def test_composite_quad_degree(v): """ Проверяем сходимость СКФ при наличии неравных весов Q: скорость сходимости оказывается дробной, почему? """ from .variants import params a, b, alpha, beta, f = params(v) x0, x1 = a, b # a, b = -10, 10 L = 2 n_intervals = [L**q for q in range(2, 11)] n_nodes = 3 exact = sp_quad(lambda x: f(x) / (x - a)**alpha / (b - x)**beta, x0, x1)[0] Y = [ composite_quad(f, x0, x1, n_intervals=n, n_nodes=n_nodes, a=a, b=b, alpha=alpha, beta=beta) for n in n_intervals ] accuracy = get_accuracy(Y, exact * np.ones_like(Y)) x = np.log10(n_intervals) aitken_degree = aitken(*Y[5:8], L) a1, a0 = np.polyfit(x, accuracy, 1) assert a1 > 1, 'composite quad did not converge!' fig, (ax1, ax2) = plt.subplots(1, 2) # график весовой функции xs = np.linspace(x0, x1, n_intervals[-1] + 1) ys = 1 / ((xs - a)**alpha * (b - xs)**beta) ax1.plot(xs, ys, label='weights') ax = list(ax1.axis()) ax[2] = 0. ax1.axis(ax) ax1.set_xlabel('x') ax1.set_ylabel('p(x)') ax1.legend() # график точности ax2.plot(x, accuracy, 'kh') ax2.plot(x, a1 * x + a0, 'b:', label=f'{a1:.2f}*x+{a0:.2f}') ax2.set_xlabel('log10(n_intervals)') ax2.set_ylabel('accuracy') ax2.legend() fig.suptitle(f'variant #{v} (alpha={alpha:4.2f}, beta={beta:4.2f})\n' f'aitken estimation: {aitken_degree:.2f}') fig.tight_layout() plt.show()
def test_composite_quad_degree(v): """ Q: convergence maybe somewhat between 3 and 4, why? """ from variants import params plt.figure() a, b, alpha, beta, f = params(v) x0, x1 = a, b # a, b = -10, 10 exact = sp_quad(lambda x: f(x) / (x - a)**alpha / (b - x)**beta, x0, x1)[0] # plot weights xs = np.linspace(x0, x1, 101)[1:-1] ys = 1 / ((xs - a)**alpha * (b - xs)**beta) #my addition # for x in xs: # if (x-a)**alpha * (b-x)**beta: # print("HERE") # print(ys) # plt.subplot(1, 2, 1) plt.plot(xs, ys, label='weights') ax = list(plt.axis()) ax[2] = 0. plt.axis(ax) plt.xlabel('x') plt.ylabel('p(x)') plt.legend() L = 2 n_intervals = [L**q for q in range(2, 10)] n_nodes = 3 Y = [ composite_quad(f, x0, x1, n_intervals=n, n_nodes=n_nodes, a=a, b=b, alpha=alpha, beta=beta) for n in n_intervals ] accuracy = get_log_error(Y, exact * np.ones_like(Y)) x = np.log10(n_intervals) aitken_degree = aitken(*Y[5:8], L) # plot acc plt.subplot(1, 2, 2) plt.plot(x, accuracy, 'kh') plt.xlabel('log10(node count)') plt.ylabel('accuracy') plt.suptitle(f'variant #{v} (alpha={alpha:4.2f}, beta={beta:4.2f})\n' f'aitken estimation: {aitken_degree:.2f}') plt.show()
def test_composite_quad_degree(v): """ Q: convergence maybe somewhat between 3 and 4, why? """ from .variants import params fig, (ax1, ax2) = plt.subplots(1, 2) a, b, alpha, beta, f = params(v) x0, x1 = a, b # a, b = -10, 10 exact = sp_quad(lambda x: f(x) / (x - a)**alpha / (b - x)**beta, x0, x1)[0] # plot weights xs = np.linspace(x0, x1, 101) ys = 1 / ((xs - a)**alpha * (b - xs)**beta) ax1.plot(xs, ys, label='weights') ax = list(ax1.axis()) ax[2] = 0. ax1.axis(ax) ax1.set_xlabel('x') ax1.set_ylabel('p(x)') ax1.legend() L = 2 n_intervals = [L**q for q in range(2, 10)] n_nodes = 4 Y = [ composite_quad(f, x0, x1, n_intervals=n, n_nodes=n_nodes, a=a, b=b, alpha=alpha, beta=beta) for n in n_intervals ] accuracy = get_log_error(Y, exact * np.ones_like(Y)) x = np.log10(n_intervals) k, b = np.polyfit(x, accuracy, 1) assert k > 1, 'composite quad did not converge!' aitken_degree = aitken(*Y[5:8], L) # plot acc ax2.plot(x, accuracy, 'kh') ax2.plot(x, k * x + b, 'b:', label=f'{k:.2f}*x+{b:.2f}') ax2.set_xlabel('log10(n_intervals)') ax2.set_ylabel('accuracy') ax2.legend() fig.suptitle(f'variant #{v} (alpha={alpha:4.2f}, beta={beta:4.2f})\n' f'aitken estimation: {aitken_degree:.2f}') plt.show()