import yaml from scheduling import launch def create_jobs(): jobs = [ """python main.py --dataset imagenet --model resnet18 --opt alig --eta 10.0 --momentum 0.0 --batch_size 1024 --epochs 90 --max_norm 400 --no_data_augmentation""" ] return jobs if __name__ == "__main__": jobs = create_jobs() launch(jobs)
import os from scheduling import launch jobs = [ # SGD-CE "python train_nli.py --opt sgd --eta 1 --loss ce --no-tqdm", # SGD-SVM "python train_nli.py --opt sgd --eta 0.1 --loss svm --no-tqdm", # ADAM-SVM "python train_nli.py --opt adam --eta 1e-4 --loss svm --no-tqdm", # ADAM-CE "python train_nli.py --opt adam --eta 1e-4 --loss ce --no-tqdm", # # DFW-SVM "python train_nli.py --opt dfw --eta 1 --loss svm --no-tqdm", ] if __name__ == "__main__": # change current directory to InferSent os.chdir('./InferSent/') launch(jobs, interval=3) # change current directory back to original os.chdir('..')
for lr in lr_list: jobs.append('python train.py --optimizer {optimizer} --learning_rate {lr}' .format(optimizer=optimizer, lr=lr)) jobs.append("python train.py --optimizer alig") def add_l4_jobs(jobs): optimizers = ('l4adam', 'l4mom') fraction_list = list(np.round(np.arange(0.05, 1, 0.05), 2)) for optimizer in optimizers: for fraction in fraction_list: jobs.append('python train.py --optimizer {optimizer} --fraction {fraction}' .format(optimizer=optimizer, fraction=fraction)) def create_jobs(): jobs = [] add_gradient_jobs(jobs) add_l4_jobs(jobs) return jobs if __name__ == "__main__": jobs = create_jobs() # change current directory to InferSent os.chdir('./dnc/') launch(jobs, on_gpu=False) # change current directory back to original os.chdir('..')