def dst_2d_ref(x, **kwargs): """Calculate reference values for testing dst2.""" x = np.array(x, copy=True) for row in range(x.shape[0]): x[row, :] = dst(x[row, :], **kwargs) for col in range(x.shape[1]): x[:, col] = dst(x[:, col], **kwargs) return x
def dst_2d_ref(x, **kwargs): """ used as a reference in testing dst2. """ x = np.array(x, copy=True) for row in range(x.shape[0]): x[row, :] = dst(x[row, :], **kwargs) for col in range(x.shape[1]): x[:, col] = dst(x[:, col], **kwargs) return x
def test_definition_ortho(self): # Test orthornomal mode. for i in range(len(X)): x = np.array(X[i], dtype=self.rdt) dt = np.result_type(np.float32, self.rdt) y = dst(x, norm='ortho', type=4) y2 = naive_dst4(x, norm='ortho') assert_equal(y.dtype, dt) assert_array_almost_equal(y, y2, decimal=self.dec)
def test_definition_ortho(self): # Test orthornomal mode. dt = np.result_type(np.float32, self.rdt) for xr in X: x = np.array(xr, dtype=self.rdt) y = dst(x, norm='ortho', type=1) y2 = naive_dst1(x, norm='ortho') assert_equal(y.dtype, dt) assert_array_almost_equal(y / np.max(y), y2 / np.max(y), decimal=self.dec)
def test_definition(self): for i in FFTWDATA_SIZES: xr, yr, dt = fftw_dst_ref(self.type, i, self.rdt) y = dst(xr, type=self.type) assert_equal(y.dtype, dt) # XXX: we divide by np.max(y) because the tests fail otherwise. We # should really use something like assert_array_approx_equal. The # difference is due to fftw using a better algorithm w.r.t error # propagation compared to the ones from fftpack. assert_array_almost_equal(y / np.max(y), yr / np.max(y), decimal=self.dec, err_msg="Size %d failed" % i)
def test_dst_complex(self): y = dst(np.arange(5) * 1j) x = 1j * dst(np.arange(5)) assert_array_almost_equal(x, y)
def test_dst_complex64(self): y = dst(np.arange(5, dtype=np.complex64) * 1j) x = 1j * dst(np.arange(5)) assert_array_almost_equal(x, y)