Example #1
0
 def test_linear_operator_eigs(self):
     for tm in self.transfer_matrices:
         r = rotate_to_hermitian(
             arnoldi(tm.aslinearoperator(), k=1)[1].reshape(tm.A.shape[1:]))
         l = rotate_to_hermitian(
             arnoldi(tm.aslinearoperator().H,
                     k=1)[1].reshape(tm.A.shape[1:]))
         r, l = r / sign(r[0, 0]), l / sign(l[0, 0])
         self.assertTrue(allclose(r, r.conj().T))
         self.assertTrue(allclose(l, l.conj().T))
         self.assertTrue(all(eigvals(r) > 0))
         self.assertTrue(all(eigvals(l) > 0))
Example #2
0
    def eigs(self, l0=None, r0=None):
        A = self.A
        if l0 is not None:
            l0 = l0.reshape(self.shape[1])
        if r0 is not None:
            r0 = r0.reshape(self.shape[1])
        _,   r = arnoldi(self.aslinearoperator(), k=1, v0=r0)
        eta, l = arnoldi(self.aslinearoperator().H, k=1, v0=l0)

        r, l = (rotate_to_hermitian(r.reshape(A.shape[1:]))/sign(r[0]),
                rotate_to_hermitian(l.reshape(A.shape[1:]))/sign(l[0]))

        n = tr(l @ r)
        q = 1#tr(l@l)

        return real_if_close(eta), l*sqrt(q)/sqrt(n), r/sqrt(q*n)
Example #3
0
 def left_fixed_point(self, l0=None, tol=0):
     d, D = self.d, self.D
     if l0 is not None:
         l0 = l0.reshape(D**2)
     η, l = arnoldi(self.aslinearoperator().H, k=1, v0=l0, tol=tol)
     l = rotate_to_hermitian(l)/sign(l[0])
     l = l.reshape(D, D)
     return η*np.sqrt(tr(l.conj().T@l)), l/np.sqrt(tr(l.conj().T@l))
Example #4
0
 def right_fixed_point(self, r0=None, tol=0, rotate=True):
     d, D = self.d, self.D
     if r0 is not None:
         r0 = r0.reshape(D**2)
     η, r = arnoldi(self.aslinearoperator(), k=1, v0=r0, tol=tol)
     if rotate:
         w, r = rotate_to_hermitian(r, ret_phase=True)
     r = r.reshape(D, D)/sign(r[0])
     return η, r
Example #5
0
def calc_eigs_arnoldi(mpsL,
                      W,
                      F,
                      site,
                      nStates,
                      nStatesCalc=None,
                      preserveState=False,
                      orthonormalize=False,
                      oneSite=True,
                      edgePreserveState=True):
    if oneSite:
        guess = np.reshape(mpsL[0][site], -1)
    else:
        guess = np.reshape(
            einsum('ijk,lkm->iljm', mpsL[state][site], mpsL[state][site + 1]),
            -1)
    Hfun, _ = make_ham_func(mpsL[0], W, F, site, oneSite=oneSite)
    (n1, n2, n3) = mpsL[0][site].shape
    H = LinearOperator((n1 * n2 * n3, n1 * n2 * n3), matvec=Hfun)
    if nStatesCalc is None: nStatesCalc = nStates
    nStates, nStatesCalc = min(nStates,
                               n1 * n2 * n3 - 2), min(nStatesCalc,
                                                      n1 * n2 * n3 - 2)
    try:
        vals, vecs = arnoldi(H, k=nStatesCalc, which='SR', v0=guess, tol=1e-5)
    except Exception as exc:
        vals = exc.eigenvalues
        vecs = exc.eigenvectors
    inds = np.argsort(vals)
    E = -vals[inds[:nStates]]
    vecs = vecs[:, inds[:nStates]]
    # Orthonormalize (when gap is too small?) - PH, Why?
    if (nStates > 1) and orthonormalize:
        vecs = sla.orth(vecs)
    # At the ends, we do not want to switch states when preserving state is off
    if ((site == 0) or (site == len(mpsL[0]) - 1)) and edgePreserveState:
        preserveState = True
    E, vecs, ovlp = check_overlap(guess, vecs, E, preserveState=preserveState)
    return E, vecs, ovlp
Example #6
0
def l_eigenmatrix(M):
    """eigenmatrix: solve
    |--:-     |-
    V  M  = e V
    |--:-     |-
    for largest (magnitude) e and V.
    :param M: tensor as above: shape (K, K, K, K) for some K.
    right facing indices are 2, 3, left facing 0, 1
    """
    assert all(x == M.shape[0] for x in M.shape)
    assert len(M.shape) == 4
    K = M.shape[0]
    M = M.reshape(K**2, K**2)

    # e_, v_ = neig(M.conj().T)  # right eig of reshaped, transposed M
    # e_max_, v_max_ = e[argmax(abs(e))], v[:, argmax(abs(e))].reshape(K, K)  # maxima

    e, v = arnoldi(M.conj().T, k=1, which='LM')
    e_max, v_max = squeeze(e), rotate_to_hermitian(v.reshape(K, K)) / sign(
        v[0])

    return e_max, v_max.conj()
Example #7
0
def arnoldi1(mps, mpo, envl, envr):
    """ 
    Calculate the eigenvalues and eigenvectors with the arnoldi algorithm
    
    Args:
        mps : 1d array of np or ctf tensors
            a list containing the mps tensor for each desired 
            state at the optimization site
        mpo : 1d array of np or ctf tensors
            a list containing the mpo tensor for each 
            operator at the optimization site
        envl : 1d array of np or ctf tensors
            a list containing the left env tensor for each
            operator at the optimization site
        envr : 1d array of np or ctf tensors
            a list containing the right env tensor for each
            operator at the optimization site

    Returns:
        E : 1d array
            a 1d array of the energy associated with each state 
            of the system
        mps : 1d array of np or ctf tensors
            a list containing the resulting mps tensor for each
            state from the optimization
        ovlp : float
            the overlap between the input guess and output state
    """
    print('ARNOLDI NOT WORKING')
    import sys
    sys.exit()
    mpiprint(6, 'Doing Arnoldi optimization routine')

    # Compute the number of states
    nStates = len(mps)
    (n1, n2, n3) = mps[0].shape

    # Make the hamiltonian function
    hop, _ = make_ham_func1(mps, mpo, envl, envr)
    hop = LinearOperator((n1 * n2 * n3, n1 * n2 * n3), matvec=hop)

    # Determine initial guess
    if USE_CTF:
        guess = to_nparray(ravel(mps[0]))
    else:
        guess = ravel(mps[0])
    #guess = np.zeros((n1*n2*n3,nStates),dtype=type(mps[0][0,0,0]))
    #for state in range(nStates):
    #    if USE_CTF:
    #        guess[:,state] = to_nparray(ravel(mps[state]))
    #    else:
    #        guess[:,state] = ravel(mps[state])

    # Send to davidson algorithm
    try:
        E, vecs = arnoldi(hop,
                          k=nStates,
                          which='SR',
                          v0=guess,
                          tol=ARNOLDI_TOL,
                          maxiter=ARNOLDI_MAX_ITER)
    except Exception as exc:
        E = exc.eigenvalues
        vecs = exc.eigenvectors
    E = -E

    # Sort results
    inds = npargsort(E)[::-1]
    E = E[inds[:nStates]]
    vecs = vecs[:, inds[:nStates]]

    # Convert vecs back to ctf if needed
    if USE_CTF: vecs = from_nparray(vecs)

    # convert vecs into original mps shape
    _mps = mps
    mps = vec2mps(vecs, mps)

    # check the overlap
    ovlp = calc_ovlp(mps, _mps)

    return E, mps, ovlp