Example #1
0
def do_cluster(raw_data, mode):
    
    cluster_labels=[]
    filter_zeros=np.where(raw_data[:, 1] != 0)[0]
    #% OPTIMIZE DATA QUALITY
    clear_data = raw_data[filter_zeros,:] # ignore the zeros on X
    filter_zeros=np.where(clear_data[:, 2] != 0)[0]
    clear_data = clear_data[filter_zeros,:] # ignore the zeros on Y
    rospy.loginfo('filtered data')
    #filter2=np.where(clear_data[:, 1] > 0.5)[0] 
    #clear_data = clear_data[filter2, :]    # ignore mishits 
    
    #% TRAINING 
    if mode == 0:
 
        cluster_labels =np.zeros((len(clear_data),1),int)
        eps = 0.5
        min_points = 3
        
        rospy.loginfo('call DBscan ')
        [core_samples,cluster_labels, n_clusters, human]=scikit_dbscan.dbscan(clear_data, eps, min_points,mode) 


    #% TESTING
    if mode == 1:
        
        rospy.loginfo('call DBscan ')
        [core_samples,cluster_labels,n_clusters, human]=scikit_dbscan.dbscan(clear_data,eps, min_points)
        

    return core_samples,cluster_labels,human
Example #2
0
def main_cb(cloud_msg):
	#DECLARE GLOBAL VARIABLES
    global slot_count

    global final_data
    global all_hogs
    global train_surfaces
    global surfacesX
    global all_surf

    global labels
	#CONVERT TO XYZ
    rospy.loginfo('converting pointcloud %d to XYZ array ',slot_count)
    raw_data = pointclouds.pointcloud2_to_xyz_array(cloud_msg, remove_nans=True)
    
    #
    mode=0  # mode=0 -->COLLECT DATA mode=1 --> TRAIN AND TEST
    #BUILD CLUSTER

    filter_zeros=np.where(raw_data[:, 0] != 0)[0]
    clear_data = raw_data[filter_zeros,:] # ignore the zeros on X
    filter_zeros=np.where(clear_data[:, 1] != 0)[0]
    clear_data = clear_data[filter_zeros,:] # ignore the zeros on Y

    cluster_labels =np.zeros((len(clear_data),1),int)
    
    #% TRAINING
    eps = 0.5
    min_points = 5
    rospy.loginfo('call DBscan ')

    [core_samples,cluster_labels, n_clusters, human, surfacesX]=scikit_dbscan.dbscan(clear_data, eps, min_points,mode,False)

    clear_data=clear_data[core_samples,:]
    # SURFACE & HOG Features EXTRACTION

    all_surf.append(surfacesX)
    rospy.loginfo('Done.')
    
    #EXTRACT AND SAVE HOGS FEATURES
    rospy.loginfo('extract hogs for timeslot %d',slot_count)
    [hogs,hog_image] = myhog.hog(surfacesX)
    #pl.plot(hog_image)
    #pl.show(0.5)
    
    final_data.append(clear_data)
    labels.append(cluster_labels)
    human_detection.append(human)   
    all_hogs.append(hogs)
    
    rospy.loginfo('all_hogs length %d',len(all_hogs))
    rospy.loginfo('final_data length %d',len(final_data))
    rospy.loginfo('human_detection length %d',len(human_detection))
    
    if mode==0:
    	f = open("train_hogs.txt","a")
    	simplejson.dump(all_hogs,f)
    	f.close() 
    	f = open("train_classifications.txt","a")
    	simplejson.dump(all_human_detection,f)
    	f.close()
    if mode==1:
    	with open("train_hogs.txt") as f:
    		train_hogs = simplejson.load(f)
    	with open("train_classifications.txt") as f2:
  	   		train_labels = simplejson.load(f2)
  	   		X=array(train_hogs)
  	   	 	y=array(train_labels)
  	   	 	clf = svm.SVC()
  	   	 	clf.fit(X, y)
  	   	 	
  	   	 	#[p0V,p1V,pAb]= trainNB0(array(train_hogs),array(train_labels))
  	   	 	#print testEntry,'classified as: ',classifyNB(array(hogs),p0V,p1V,pAb)
    slot_count = slot_count + 1