Example #1
0
def transformdata_1d(x, f, plotflag):
    transform_id = np.mod(plotflag // 10, 10)
    transform = [lambda f, x: f,
                 lambda f, x: 1 - f,
                 lambda f, x: cumtrapz(f, x),
                 lambda f, x: 1 - cumtrapz(f, x),
                 lambda f, x: np.log(f),
                 lambda f, x: np.log1p(-f),
                 lambda f, x: np.log(cumtrapz(f, x)),
                 lambda f, x: np.log1p(-cumtrapz(f, x)),
                 lambda f, x: 10*np.log10(f)
                 ][transform_id]
    return transform(f, x)
def tau_integ(chi_in, height):
    ''' Integrates the opacity to get the optical depth tau '''
    
    chi = N.transpose(chi_in)
    tau = N.zeros(chi.shape)
    
    try:
        # if there is a masked array, sum only over used depth points
        mm = N.invert(chi[0].mask)
        zcut = N.where(mm == 1)[0][0]
        tau[:,zcut+1:] = cumtrapz(chi[:,mm], x=-height[mm]) 
    except AttributeError:
        tau[:,1:] = cumtrapz(chi, x=-height) 
    
    
    return tau
Example #3
0
def transformdata(x, f, plotflag):
    transFlag = np.mod(plotflag // 10, 10)    
    if transFlag == 0:
        data = f
    elif transFlag == 1:
        data = 1 - f
    elif transFlag == 2:
        data = cumtrapz(f, x)
    elif transFlag == 3:
        data = 1 - cumtrapz(f, x)
    if transFlag in (4, 5):
        if transFlag == 4:
            data = -np.log1p(-cumtrapz(f, x))
        else:
            if any(f < 0):
                raise ValueError('Invalid plotflag: Data or dataCI is negative, but must be positive')     
            data = 10 * np.log10(f)
    return data
Example #4
0
 def to_cdf(self):
     if isinstance(self.args, (list, tuple)):  # Multidimensional data
         raise NotImplementedError('integration for ndim>1 not implemented')
     cdf = np.hstack((0, cumtrapz(self.data, self.args)))
     return PlotData(cdf, np.copy(self.args), xlab='x', ylab='F(x)')