            radiansAround = n1 * radiansPerElementAround
            cosRadiansAround = math.cos(radiansAround)
            sinRadiansAround = math.sin(radiansAround)
            noduled2[0].append([
                noduleOuterRadialArcLength * (cosRadiansAround * axisSide1[c] +
                                              sinRadiansAround * axisSide2[c])
                for c in range(3)
            ])
            noduled2[1].append(
                vector.setMagnitude(noduled2[0][i],
                                    noduleInnerRadialArcLength))
            noduled3[0].append(
                [noduleOuterAxialArcLength * axisUp[c] for c in range(3)])
            noduled3[1].append(
                [noduleInnerAxialArcLength * axisUp[c] for c in range(3)])

        # Create nodes

        lowerNodeId = [[], []]
        for n3 in range(2):
            for n1 in range(elementsCountAround):
                node = nodes.createNode(nodeIdentifier, nodetemplateLinearS3)
                cache.setNode(node)
                coordinates.setNodeParameters(cache, -1,
                                              Node.VALUE_LABEL_VALUE, 1,
                                              lowerx[n3][n1])
                coordinates.setNodeParameters(cache, -1,
                                              Node.VALUE_LABEL_D_DS1, 1,
                                              lowerd1[n3][n1])
                coordinates.setNodeParameters(cache, -1,
                                              Node.VALUE_LABEL_D_DS2, 1,
                                              lowerd2[n3][n1])
                lowerNodeId[n3].append(nodeIdentifier)
                nodeIdentifier += 1

        sinusNodeId = []
        for n1 in range(elementsCountAround):
            if (n1 % 2) != nMidCusp:
                sinusNodeId.append(None)
                continue
            node = nodes.createNode(nodeIdentifier, nodetemplateLinearS3)
            cache.setNode(node)
            coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_VALUE, 1,
                                          sinusx[n1])
            coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS1, 1,
                                          sinusd1[n1])
            coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS2, 1,
                                          sinusd2[n1])
            sinusNodeId.append(nodeIdentifier)
            nodeIdentifier += 1

        arcNodeId = []
        for n1 in range(elementsCountAround):
            node = nodes.createNode(nodeIdentifier, nodetemplateLinearS2S3)
            cache.setNode(node)
            coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_VALUE, 1,
                                          arcx[n1])
            coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS1, 1,
                                          arcd1[n1])
            arcNodeId.append(nodeIdentifier)
            nodeIdentifier += 1

        noduleNodeId = [[], []]
        for n3 in range(2):
            for n1 in range(3):
                node = nodes.createNode(nodeIdentifier, nodetemplate)
                cache.setNode(node)
                coordinates.setNodeParameters(cache, -1,
                                              Node.VALUE_LABEL_VALUE, 1,
                                              nodulex[n3][n1])
                coordinates.setNodeParameters(cache, -1,
                                              Node.VALUE_LABEL_D_DS1, 1,
                                              noduled1[n3][n1])
                coordinates.setNodeParameters(cache, -1,
                                              Node.VALUE_LABEL_D_DS2, 1,
                                              noduled2[n3][n1])
                coordinates.setNodeParameters(cache, -1,
                                              Node.VALUE_LABEL_D_DS3, 1,
                                              noduled3[n3][n1])
                noduleNodeId[n3].append(nodeIdentifier)
                nodeIdentifier += 1

        upperNodeId = [[], []]
        for n3 in range(2):
            for n1 in range(len(upperx[n3])):
                node = nodes.createNode(nodeIdentifier, nodetemplateLinearS3)
                cache.setNode(node)
                coordinates.setNodeParameters(cache, -1,
                                              Node.VALUE_LABEL_VALUE, 1,
                                              upperx[n3][n1])
                coordinates.setNodeParameters(cache, -1,
                                              Node.VALUE_LABEL_D_DS1, 1,
                                              upperd1[n3][n1])
                coordinates.setNodeParameters(cache, -1,
                                              Node.VALUE_LABEL_D_DS2, 1,
                                              upperd2[n3][n1])
                upperNodeId[n3].append(nodeIdentifier)
                nodeIdentifier += 1

        #################
        # Create elements
        #################

        mesh = fm.findMeshByDimension(3)

        allMeshGroups = [allGroup.getMeshGroup(mesh) for allGroup in allGroups]
        cuspMeshGroups = [
            cuspGroup.getMeshGroup(mesh) for cuspGroup in cuspGroups
        ]

        linearHermiteLinearBasis = fm.createElementbasis(
            3, Elementbasis.FUNCTION_TYPE_LINEAR_LAGRANGE)
        linearHermiteLinearBasis.setFunctionType(
            2, Elementbasis.FUNCTION_TYPE_CUBIC_HERMITE)

        hermiteLinearLinearBasis = fm.createElementbasis(
            3, Elementbasis.FUNCTION_TYPE_LINEAR_LAGRANGE)
        hermiteLinearLinearBasis.setFunctionType(
            1, Elementbasis.FUNCTION_TYPE_CUBIC_HERMITE)

        bicubichermitelinear = eftfactory_bicubichermitelinear(
            mesh, useCrossDerivatives)
        eftDefault = bicubichermitelinear.createEftNoCrossDerivatives()

        elementIdentifier = max(
            1,
            zinc_utils.getMaximumElementIdentifier(mesh) + 1)

        elementtemplate1 = mesh.createElementtemplate()
        elementtemplate1.setElementShapeType(Element.SHAPE_TYPE_CUBE)

        # wall elements
        for cusp in range(3):
            n1 = cusp * 2 - 1 + nMidCusp
            n2 = n1 * 2
            for e in range(6):
                eft1 = None
                scalefactors = None

                if (e == 0) or (e == 5):
                    # 6 node linear-hermite-linear collapsed wedge element expanding from zero width on outer wall of root, attaching to vertical part of cusp
                    eft1 = mesh.createElementfieldtemplate(
                        linearHermiteLinearBasis)
                    # switch mappings to use DS2 instead of default DS1
                    remapEftNodeValueLabel(eft1, [1, 2, 3, 4, 5, 6, 7, 8],
                                           Node.VALUE_LABEL_D_DS1,
                                           [(Node.VALUE_LABEL_D_DS2, [])])
                    if e == 0:
                        nids = [
                            lowerNodeId[0][n1], arcNodeId[n1],
                            upperNodeId[0][n2], upperNodeId[0][n2 + 1],
                            lowerNodeId[1][n1], upperNodeId[1][n1]
                        ]
                        setEftScaleFactorIds(eft1, [1], [])
                        scalefactors = [-1.0]
                        remapEftNodeValueLabel(eft1, [2],
                                               Node.VALUE_LABEL_D_DS2,
                                               [(Node.VALUE_LABEL_D_DS1, [1])])
                    else:
                        nids = [
                            arcNodeId[n1 + 1], lowerNodeId[0][n1 - 4],
                            upperNodeId[0][n2 + 3], upperNodeId[0][n2 - 8],
                            lowerNodeId[1][n1 - 4], upperNodeId[1][n1 - 4]
                        ]
                        remapEftNodeValueLabel(eft1, [1],
                                               Node.VALUE_LABEL_D_DS2,
                                               [(Node.VALUE_LABEL_D_DS1, [])])
                    ln_map = [1, 2, 3, 4, 5, 5, 6, 6]
                    remapEftLocalNodes(eft1, 6, ln_map)
                elif (e == 1) or (e == 4):
                    # 6 node hermite-linear-linear collapsed wedge element on lower wall
                    eft1 = mesh.createElementfieldtemplate(
                        hermiteLinearLinearBasis)
                    if e == 1:
                        nids = [
                            lowerNodeId[0][n1], lowerNodeId[0][n1 + 1],
                            arcNodeId[n1], sinusNodeId[n1 + 1],
                            lowerNodeId[1][n1], lowerNodeId[1][n1 + 1]
                        ]
                    else:
                        nids = [
                            lowerNodeId[0][n1 + 1], lowerNodeId[0][n1 - 4],
                            sinusNodeId[n1 + 1], arcNodeId[n1 + 1],
                            lowerNodeId[1][n1 + 1], lowerNodeId[1][n1 - 4]
                        ]
                    ln_map = [1, 2, 3, 4, 5, 6, 5, 6]
                    remapEftLocalNodes(eft1, 6, ln_map)
                else:
                    # 8 node elements with wedges on two sides
                    if e == 2:
                        eft1 = bicubichermitelinear.createEftNoCrossDerivatives(
                        )
                        setEftScaleFactorIds(eft1, [1], [])
                        scalefactors = [-1.0]
                        nids = [
                            arcNodeId[n1], sinusNodeId[n1 + 1],
                            upperNodeId[0][n2 + 1], upperNodeId[0][n2 + 2],
                            lowerNodeId[1][n1], lowerNodeId[1][n1 + 1],
                            upperNodeId[1][n1], upperNodeId[1][n1 + 1]
                        ]
                        remapEftNodeValueLabel(eft1, [1],
                                               Node.VALUE_LABEL_D_DS2,
                                               [(Node.VALUE_LABEL_D_DS1, [1])])
                    else:
                        eft1 = eftDefault
                        nids = [
                            sinusNodeId[n1 + 1], arcNodeId[n1 + 1],
                            upperNodeId[0][n2 + 2], upperNodeId[0][n2 + 3],
                            lowerNodeId[1][n1 + 1], lowerNodeId[1][n1 - 4],
                            upperNodeId[1][n1 + 1], upperNodeId[1][n1 - 4]
                        ]
                        remapEftNodeValueLabel(eft1, [2],
                                               Node.VALUE_LABEL_D_DS2,
                                               [(Node.VALUE_LABEL_D_DS1, [])])

                result = elementtemplate1.defineField(coordinates, -1, eft1)
                element = mesh.createElement(elementIdentifier,
                                             elementtemplate1)
                result2 = element.setNodesByIdentifier(eft1, nids)
                if scalefactors:
                    result3 = element.setScaleFactors(eft1, scalefactors)
                else:
                    result3 = 7
                #print('create arterial root wall', cusp, e, 'element',elementIdentifier, result, result2, result3, nids)
                elementIdentifier += 1

                for meshGroup in allMeshGroups:
                    meshGroup.addElement(element)

        # cusps (leaflets)
        for cusp in range(3):
            n1 = cusp * 2 - 1 + nMidCusp
            n2 = n1 * 2
            meshGroups = allMeshGroups + [cuspMeshGroups[cusp]]
            for e in range(2):
                eft1 = bicubichermitelinear.createEftNoCrossDerivatives()
                setEftScaleFactorIds(eft1, [1], [])
                scalefactors = [-1.0]

                if e == 0:
                    nids = [
                        lowerNodeId[0][n1], lowerNodeId[0][n1 + 1],
                        upperNodeId[0][n2], noduleNodeId[0][cusp],
                        arcNodeId[n1], sinusNodeId[n1 + 1],
                        upperNodeId[0][n2 + 1], noduleNodeId[1][cusp]
                    ]
                    remapEftNodeValueLabel(eft1, [4, 8],
                                           Node.VALUE_LABEL_D_DS1,
                                           [(Node.VALUE_LABEL_D_DS1, [1])])
                    remapEftNodeValueLabel(eft1, [4, 8],
                                           Node.VALUE_LABEL_D_DS2,
                                           [(Node.VALUE_LABEL_D_DS3, [])])
                    remapEftNodeValueLabel(eft1, [5], Node.VALUE_LABEL_D_DS2,
                                           [(Node.VALUE_LABEL_D_DS1, [1])])
                    remapEftNodeValueLabel(eft1, [6], Node.VALUE_LABEL_D_DS2,
                                           [(Node.VALUE_LABEL_D_DS2, [1])])
                    remapEftNodeValueLabel(eft1, [7], Node.VALUE_LABEL_D_DS1,
                                           [(Node.VALUE_LABEL_D_DS1, [1])])
                else:
                    nids = [
                        lowerNodeId[0][n1 + 1], lowerNodeId[0][n1 - 4],
                        noduleNodeId[0][cusp], upperNodeId[0][n2 - 8],
                        sinusNodeId[n1 + 1], arcNodeId[n1 + 1],
                        noduleNodeId[1][cusp], upperNodeId[0][n2 + 3]
                    ]
                    remapEftNodeValueLabel(eft1, [3, 7],
                                           Node.VALUE_LABEL_D_DS2,
                                           [(Node.VALUE_LABEL_D_DS3, [])])
                    remapEftNodeValueLabel(eft1, [3, 7],
                                           Node.VALUE_LABEL_D_DS1,
                                           [(Node.VALUE_LABEL_D_DS2, [])])
                    remapEftNodeValueLabel(eft1, [4, 8],
                                           Node.VALUE_LABEL_D_DS1,
                                           [(Node.VALUE_LABEL_D_DS1, [1])])
                    remapEftNodeValueLabel(eft1, [5], Node.VALUE_LABEL_D_DS2,
                                           [(Node.VALUE_LABEL_D_DS2, [1])])
                    remapEftNodeValueLabel(eft1, [6], Node.VALUE_LABEL_D_DS2,
                                           [(Node.VALUE_LABEL_D_DS1, [])])

                result = elementtemplate1.defineField(coordinates, -1, eft1)
                element = mesh.createElement(elementIdentifier,
                                             elementtemplate1)
                result2 = element.setNodesByIdentifier(eft1, nids)
                if scalefactors:
                    result3 = element.setScaleFactors(eft1, scalefactors)
                else:
                    result3 = 7
                #print('create semilunar cusp', cusp, e, 'element',elementIdentifier, result, result2, result3, nids)
                elementIdentifier += 1

                for meshGroup in meshGroups:
                    meshGroup.addElement(element)

        # create annotation points

        datapoint = fiducialPoints.createNode(-1, datapointTemplateExternal)
        cache.setNode(datapoint)
        fiducialCoordinates.setNodeParameters(cache, -1,
                                              Node.VALUE_LABEL_VALUE, 1,
                                              noduleCentre)
        fiducialLabel.assignString(
            cache, 'aortic valve ctr'
            if aorticNotPulmonary else 'pulmonary valve ctr')

        fm.endChange()
        return annotationGroups
Example #3
0
def getCylindricalSegmentInnerPoints(elementsCountAround,
                                     elementsCountAlongSegment, segmentLength,
                                     wallThickness, startRadius,
                                     startRadiusDerivative, endRadius,
                                     endRadiusDerivative, startPhase):
    """
    Generates a 3-D cylindrical segment mesh with variable numbers of elements
    around, along the central path, and through wall.
    :param elementsCountAround: Number of elements around.
    :param elementsCountAlongSegment: Number of elements along cylindrical segment.
    :param segmentLength: Length of a cylindrical segment.
    :param wallThickness: Thickness of wall.
    :param startRadius: Inner radius at proximal end.
    :param startRadiusDerivative: Rate of change of inner radius at proximal end.
    :param endRadius: Inner radius at distal end.
    :param endRadiusDerivative: Rate of change of inner radius at distal end.
    :param startPhase: Phase at start.
    :return coordinates, derivatives on inner surface of a cylindrical segment.
    :return transitElementList: stores true if element around is an element that
    transits between a big and small element.
    :return xiList: List of xi for each node around. xi refers to node position
    along the width when cylindrical segment is opened into a flat preparation,
    nominally in [0.0, 1.0].
    :return flatWidthList: List of width around elements for each element
    along cylindrical segment when the segment is opened into a flat preparation.
    :return segmentAxis: Axis of segment.
    :return sRadiusAlongSegment: radius of each element along segment.
    """

    transitElementList = [0] * elementsCountAround

    # create nodes
    segmentAxis = [0.0, 0.0, 1.0]

    xFinal = []
    d1Final = []
    d2Final = []
    xiList = []
    flatWidthList = []
    sRadiusAlongSegment = []

    for n2 in range(elementsCountAlongSegment + 1):
        phase = startPhase + n2 * 360.0 / elementsCountAlongSegment
        xi = (phase if phase <= 360.0 else phase - 360.0) / 360.0
        radius = interp.interpolateCubicHermite([startRadius],
                                                [startRadiusDerivative],
                                                [endRadius],
                                                [endRadiusDerivative], xi)[0]
        sRadiusAlongSegment.append(radius)
        z = segmentLength / elementsCountAlongSegment * n2 + startPhase / 360.0 * segmentLength

        xLoop, d1Loop = createCirclePoints([0.0, 0.0, z], [radius, 0.0, 0.0],
                                           [0.0, radius, 0.0],
                                           elementsCountAround,
                                           startRadians=0.0)
        xFinal = xFinal + xLoop
        d1Final = d1Final + d1Loop

    # Smooth d2 for segment
    smoothd2Raw = []
    for n1 in range(elementsCountAround):
        nx = []
        nd2 = []
        for n2 in range(elementsCountAlongSegment + 1):
            n = n2 * elementsCountAround + n1
            nx.append(xFinal[n])
            nd2.append(segmentAxis)
        smoothd2 = interp.smoothCubicHermiteDerivativesLine(nx, nd2)
        smoothd2Raw.append(smoothd2)

    # Re-arrange smoothd2
    for n2 in range(elementsCountAlongSegment + 1):
        radius = sRadiusAlongSegment[n2]
        flatWidth = 2.0 * math.pi * (radius + wallThickness)
        flatWidthList.append(flatWidth)
        xiFace = []
        for n1 in range(elementsCountAround):
            d2Final.append(smoothd2Raw[n1][n2])
        for n1 in range(elementsCountAround + 1):
            xi = 1.0 / elementsCountAround * n1
            xiFace.append(xi)
        xiList.append(xiFace)

    return xFinal, d1Final, d2Final, transitElementList, xiList, flatWidthList, segmentAxis, sRadiusAlongSegment
def generateOstiumMesh(region, options, trackSurface, centrePosition, axis1, startNodeIdentifier = 1, startElementIdentifier = 1,
        vesselMeshGroups = None):
    '''
    :param vesselMeshGroups: List (over number of vessels) of list of mesh groups to add vessel elements to.
    :return: nextNodeIdentifier, nextElementIdentifier, Ostium points tuple
    (ox[n3][n1][c], od1[n3][n1][c], od2[n3][n1][c], od3[n3][n1][c], oNodeId[n3][n1], oPositions).
    '''
    vesselsCount = options['Number of vessels']
    elementsCountAroundOstium = options['Number of elements around ostium']
    elementsCountAcross = options['Number of elements across common']
    elementsCountsAroundVessels, elementsCountAroundMid = getOstiumElementsCountsAroundVessels(elementsCountAroundOstium, elementsCountAcross, vesselsCount)
    elementsCountAroundEnd = (elementsCountAroundOstium - 2*elementsCountAroundMid)//2
    #print('\nvesselsCount', vesselsCount, 'elementsCountsAroundOstium', elementsCountAroundOstium, 'elementsCountAcross', elementsCountAcross)
    #print('--> elementsCountsAroundVessels', elementsCountsAroundVessels, 'elementsCountAroundMid', elementsCountAroundMid)
    elementsCountAlong = options['Number of elements along']
    elementsCountThroughWall = options['Number of elements through wall']
    unitScale = options['Unit scale']

    isOutlet = options['Outlet']
    ostiumRadius = 0.5*unitScale*options['Ostium diameter']
    ostiumLength = unitScale*options['Ostium length']
    ostiumWallThickness = unitScale*options['Ostium wall thickness']
    interVesselHeight = unitScale*options['Ostium inter-vessel height']
    interVesselDistance = unitScale*options['Ostium inter-vessel distance'] if (vesselsCount > 1) else 0.0
    halfInterVesselDistance = 0.5*interVesselDistance
    useCubicHermiteThroughOstiumWall = not(options['Use linear through ostium wall'])
    vesselEndDerivative = ostiumLength*options['Vessel end length factor']/elementsCountAlong
    vesselInnerRadius = 0.5*unitScale*options['Vessel inner diameter']
    vesselWallThickness = unitScale*options['Vessel wall thickness']
    vesselOuterRadius = vesselInnerRadius + vesselWallThickness
    vesselAngle1Radians = math.radians(options['Vessel angle 1 degrees'])
    vesselAngle1SpreadRadians = math.radians(options['Vessel angle 1 spread degrees'])
    vesselAngle2Radians = math.radians(options['Vessel angle 2 degrees'])
    useCubicHermiteThroughVesselWall = not(options['Use linear through vessel wall'])
    useCrossDerivatives = False  # options['Use cross derivatives']  # not implemented

    fm = region.getFieldmodule()
    fm.beginChange()
    coordinates = findOrCreateFieldCoordinates(fm)
    cache = fm.createFieldcache()

    # track points in shape of ostium

    # get directions in plane of surface at centre:
    cx, cd1, cd2 = trackSurface.evaluateCoordinates(centrePosition, True)
    trackDirection1, trackDirection2, centreNormal = calculate_surface_axes(cd1, cd2, axis1)
    trackDirection2reverse = [ -d for d in trackDirection2 ]

    halfCircumference = math.pi*ostiumRadius
    circumference = 2.0*halfCircumference
    distance = 0.0
    elementLengthAroundOstiumMid = 0.0
    vesselsSpanAll = interVesselDistance*(vesselsCount - 1)
    vesselsSpanMid = interVesselDistance*(vesselsCount - 2)
    if vesselsCount == 1:
        elementLengthAroundOstiumEnd = circumference/elementsCountAroundOstium
        vesselOstiumPositions = [ centrePosition ]
        ocx  = [ cx ]
        ocd1 = [ trackDirection1 ]
        ocd2 = [ trackDirection2 ]
        ocd3 = [ centreNormal ]
    else:
        elementLengthAroundOstiumEnd = (circumference + 2.0*interVesselDistance)/(elementsCountAroundOstium - 2*elementsCountAroundMid)
        if elementsCountAroundMid > 0:
            elementLengthAroundOstiumMid = interVesselDistance*(vesselsCount - 2)/elementsCountAroundMid
        vesselOstiumPositions = []
        ocx  = []
        ocd1 = []
        ocd2 = []
        ocd3 = []
        for v in range(vesselsCount):
            vesselOstiumPositions.append(trackSurface.trackVector(centrePosition, trackDirection1, (v/(vesselsCount - 1) - 0.5)*vesselsSpanAll))
            x, d1, d2 = trackSurface.evaluateCoordinates(vesselOstiumPositions[-1], -1)
            d1, d2, d3 = calculate_surface_axes(d1, d2, trackDirection1)
            ocx .append(x)
            ocd1.append(d1)
            ocd2.append(d2)
            ocd3.append(d3)

    # coordinates around ostium
    ox = [ [], [] ]
    od1 = [ [], [] ]
    od2 = [ [], [] ]
    od3 = [ [], [] ]
    oPositions = []
    for n1 in range(elementsCountAroundOstium):
        elementLength = elementLengthAroundOstiumEnd
        if distance <= (vesselsSpanMid + halfInterVesselDistance):
            position = trackSurface.trackVector(centrePosition, trackDirection1, 0.5*vesselsSpanMid - distance)
            sideDirection = trackDirection2reverse
            if n1 < elementsCountAroundMid:
                elementLength = elementLengthAroundOstiumMid
        elif distance < (vesselsSpanMid + halfInterVesselDistance + halfCircumference):
            position = vesselOstiumPositions[0]
            angleRadians = (distance - (vesselsSpanMid + halfInterVesselDistance))/ostiumRadius
            w1 = -math.sin(angleRadians)
            w2 = -math.cos(angleRadians)
            sideDirection = [ (w1*trackDirection1[c] + w2*trackDirection2[c]) for c in range(3) ]
        elif distance < (2.0*vesselsSpanMid + halfInterVesselDistance + halfCircumference + interVesselDistance):
            position = trackSurface.trackVector(centrePosition, trackDirection1, distance - (1.5*vesselsSpanMid + interVesselDistance + halfCircumference))
            sideDirection = trackDirection2
            if 0 <= (n1 - elementsCountAroundEnd - elementsCountAroundMid) < elementsCountAroundMid:
                elementLength = elementLengthAroundOstiumMid
        elif distance < (2.0*vesselsSpanMid + halfInterVesselDistance + circumference + interVesselDistance):
            position = vesselOstiumPositions[-1]
            angleRadians = (distance - (2.0*vesselsSpanMid + halfInterVesselDistance + halfCircumference + interVesselDistance))/ostiumRadius
            w1 = math.sin(angleRadians)
            w2 = math.cos(angleRadians)
            sideDirection = [ (w1*trackDirection1[c] + w2*trackDirection2[c]) for c in range(3) ]
        else:
            position = trackSurface.trackVector(centrePosition, trackDirection1, 0.5*vesselsSpanMid + (circumference + 2.0*(vesselsSpanMid + interVesselDistance)) - distance)
            sideDirection = trackDirection2reverse
        position = trackSurface.trackVector(position, sideDirection, ostiumRadius)
        oPositions.append(position)
        px, d1, d2 = trackSurface.evaluateCoordinates(position, True)
        pd2, pd1, pd3 = calculate_surface_axes(d1, d2, sideDirection)
        # get outer coordinates
        opx = px
        opd1 = vector.setMagnitude([ -d for d in pd1 ], elementLengthAroundOstiumEnd)
        opd2 = vector.setMagnitude(pd2, elementLengthAroundOstiumEnd)  # smoothed later
        opd3 = vector.setMagnitude(pd3, ostiumWallThickness)
        # set inner and outer coordinates (use copy to avoid references to same list later)
        ox [0].append([ (opx[c] - opd3[c]) for c in range(3) ])
        od1[0].append(copy.copy(opd1))
        od2[0].append(copy.copy(opd2))
        ox [1].append(opx)
        od1[1].append(opd1)
        od2[1].append(opd2)
        if useCubicHermiteThroughOstiumWall:
            od3[0].append(copy.copy(opd3))
            od3[1].append(opd3)
        distance += elementLength
    for n3 in range(2):
        od1[n3] = interp.smoothCubicHermiteDerivativesLoop(ox[n3], od1[n3], fixAllDirections = True)

    xx  = []
    xd1 = []
    xd2 = []
    xd3 = []
    # coordinates across common ostium, between vessels
    nodesCountFreeEnd = elementsCountsAroundVessels[0] + 1 - elementsCountAcross
    oinc = 0 if (vesselsCount <= 2) else elementsCountAroundMid//(vesselsCount - 2)
    for iv in range(vesselsCount - 1):
        xx .append([ None, None ])
        xd1.append([ None, None ])
        xd2.append([ None, None ])
        xd3.append([ None, None ])
        oa = elementsCountAroundMid - iv*oinc
        ob = elementsCountAroundMid + nodesCountFreeEnd - 1 + iv*oinc
        nx = [ ox[1][oa], ox[1][ob] ]
        nd1 = [ [ -d for d in od1[1][oa] ], od1[1][ob] ]
        nd2 = [ [ -d for d in od2[1][oa] ], od2[1][ob] ]
        if elementsCountAcross > 1:
            # add centre point, displaced by interVesselHeight
            if vesselsCount == 2:
                position = centrePosition
            else:
                position = trackSurface.trackVector(centrePosition, trackDirection1, (iv/(vesselsCount - 2) - 0.5)*vesselsSpanMid)
            mx, d1, d2 = trackSurface.evaluateCoordinates(position, derivatives = True)
            md1, md2, md3 = calculate_surface_axes(d1, d2, trackDirection1)
            nx .insert(1, [ (mx[c] + interVesselHeight*md3[c]) for c in range(3) ])
            nd1.insert(1, vector.setMagnitude(md1, elementLengthAroundOstiumMid if (0 < iv < (vesselsCount - 2)) else elementLengthAroundOstiumEnd))
            nd2.insert(1, vector.setMagnitude(md2, ostiumRadius))
        nd2 = interp.smoothCubicHermiteDerivativesLine(nx, nd2, fixAllDirections = True)
        px, pd2, pe, pxi = interp.sampleCubicHermiteCurves(nx, nd2, elementsCountAcross)[0:4]
        pd1 = interp.interpolateSampleLinear(nd1, pe, pxi)
        pd3 = [ vector.setMagnitude(vector.crossproduct3(pd1[n2], pd2[n2]), ostiumWallThickness) for n2 in range(elementsCountAcross + 1) ]
        lx = [ ([ (px[n2][c] - pd3[n2][c]) for c in range(3) ]) for n2 in range(elementsCountAcross + 1) ]
        ld2 = interp.smoothCubicHermiteDerivativesLine(lx, pd2, fixAllDirections = True)
        xx [iv][0] = lx [1:elementsCountAcross]
        xd1[iv][0] = copy.deepcopy(pd1[1:elementsCountAcross])  # to be smoothed later
        xd2[iv][0] = ld2[1:elementsCountAcross]
        xx [iv][1] = px [1:elementsCountAcross]
        xd1[iv][1] = pd1[1:elementsCountAcross]  # to be smoothed later
        xd2[iv][1] = pd2[1:elementsCountAcross]
        if useCubicHermiteThroughOstiumWall:
            xd3[iv][0] = copy.deepcopy(pd3[1:elementsCountAcross])
            xd3[iv][1] = pd3[1:elementsCountAcross]
        # set smoothed d2 on ostium circumference
        od2[0][oa] = [ -d for d in ld2[0] ]
        od2[1][oa] = [ -d for d in pd2[0] ]
        od2[0][ob] = ld2[-1]
        od2[1][ob] = pd2[-1]

    # get positions of vessel end centres and rings
    vcx = []
    vcd1 = []
    vcd2 = []
    vcd3 = []
    vox = []
    vod1 = []
    vod2 = []
    vod3 = []
    for v in range(vesselsCount):
        elementsCountAroundVessel = elementsCountsAroundVessels[v]
        radiansPerElementVessel = 2.0*math.pi/elementsCountAroundVessel
        useVesselAngleRadians = vesselAngle1Radians
        if vesselsCount > 1:
            useVesselAngleRadians += (v/(vesselsCount - 1) - 0.5)*vesselAngle1SpreadRadians
        vx, vd1, vd2, vd3 = getCircleProjectionAxes(ocx[v], ocd1[v], ocd2[v], ocd3[v], ostiumLength, useVesselAngleRadians, vesselAngle2Radians)
        vd1 = [    vesselOuterRadius*d for d in vd1 ]
        vd2 = [   -vesselOuterRadius*d for d in vd2 ]
        vd3 = [ -vesselEndDerivative*d for d in vd3 ]
        vcx.append(vx)
        vcd1.append(vd1)
        vcd2.append(vd2)
        vcd3.append(vd3)
        vox.append([])
        vod1.append([])
        vod2.append([])
        vod3.append([])
        for n3 in range(2):
            radius = vesselInnerRadius if (n3 == 0) else vesselOuterRadius
            vAxis1 = vector.setMagnitude(vd1, radius)
            vAxis2 = vector.setMagnitude(vd2, radius)
            if vesselsCount == 1:
                startRadians = 0.5*math.pi
            else:
                startRadians = 0.5*radiansPerElementVessel*elementsCountAcross
                if v == (vesselsCount - 1):
                    startRadians -= math.pi
            px, pd1 = createCirclePoints(vx, vAxis1, vAxis2, elementsCountAroundVessel, startRadians)
            vox [-1].append(px)
            vod1[-1].append(pd1)
            vod2[-1].append([ vd3 ]*elementsCountAroundVessel)
            if useCubicHermiteThroughVesselWall:
                vod3[-1].append([ vector.setMagnitude(vector.crossproduct3(d1, vd3), vesselWallThickness) for d1 in pd1 ])

    # calculate common ostium vessel node derivatives map
    mvPointsx = [ None ]*vesselsCount
    mvPointsd1 = [ None ]*vesselsCount
    mvPointsd2 = [ None ]*vesselsCount
    mvPointsd3 = [ None ]*vesselsCount
    mvDerivativesMap = [ None ]*vesselsCount
    mvMeanCount = [ None ]*vesselsCount  # stores 1 if first reference to common point between vessels, 2 if second. Otherwise 0.
    for v in range(vesselsCount):
        if vesselsCount == 1:
            mvPointsx[v], mvPointsd1[v], mvPointsd2[v], mvPointsd3[v], mvDerivativesMap[v] = \
                ox, od1, od2, od3 if useCubicHermiteThroughOstiumWall else None, None
            mvMeanCount[v] = [ 0 ]*elementsCountsAroundVessels[v]
        else:
            iv = max(0, v - 1)
            oa = elementsCountAroundMid - iv*oinc
            ob = elementsCountAroundMid + nodesCountFreeEnd - 1 + iv*oinc
            mvPointsx [v] = []
            mvPointsd1[v] = []
            mvPointsd2[v] = []
            mvPointsd3[v] = [] if useCubicHermiteThroughOstiumWall else None
            mvDerivativesMap[v] = []
            for n3 in range(2):
                mvPointsd1[v].append([])
                mvPointsd2[v].append([])
                mvPointsx [v].append([])
                if useCubicHermiteThroughOstiumWall:
                    mvPointsd3[v].append([])
                mvDerivativesMap[v].append([])
                if v == 0:  # first end vessel
                    mvPointsd1[v][n3] += od1[n3][oa:ob + 1]
                    mvPointsd2[v][n3] += od2[n3][oa:ob + 1]
                    mvPointsx [v][n3] += ox [n3][oa:ob + 1]
                    if useCubicHermiteThroughOstiumWall:
                        mvPointsd3[v][n3] += od3[n3][oa:ob + 1]
                    mvDerivativesMap[v][n3].append( ( (0, 1, 0), (-1, 1, 0), None, (1, 0, 0) ) )
                    for i in range(nodesCountFreeEnd - 2):
                        mvDerivativesMap[v][n3].append( ( None, None, None ) )
                    mvDerivativesMap[v][n3].append( ( (1, 0, 0), (1, 1, 0), None, (0, -1, 0) ) )
                    mvPointsx [v][n3] += reversed(xx [iv][n3])
                    mvPointsd1[v][n3] += reversed(xd1[iv][n3])
                    mvPointsd2[v][n3] += reversed(xd2[iv][n3])
                    if useCubicHermiteThroughOstiumWall:
                        mvPointsd3[v][n3] += reversed(xd3[iv][n3])
                    for i in range(elementsCountAcross - 1):
                        mvDerivativesMap[v][n3].append( ( (0, -1, 0), (1, 0, 0), None ) )
                    if n3 == 0:
                        mvMeanCount[v] = [ 1 ] + [ 0 ]*(nodesCountFreeEnd - 2) + [ 1 ]*elementsCountAcross
                elif v < (vesselsCount - 1):  # middle vessels
                    # left:
                    mvPointsx [v][n3] += ox [n3][oa - oinc:oa + 1]
                    mvPointsd1[v][n3] += od1[n3][oa - oinc:oa + 1]
                    mvPointsd2[v][n3] += od2[n3][oa - oinc:oa + 1]
                    if useCubicHermiteThroughOstiumWall:
                        mvPointsd3[v][n3] += od3[n3][oa - oinc:oa + 1]
                    mvDerivativesMap[v][n3].append( ( (0, 1, 0), (-1, 1, 0), None, (1, 0, 0) ) )
                    for i in range(oinc - 1):
                        mvDerivativesMap[v][n3].append( ( None, None, None ) )
                    mvDerivativesMap[v][n3].append( ( (1, 0, 0), (1, 1, 0), None, (0, -1, 0) ) )
                    # across
                    mvPointsx [v][n3] += xx [iv][n3]
                    mvPointsd1[v][n3] += xd1[iv][n3]
                    mvPointsd2[v][n3] += xd2[iv][n3]
                    if useCubicHermiteThroughOstiumWall:
                        mvPointsd3[v][n3] += xd3[iv][n3]
                    for i in range(elementsCountAcross - 1):
                        mvDerivativesMap[v][n3].append( ( (0, 1, 0), (-1, 0, 0), None ) )
                    # right
                    mvPointsx [v][n3] += ox [n3][ob:ob + oinc + 1]
                    mvPointsd1[v][n3] += od1[n3][ob:ob + oinc + 1]
                    mvPointsd2[v][n3] += od2[n3][ob:ob + oinc + 1]
                    if useCubicHermiteThroughOstiumWall:
                        mvPointsd3[v][n3] += od3[n3][ob:ob + oinc + 1]
                    mvDerivativesMap[v][n3].append( ( (0, 1, 0), (-1, 1, 0), None, (1, 0, 0) ) )
                    for i in range(oinc - 1):
                        mvDerivativesMap[v][n3].append( ( None, None, None ) )
                    mvDerivativesMap[v][n3].append( ( (1, 0, 0), (1, 1, 0), None, (0, -1, 0) ) )
                    # across reverse
                    mvPointsx [v][n3] += reversed(xx [iv + 1][n3])
                    mvPointsd1[v][n3] += reversed(xd1[iv + 1][n3])
                    mvPointsd2[v][n3] += reversed(xd2[iv + 1][n3])
                    if useCubicHermiteThroughOstiumWall:
                        mvPointsd3[v][n3] += reversed(xd3[iv + 1][n3])
                    for i in range(elementsCountAcross - 1):
                        mvDerivativesMap[v][n3].append( ( (0, -1, 0), (1, 0, 0), None ) )
                    if n3 == 0:
                        mvMeanCount[v] = [ 1 ] + [ 0 ]*(oinc - 1) + [ 2 ]*(elementsCountAcross + 1) + [ 0 ]*(oinc - 1) + [ 1 ]*elementsCountAcross
                else:  # last end vessel
                    mvPointsx [v][n3] += ox [n3][ob:] + [ ox [n3][0] ]
                    mvPointsd1[v][n3] += od1[n3][ob:] + [ od1[n3][0] ]
                    mvPointsd2[v][n3] += od2[n3][ob:] + [ od2[n3][0] ]
                    if useCubicHermiteThroughOstiumWall:
                        mvPointsd3[v][n3] += od3[n3][ob:] + [ od3[n3][0] ]
                    mvDerivativesMap[v][n3].append( ( (0, 1, 0), (-1, 1, 0), None, (1, 0, 0) ) )
                    for i in range(nodesCountFreeEnd - 2):
                        mvDerivativesMap[v][n3].append( ( None, None, None ) )
                    mvDerivativesMap[v][n3].append( ( (1, 0, 0), (1, 1, 0), None, (0, -1, 0) ) )
                    mvPointsx [v][n3] += xx [iv][n3]
                    mvPointsd1[v][n3] += xd1[iv][n3]
                    mvPointsd2[v][n3] += xd2[iv][n3]
                    if useCubicHermiteThroughOstiumWall:
                        mvPointsd3[v][n3] += xd3[iv][n3]
                    for i in range(elementsCountAcross - 1):
                        mvDerivativesMap[v][n3].append( ( (0, 1, 0), (-1, 0, 0), None ) )
                    if n3 == 0:
                        mvMeanCount[v] = [ 2 ] + [ 0 ]*(nodesCountFreeEnd - 2) + [ 2 ]*elementsCountAcross

    # calculate derivative 2 around free sides of inlets to fit vessel derivatives
    for v in range(vesselsCount):
        for n3 in range(2):
            #print('v',v,'n3',n3,'elementsAround',elementsCountsAroundVessels[v])
            #print('mvPointsx [v][n3]', mvPointsx [v][n3])
            #print('mvPointsd1[v][n3]', mvPointsd1[v][n3])
            #print('mvPointsd2[v][n3]', mvPointsd2[v][n3])
            #print('mvDerivativesMap[v][n3]', mvDerivativesMap[v][n3])
            for n1 in range(elementsCountsAroundVessels[v]):
                d2Map = mvDerivativesMap[v][n3][n1][1] if (mvDerivativesMap[v] and mvDerivativesMap[v][n3][n1]) else None
                sf1 = d2Map[0] if d2Map else 0.0
                sf2 = d2Map[1] if d2Map else 1.0
                nx = [ vox[v][n3][n1], mvPointsx[v][n3][n1] ]
                nd2 = [ [ d*elementsCountAlong for d in vod2[v][n3][n1] ], [ (sf1*mvPointsd1[v][n3][n1][c] + sf2*mvPointsd2[v][n3][n1][c]) for c in range(3) ] ]
                nd2f = interp.smoothCubicHermiteDerivativesLine(nx, nd2, fixStartDerivative = True, fixEndDirection = True)
                ndf = [ d/elementsCountAlong for d in nd2f[1] ]
                # assign components to set original values:
                if sf1 == 0:
                    for c in range(3):
                        mvPointsd2[v][n3][n1][c] = sf2*ndf[c]
                elif sf2 == 0:
                    if mvMeanCount[v][n1] < 2:
                        for c in range(3):
                            mvPointsd1[v][n3][n1][c] = sf1*ndf[c]
                    else:
                        # take mean of values from this and last vessel
                        for c in range(3):
                            mvPointsd1[v][n3][n1][c] = 0.5*(mvPointsd1[v][n3][n1][c] + sf1*ndf[c])
                else:
                    #print('v', v, 'n3', n3, 'n1', n1, ':', vector.magnitude(ndf), 'vs.', vector.magnitude(nd2[1]), 'd2Map', d2Map)
                    pass

    if isOutlet:
        # reverse directions of d1 and d2 on vessels and ostium base
        for c in range(3):
            for n3 in range(2):
                for n1 in range(elementsCountAroundOstium):
                    od1[n3][n1][c] = -od1[n3][n1][c]
                    od2[n3][n1][c] = -od2[n3][n1][c]
                for iv in range(vesselsCount - 1):
                    for n1 in range(elementsCountAcross - 1):
                        xd1[iv][n3][n1][c] = -xd1[iv][n3][n1][c]
                        xd2[iv][n3][n1][c] = -xd2[iv][n3][n1][c]
                for v in range(vesselsCount):
                    for n1 in range(elementsCountsAroundVessels[v]):
                        vod1[v][n3][n1][c] = -vod1[v][n3][n1][c]
            # d2 is referenced all around, so only change once per vessel
            for v in range(vesselsCount):
                vod2[v][0][0][c] = -vod2[v][0][0][c]

    ##############
    # Create nodes
    ##############

    nodes = fm.findNodesetByFieldDomainType(Field.DOMAIN_TYPE_NODES)

    nodetemplate = nodes.createNodetemplate()
    nodetemplate.defineField(coordinates)
    nodetemplate.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_VALUE, 1)
    nodetemplate.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_D_DS1, 1)
    nodetemplate.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_D_DS2, 1)
    nodetemplate.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_D_DS3, 1)
    nodetemplateLinearS3 = nodes.createNodetemplate()
    nodetemplateLinearS3.defineField(coordinates)
    nodetemplateLinearS3.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_VALUE, 1)
    nodetemplateLinearS3.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_D_DS1, 1)
    nodetemplateLinearS3.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_D_DS2, 1)

    nodeIdentifier = startNodeIdentifier

    oNodeId = []
    for n3 in range(2):
        oNodeId.append([])
        for n1 in range(elementsCountAroundOstium):
            node = nodes.createNode(nodeIdentifier, nodetemplate if useCubicHermiteThroughOstiumWall else nodetemplateLinearS3)
            cache.setNode(node)
            coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_VALUE, 1, ox [n3][n1])
            coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS1, 1, od1[n3][n1])
            coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS2, 1, od2[n3][n1])
            if useCubicHermiteThroughOstiumWall:
                coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS3, 1, od3[n3][n1])
            oNodeId[n3].append(nodeIdentifier)
            nodeIdentifier += 1

    xNodeId = []
    for iv in range(vesselsCount - 1):
        xNodeId.append([])
        for n3 in range(2):
            xNodeId[iv].append([])
            for n2 in range(elementsCountAcross - 1):
                node = nodes.createNode(nodeIdentifier, nodetemplate if useCubicHermiteThroughOstiumWall else nodetemplateLinearS3)
                cache.setNode(node)
                coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_VALUE, 1, xx [iv][n3][n2])
                coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS1, 1, xd1[iv][n3][n2])
                coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS2, 1, xd2[iv][n3][n2])
                if useCubicHermiteThroughOstiumWall:
                    coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS3, 1, xd3[iv][n3][n2])
                xNodeId[iv][n3].append(nodeIdentifier)
                nodeIdentifier += 1

    #for v in range(vesselsCount):
    #    node = nodes.createNode(nodeIdentifier, nodetemplate)
    #    cache.setNode(node)
    #    coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_VALUE, 1, vcx [v])
    #    coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS1, 1, vcd1[v])
    #    coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS2, 1, vcd2[v])
    #    coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS3, 1, vcd3[v])
    #    nodeIdentifier += 1
    #    for n3 in range(2):
    #        for n1 in range(elementsCountsAroundVessels[v]):
    #            node = nodes.createNode(nodeIdentifier, nodetemplate if useCubicHermiteThroughVesselWall else nodetemplateLinearS3)
    #            cache.setNode(node)
    #            coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_VALUE, 1, vox [v][n3][n1])
    #            coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS1, 1, vod1[v][n3][n1])
    #            coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS2, 1, vod2[v][n3][n1])
    #            if useCubicHermiteThroughVesselWall:
    #                coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS3, 1, vod3[v][n3][n1])
    #            #vNodeId.append(nodeIdentifier)
    #            nodeIdentifier += 1

    # get identifiers of nodes around each vessel at ostium end
    mvNodeId = [ None ]*vesselsCount
    for v in range(vesselsCount):
        if vesselsCount == 1:
            mvNodeId[v] = oNodeId
        else:
            iv = max(0, v - 1)
            mvNodeId[v] = [ None, None ]
            oa = elementsCountAroundMid - iv*oinc
            ob = elementsCountAroundMid + nodesCountFreeEnd - 1 + iv*oinc
            for n3 in range(2):
                if v == 0:  # first end vessel
                    mvNodeId[v][n3] = oNodeId[n3][oa:ob + 1] + (list(reversed(xNodeId[iv][n3])) if (v == 0) else xNodeId[iv][n3])
                elif v == (vesselsCount - 1):  # last end vessels
                    mvNodeId[v][n3] = oNodeId[n3][ob:] + [ oNodeId[n3][0] ] + (list(reversed(xNodeId[iv][n3])) if (v == 0) else xNodeId[iv][n3])
                else:  # mid vessels
                    mvNodeId[v][n3] = oNodeId[n3][oa - oinc:oa + 1] + xNodeId[iv][n3] + oNodeId[n3][ob:ob + oinc + 1] + list(reversed(xNodeId[iv + 1][n3]))

    #################
    # Create elementss
    #################

    mesh = fm.findMeshByDimension(3)
    elementIdentifier = startElementIdentifier

    tricubichermite = eftfactory_tricubichermite(mesh, useCrossDerivatives)
    #tricubicHermiteBasis = fm.createElementbasis(3, Elementbasis.FUNCTION_TYPE_CUBIC_HERMITE)

    #eft = tricubichermite.createEftBasic()
    #elementtemplate = mesh.createElementtemplate()
    #elementtemplate.setElementShapeType(Element.SHAPE_TYPE_CUBE)
    #elementtemplate.defineField(coordinates, -1, eft)

    #elementtemplateX = mesh.createElementtemplate()
    #elementtemplateX.setElementShapeType(Element.SHAPE_TYPE_CUBE)

    for v in range(vesselsCount):
        if isOutlet:
            startPointsx, startPointsd1, startPointsd2, startPointsd3, startNodeId, startDerivativesMap = \
                mvPointsx[v], mvPointsd1[v], mvPointsd2[v], mvPointsd3[v], mvNodeId[v], mvDerivativesMap[v]
            endPointsx, endPointsd1, endPointsd2, endPointsd3, endNodeId, endDerivativesMap = \
                vox[v], vod1[v], vod2[v], vod3[v] if useCubicHermiteThroughVesselWall else None, None, None
            # reverse order of nodes around:
            for px in [ startPointsx, startPointsd1, startPointsd2, startPointsd3, startNodeId, startDerivativesMap, \
                        endPointsx, endPointsd1, endPointsd2, endPointsd3, endNodeId, endDerivativesMap ]:
                if px:
                    for n3 in range(2):
                        px[n3] = [ px[n3][0] ] + px[n3][len(px[n3]) - 1:0:-1]
            if vesselsCount > 1:
                # must switch in and out xi1 maps around corners in startDerivativesMap
                for n3 in range(2):
                    for n1 in range(elementsCountsAroundVessels[v]):
                        derivativesMap = startDerivativesMap[n3][n1]
                        if len(derivativesMap) == 4:
                            startDerivativesMap[n3][n1] = derivativesMap[3], derivativesMap[1], derivativesMap[2], derivativesMap[0]
        else:
            startPointsx, startPointsd1, startPointsd2, startPointsd3, startNodeId, startDerivativesMap = \
                vox[v], vod1[v], vod2[v], vod3[v] if useCubicHermiteThroughVesselWall else None, None, None
            endPointsx, endPointsd1, endPointsd2, endPointsd3, endNodeId, endDerivativesMap = \
                mvPointsx[v], mvPointsd1[v], mvPointsd2[v], mvPointsd3[v], mvNodeId[v], mvDerivativesMap[v]
        #print('endPointsx ', endPointsx )
        #print('endPointsd1', endPointsd1)
        #print('endPointsd2', endPointsd2)
        #print('endPointsd3', endPointsd3)
        #print('endNodeId', endNodeId)
        #print('endDerivativesMap', endDerivativesMap)
        nodeIdentifier, elementIdentifier = createAnnulusMesh3d(
            nodes, mesh, nodeIdentifier, elementIdentifier,
            startPointsx, startPointsd1, startPointsd2, startPointsd3, startNodeId, startDerivativesMap,
            endPointsx, endPointsd1, endPointsd2, endPointsd3, endNodeId, endDerivativesMap,
            forceMidLinearXi3 = not useCubicHermiteThroughVesselWall,
            elementsCountRadial = elementsCountAlong,
            meshGroups = vesselMeshGroups[v] if vesselMeshGroups else [])

    fm.endChange()
    return nodeIdentifier, elementIdentifier, (ox, od1, od2, od3, oNodeId, oPositions)
    def getPoints(cls, options):
        """
        Get point coordinates and derivatives for the arterial valve ring.
        Optional extra parameters allow origin and orientation to be set.
        :param options: Dict containing options. See getDefaultOptions().
        :return: x, d1, d2, d3 all indexed by [n3=wall][n2=inlet->outlet][n1=around] where
        d1 is around, d2 is in direction inlet->outlet.
        d3 is radial and undefined at n2 == 1.
         """
        unitScale = options['Unit scale']
        innerRadius = unitScale * 0.5 * options['Inner diameter']
        innerRadialDisplacement = unitScale * options[
            'Inner radial displacement']
        innerSinusRadialDisplacement = unitScale * options[
            'Inner sinus radial displacement']
        outerAngleRadians = math.radians(options['Outer angle degrees'])
        outerHeight = unitScale * options['Outer height']
        outerRadialDisplacement = unitScale * options[
            'Outer radial displacement']
        outerSinusRadialDisplacement = unitScale * options[
            'Outer sinus radial displacement']
        outletLength = unitScale * options['Outlet length']
        sinusAngleRadians = math.radians(options['Sinus angle degrees'])
        sinusDepth = unitScale * options['Sinus depth']
        wallThickness = unitScale * options['Wall thickness']
        rotationAzimuthRadians = math.radians(
            options['Rotation azimuth degrees'])
        rotationElevationRadians = math.radians(
            options['Rotation elevation degrees'])
        rotationRollRadians = math.radians(options['Rotation roll degrees'])
        centre = [
            unitScale * options['Translation x'],
            unitScale * options['Translation y'],
            unitScale * options['Translation z']
        ]
        outerRadius = innerRadius + wallThickness
        innerInletRadius = innerRadius + innerRadialDisplacement
        innerInletSinusRadius = innerRadius + innerSinusRadialDisplacement

        elementsCountAround = 6  # fixed
        radiansPerElementAround = 2.0 * math.pi / elementsCountAround
        pi_3 = radiansPerElementAround

        #centre = [ 0.0, 0.0, 0.0 ]
        #axis1 = [ 1.0, 0.0, 0.0 ]
        #axis2 = [ 0.0, 1.0, 0.0 ]
        #axis3 = vector.crossproduct3(axis1, axis2)
        axis1, axis2, axis3 = eulerToRotationMatrix3([
            rotationAzimuthRadians, rotationElevationRadians,
            rotationRollRadians
        ])

        x = [[None, None], [None, None]]
        d1 = [[None, None], [None, None]]
        d2 = [[None, None], [None, None]]
        d3 = [[None, None], [None, None]]

        # inlet
        # inner layer, with sinuses
        outletz = outerHeight
        inletz = outletz - outletLength
        sinusz = -sinusDepth
        outletCentre = [(centre[c] + outletz * axis3[c]) for c in range(3)]
        inletCentre = [(centre[c] + inletz * axis3[c]) for c in range(3)]
        sinusCentre = [(centre[c] + sinusz * axis3[c]) for c in range(3)]
        # calculate magnitude of d1, d2 at inner sinus
        leafd1mag = innerInletRadius * radiansPerElementAround  # was 0.5*
        leafd2r, leafd2z = interpolateLagrangeHermiteDerivative(
            [innerRadialDisplacement, 0.0], [0.0, outletLength],
            [0.0, outletLength], 0.0)
        sinusd1mag = innerInletSinusRadius * radiansPerElementAround  # initial value only
        sinusd1mag = vector.magnitude(
            smoothCubicHermiteDerivativesLine(
                [[innerInletRadius, 0.0, inletz],
                 [
                     innerInletSinusRadius * math.cos(pi_3),
                     innerInletSinusRadius * math.sin(pi_3), sinusz
                 ]], [[0.0, leafd1mag, 0.0],
                      [
                          -sinusd1mag * math.sin(pi_3),
                          sinusd1mag * math.cos(pi_3), 0.0
                      ]],
                fixStartDerivative=True,
                fixEndDirection=True)[1])
        sinusd2r, sinusd2z = smoothCubicHermiteDerivativesLine(
            [[innerInletSinusRadius, -sinusDepth],
             [innerInletRadius, outerHeight]], [[
                 outletLength * math.sin(sinusAngleRadians),
                 outletLength * math.cos(sinusAngleRadians)
             ], [0.0, outletLength]],
            fixStartDirection=True,
            fixEndDerivative=True)[0]
        magd3 = wallThickness + outerRadialDisplacement - innerRadialDisplacement
        x[0][0] = []
        d1[0][0] = []
        d2[0][0] = []
        d3[0][0] = []
        for n1 in range(elementsCountAround):
            radiansAround = n1 * radiansPerElementAround
            cosRadiansAround = math.cos(radiansAround)
            sinRadiansAround = math.sin(radiansAround)
            if (n1 % 2) == 0:
                # leaflet junction
                cx = inletCentre
                r = innerInletRadius
                d1mag = leafd1mag
                d2mag1 = leafd2r * cosRadiansAround
                d2mag2 = leafd2r * sinRadiansAround
                d2mag3 = leafd2z
            else:
                # sinus / leaflet centre
                cx = sinusCentre
                r = innerInletSinusRadius
                d1mag = sinusd1mag
                d2mag1 = sinusd2r * cosRadiansAround
                d2mag2 = sinusd2r * sinRadiansAround
                d2mag3 = sinusd2z
            d3mag1 = magd3 * cosRadiansAround
            d3mag2 = magd3 * sinRadiansAround
            d3mag3 = 0.0
            x[0][0].append([
                (cx[c] + r *
                 (cosRadiansAround * axis1[c] + sinRadiansAround * axis2[c]))
                for c in range(3)
            ])
            d1[0][0].append([
                d1mag *
                (-sinRadiansAround * axis1[c] + cosRadiansAround * axis2[c])
                for c in range(3)
            ])
            d2[0][0].append([
                (d2mag1 * axis1[c] + d2mag2 * axis2[c] + d2mag3 * axis3[c])
                for c in range(3)
            ])
            d3[0][0].append([
                (d3mag1 * axis1[c] + d3mag2 * axis2[c] + d3mag3 * axis3[c])
                for c in range(3)
            ])
        # outer layer
        extRadius = outerRadius + outerRadialDisplacement
        leafd2r, leafd2z = smoothCubicHermiteDerivativesLine(
            [[extRadius, 0.0], [outerRadius, outerHeight]], [[
                -outerHeight * math.sin(outerAngleRadians),
                outerHeight * math.cos(outerAngleRadians)
            ], [0.0, outletLength]],
            fixStartDirection=True,
            fixEndDerivative=True)[0]
        # calculate magnitude of d1, d2 at outer sinus
        extSinusRadius = outerRadius + outerSinusRadialDisplacement
        leafd1mag = extRadius * radiansPerElementAround
        sinusd1mag = extSinusRadius * radiansPerElementAround  # initial value only
        sinusd1mag = vector.magnitude(
            smoothCubicHermiteDerivativesLine(
                [[extRadius, 0.0, 0.0],
                 [
                     extSinusRadius * math.cos(pi_3),
                     extSinusRadius * math.sin(pi_3), 0.0
                 ]], [[0.0, leafd1mag, 0.0],
                      [
                          -sinusd1mag * math.sin(pi_3),
                          sinusd1mag * math.cos(pi_3), 0.0
                      ]],
                fixStartDerivative=True,
                fixEndDirection=True)[1])
        sinusd2r, sinusd2z = smoothCubicHermiteDerivativesLine(
            [[extSinusRadius, 0.0], [outerRadius, outerHeight]], [[
                -outerHeight * math.sin(outerAngleRadians),
                outerHeight * math.cos(outerAngleRadians)
            ], [0.0, outletLength]],
            fixStartDirection=True,
            fixEndDerivative=True)[0]
        centre = centre
        x[1][0] = []
        d1[1][0] = []
        d2[1][0] = []
        d3[1][0] = []
        for n1 in range(elementsCountAround):
            radiansAround = n1 * radiansPerElementAround
            cosRadiansAround = math.cos(radiansAround)
            sinRadiansAround = math.sin(radiansAround)
            if (n1 % 2) == 0:
                # leaflet junction
                cx = inletCentre
                r = extRadius
                d1mag = leafd1mag
                d2mag1 = leafd2r * cosRadiansAround
                d2mag2 = leafd2r * sinRadiansAround
                d2mag3 = leafd2z
            else:
                # sinus / leaflet centre
                cx = sinusCentre
                r = extSinusRadius
                d1mag = sinusd1mag
                d2mag1 = sinusd2r * cosRadiansAround
                d2mag2 = sinusd2r * sinRadiansAround
                d2mag3 = sinusd2z
            d3mag1 = magd3 * cosRadiansAround
            d3mag2 = magd3 * sinRadiansAround
            d3mag3 = 0.0
            x[1][0].append([
                (centre[c] + r *
                 (cosRadiansAround * axis1[c] + sinRadiansAround * axis2[c]))
                for c in range(3)
            ])
            d1[1][0].append([
                d1mag *
                (-sinRadiansAround * axis1[c] + cosRadiansAround * axis2[c])
                for c in range(3)
            ])
            d2[1][0].append([
                (d2mag1 * axis1[c] + d2mag2 * axis2[c] + d2mag3 * axis3[c])
                for c in range(3)
            ])
            d3[1][0].append([
                (d3mag1 * axis1[c] + d3mag2 * axis2[c] + d3mag3 * axis3[c])
                for c in range(3)
            ])

        # outlet
        x[0][1], d1[0][1] = createCirclePoints(
            outletCentre, [axis1[c] * innerRadius for c in range(3)],
            [axis2[c] * innerRadius for c in range(3)], elementsCountAround)
        x[1][1], d1[1][1] = createCirclePoints(
            outletCentre, [axis1[c] * outerRadius for c in range(3)],
            [axis2[c] * outerRadius for c in range(3)], elementsCountAround)
        d2[1][1] = d2[0][1] = [[axis3[c] * outletLength
                                for c in range(3)]] * elementsCountAround
        d3[1][1] = d3[0][1] = None

        return x, d1, d2, d3
Example #6
0
    def generateBaseMesh(cls, region, options):
        """
        Generate the base bicubic Hermite mesh.
        :param region: Zinc region to define model in. Must be empty.
        :param options: Dict containing options. See getDefaultOptions().
        :return: list of AnnotationGroup
        """
        paCount = options['Number of elements around parent']
        c1Count = options['Number of elements around child 1']
        c2Count = options['Number of elements around child 2']
        parentRadius = 0.5 * options['Parent diameter']
        parentLength = options['Parent length']
        parentLengthScaleFactor = options['Parent length scale factor']
        child1AngleRadians = math.radians(options['Child 1 angle degrees'])
        child1Radius = 0.5 * options['Child 1 diameter']
        child1Length = options['Child 1 length']
        child1LengthScaleFactor = options['Child 1 length scale factor']
        child2AngleRadians = math.radians(options['Child 2 angle degrees'])
        child2Radius = 0.5 * options['Child 2 diameter']
        child2Length = options['Child 2 length']
        child2LengthScaleFactor = options['Child 2 length scale factor']
        useCrossDerivatives = False

        # centres:
        paCentre = [0.0, 0.0, -parentLength]
        c1Centre = [
            child1Length * math.sin(child1AngleRadians), 0.0,
            child1Length * math.cos(child1AngleRadians)
        ]
        c2Centre = [
            child2Length * math.sin(child2AngleRadians), 0.0,
            child2Length * math.cos(child2AngleRadians)
        ]
        c12 = sub(c1Centre, c2Centre)

        pac1Count, pac2Count, c1c2Count = get_tube_bifurcation_connection_elements_counts(
            paCount, c1Count, c2Count)

        # parent ring
        paAxis3 = [0.0, 0.0, parentLength]
        paAxis2 = mult(normalize(cross(paAxis3, c12)), parentRadius)
        paAxis1 = mult(normalize(cross(paAxis2, paAxis3)), parentRadius)
        paStartRadians = -math.pi * (pac1Count / paCount)
        pax, pad1 = createCirclePoints(paCentre, paAxis1, paAxis2, paCount,
                                       paStartRadians)
        pad2 = [mult(paAxis3, parentLengthScaleFactor)] * paCount
        # child 1 ring
        c1Axis3 = c1Centre
        c1Axis2 = mult(normalize(cross(c1Axis3, c12)), child1Radius)
        c1Axis1 = mult(normalize(cross(c1Axis2, c1Axis3)), child1Radius)
        c1StartRadians = -math.pi * (pac1Count / c1Count)
        c1x, c1d1 = createCirclePoints(c1Centre, c1Axis1, c1Axis2, c1Count,
                                       c1StartRadians)
        c1d2 = [mult(c1Axis3, child1LengthScaleFactor)] * c1Count
        # child 2 ring
        c2Axis3 = c2Centre
        c2Axis2 = mult(normalize(cross(c2Axis3, c12)), child2Radius)
        c2Axis1 = mult(normalize(cross(c2Axis2, c2Axis3)), child2Radius)
        c2StartRadians = -math.pi * (c1c2Count / c2Count)
        c2x, c2d1 = createCirclePoints(c2Centre, c2Axis1, c2Axis2, c2Count,
                                       c2StartRadians)
        c2d2 = [mult(c2Axis3, child2LengthScaleFactor)] * c2Count

        rox, rod1, rod2, cox, cod1, cod2, paStartIndex, c1StartIndex, c2StartIndex = \
            make_tube_bifurcation_points(paCentre, pax, pad2, c1Centre, c1x, c1d2, c2Centre, c2x, c2d2)

        fm = region.getFieldmodule()
        coordinates = findOrCreateFieldCoordinates(fm)
        cache = fm.createFieldcache()

        nodes = fm.findNodesetByFieldDomainType(Field.DOMAIN_TYPE_NODES)

        ##############
        # Create nodes
        ##############

        nodeIdentifier = 1

        nodetemplate = nodes.createNodetemplate()
        nodetemplate.defineField(coordinates)
        nodetemplate.setValueNumberOfVersions(coordinates, -1,
                                              Node.VALUE_LABEL_VALUE, 1)
        nodetemplate.setValueNumberOfVersions(coordinates, -1,
                                              Node.VALUE_LABEL_D_DS1, 1)
        nodetemplate.setValueNumberOfVersions(coordinates, -1,
                                              Node.VALUE_LABEL_D_DS2, 1)
        paNodeId = []
        for n in range(paCount):
            node = nodes.createNode(nodeIdentifier, nodetemplate)
            cache.setNode(node)
            coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_VALUE, 1,
                                          pax[n])
            coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS1, 1,
                                          pad1[n])
            coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS2, 1,
                                          pad2[n])
            paNodeId.append(nodeIdentifier)
            nodeIdentifier = nodeIdentifier + 1
        roNodeId = []
        for n in range(len(rox)):
            node = nodes.createNode(nodeIdentifier, nodetemplate)
            cache.setNode(node)
            coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_VALUE, 1,
                                          rox[n])
            coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS1, 1,
                                          rod1[n])
            coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS2, 1,
                                          rod2[n])
            roNodeId.append(nodeIdentifier)
            nodeIdentifier = nodeIdentifier + 1
        coNodeId = []
        for n in range(len(cox)):
            node = nodes.createNode(nodeIdentifier, nodetemplate)
            cache.setNode(node)
            coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_VALUE, 1,
                                          cox[n])
            coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS1, 1,
                                          cod1[n])
            coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS2, 1,
                                          cod2[n])
            coNodeId.append(nodeIdentifier)
            nodeIdentifier = nodeIdentifier + 1
        c1NodeId = []
        for n in range(c1Count):
            node = nodes.createNode(nodeIdentifier, nodetemplate)
            cache.setNode(node)
            coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_VALUE, 1,
                                          c1x[n])
            coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS1, 1,
                                          c1d1[n])
            coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS2, 1,
                                          c1d2[n])
            c1NodeId.append(nodeIdentifier)
            nodeIdentifier = nodeIdentifier + 1
        c2NodeId = []
        for n in range(c2Count):
            node = nodes.createNode(nodeIdentifier, nodetemplate)
            cache.setNode(node)
            coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_VALUE, 1,
                                          c2x[n])
            coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS1, 1,
                                          c2d1[n])
            coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS2, 1,
                                          c2d2[n])
            c2NodeId.append(nodeIdentifier)
            nodeIdentifier = nodeIdentifier + 1

        #################
        # Create elements
        #################

        elementIdentifier = 1
        elementIdentifier = make_tube_bifurcation_elements_2d(
            region, coordinates, elementIdentifier, paNodeId, paStartIndex,
            c1NodeId, c1StartIndex, c2NodeId, c2StartIndex, roNodeId, coNodeId,
            useCrossDerivatives)

        return []