def test_lasso_path(): # build an ill-posed linear regression problem with many noisy features and # comparatively few samples n_samples, n_features, maxit = 50, 200, 30 np.random.seed(0) w = np.random.randn(n_features) w[10:] = 0.0 # only the top 10 features are impacting the model X = np.random.randn(n_samples, n_features) y = np.dot(X, w) clf = LassoCV(n_alphas=100, eps=1e-3).fit(X, y, maxit=maxit) assert_almost_equal(clf.alpha, 0.011, 2) # test set X_test = np.random.randn(n_samples, n_features) y_test = np.dot(X_test, w) rmse = np.sqrt(((y_test - clf.predict(X_test)) ** 2).mean()) assert_almost_equal(rmse, 0.062, 2)
coef = 3*np.random.randn(n_features) coef[10:] = 0 # sparsify coef y = np.dot(X, coef) # add noise y += 0.01 * np.random.normal((n_samples,)) # Split data in train set and test set X_train, y_train = X[:n_samples/2], y[:n_samples/2] X_test, y_test = X[n_samples/2:], y[n_samples/2:] ################################################################################ # Lasso with path and cross-validation using LassoCV path from scikits.learn.glm import LassoCV from scikits.learn.cross_val import KFold cv = KFold(n_samples/2, 5) lasso_cv = LassoCV() # fit_params = {'maxit':100} y_ = lasso_cv.fit(X_train, y_train, cv=cv, maxit=100).predict(X_test) print "Optimal regularization parameter = %s" % lasso_cv.alpha # Compute explained variance on test data print "r^2 on test data : %f" % (1 - np.linalg.norm(y_test - y_)**2 / np.linalg.norm(y_test)**2)