Example #1
0
def insseg_to_rle(frame: Frame, input_dir: str,
                  categories: List[Category]) -> Frame:
    """Convert ins_seg bitmasks to rle."""
    ann_score: Dict[str, List[Tuple[int, float]]] = {}
    img_name = frame.name.replace(".jpg", ".png")
    ann_score[img_name] = []
    bitmask: NDArrayU8 = np.array(
        Image.open(os.path.join(input_dir, img_name)),
        dtype=np.uint8,
    )

    if frame.labels is None:
        return frame
    for label in frame.labels:
        assert label.index is not None
        assert label.score is not None
        ann_score[img_name].append((label.index, label.score))

    masks, ann_ids, scores, category_ids = parse_res_bitmask(
        ann_score[img_name], bitmask)

    labels = []
    for ann_id in ann_ids:
        label = Label(
            id=ann_id,
            category=categories[category_ids[ann_id - 1] - 1].name,
            score=scores[ann_id - 1],
        )
        label.rle = mask_to_rle((masks == ann_id).astype(np.uint8))
        labels.append(label)
    frame.labels = labels
    return frame
Example #2
0
def semseg_to_rle(frame: Frame, input_dir: str,
                  categories: List[Category]) -> Frame:
    """Convert sem_seg bitmasks to rle."""
    frame.labels = []
    img_name = frame.name.replace(".jpg", ".png")
    bitmask: NDArrayU8 = np.array(
        Image.open(os.path.join(input_dir, img_name)),
        dtype=np.uint8,
    )
    category_ids: NDArrayU8 = np.unique(bitmask)

    label_id = 0
    for category_id in category_ids:
        label = Label(id=str(label_id))
        label.category = categories[category_id].name
        label.rle = mask_to_rle((bitmask == category_id).astype(np.uint8))
        frame.labels.append(label)
        label_id += 1

    return frame
Example #3
0
def segtrack_to_rle(frame: Frame, input_dir: str,
                    categories: List[Category]) -> Frame:
    """Convert seg_track bitmasks to rle."""
    frame.labels = []
    img_name = frame.name.replace(".jpg", ".png")
    bitmask: NDArrayU8 = np.array(
        Image.open(os.path.join(input_dir, img_name)),
        dtype=np.uint8,
    )
    masks, instance_ids, _, category_ids = parse_bitmask(bitmask)

    # video parameters
    frame.name = frame.name.split("/")[-1]
    frame.videoName = img_name.split("/")[0]
    frame.frameIndex = int(img_name.split("-")[-1].split(".")[0]) - 1

    for i, _ in enumerate(instance_ids):
        label = Label(id=str(instance_ids[i]))
        label.category = categories[category_ids[i] - 1].name
        label.rle = mask_to_rle((masks == i + 1).astype(np.uint8))
        frame.labels.append(label)

    return frame