Example #1
0
    def to_mask(self, lons_2d_grid, lats_2d_grid):

        """

        :param lons_2d_grid:
        :param lats_2d_grid:
        :return: the mask of the subregion corresponding to the grid with the upper right and lower left points from self
        """
        x_g, y_g, z_g = lat_lon.lon_lat_to_cartesian(lons_2d_grid.flatten(), lats_2d_grid.flatten())
        ktree = KDTree(list(zip(x_g, y_g, z_g)))

        ll_x, ll_y, ll_z = lat_lon.lon_lat_to_cartesian(self.lleft_lon, self.lleft_lat)
        ur_x, ur_y, ur_z = lat_lon.lon_lat_to_cartesian(self.uright_lon, self.uright_lat)


        i_g, j_g = np.indices(lons_2d_grid.shape)

        i_g_flat, j_g_flat = i_g.flatten(), j_g.flatten()


        _, ind_ll = ktree.query((ll_x, ll_y, ll_z), k=1)
        _, ind_ur = ktree.query((ur_x, ur_y, ur_z), k=1)


        i_ll, j_ll = i_g_flat[ind_ll], j_g_flat[ind_ll]
        i_ur, j_ur = i_g_flat[ind_ur], j_g_flat[ind_ur]

        res = np.zeros_like(lons_2d_grid, dtype=bool)
        res[i_ll:i_ur + 1, j_ll: j_ur + 1] = 1

        return res, (i_ll, j_ll), (i_ur, j_ur)
Example #2
0
  def get_query(self, data_path, i, j):
    '''
    '''

    print 'Probing', i, j

    #
    # create kd tree
    #
    data = self._kd_tree_data[data_path]
    data_without_key = [v[:2] for v in data]
    kd_tree = KDTree(data_without_key)

    # now look up the closest point to i,j
    query_result = kd_tree.query([float(i), float(j)])
    print 'Found', query_result[1]


    tile = data[query_result[1]]
    print 'Found tile', tile
    
    # # now look up this border point in out bbox-to-tile dict
    # tile = self._bbox_to_tile[data_path][str(point[0])+'-'+str(point[1])]

    # print 'Finding tile', tile

    return json.dumps(tile[2])
Example #3
0
def features_by_centers(base, features):
    try:
        from scipy.spatial import KDTree
    except ImportError:
        from PathScripts.kdtree import KDTree

    features = sorted(features,
                      key=lambda feature: getattr(base.Shape, feature).Surface.Radius,
                      reverse=True)

    coordinates = [(cylinder.Surface.Center.x, cylinder.Surface.Center.y) for cylinder in
                   [getattr(base.Shape, feature) for feature in features]]

    tree = KDTree(coordinates)
    seen = {}

    by_centers = {}
    for n, feature in enumerate(features):
        if n in seen:
            continue
        seen[n] = True

        cylinder = getattr(base.Shape, feature)
        xc, yc, _ = cylinder.Surface.Center
        by_centers[xc, yc] = {cylinder.Surface.Radius: feature}

        for coord in tree.query_ball_point((xc, yc), cylinder.Surface.Radius):
            seen[coord] = True
            cylinder = getattr(base.Shape, features[coord])
            by_centers[xc, yc][cylinder.Surface.Radius] = features[coord]

    return by_centers
Example #4
0
 def update(self, time_passed):
     epsilon = 0.01
     time_passed = time_passed if time_passed != 0 else epsilon
     for i in range(self.steps_per_frame):
         milliseconds = float(time_passed) / self.steps_per_frame
         if _DEBUG_PRINT_MS:
             self.mss += [milliseconds]
             _mss = self.mss[10:]
             if(len(_mss) % 100):
                 print "milliseconds=%s" % _mss[len(_mss) - 1]
         if self.coord_changed:
             point_matrix = numpy.array([d.coord for d in self.devices])
             kdtree = KDTree(point_matrix)
             for d in self.devices:
                 d._nbrs = []
             for (i, j) in kdtree.query_pairs(self.radio_range):
                 self.devices[i]._nbrs += [self.devices[j]]
                 self.devices[j]._nbrs += [self.devices[i]]
             for d in self.devices:
                 d._nbr_range = _Field()
                 d._nbr_vec = _Field()
                 for n in d._nbrs + [d]:
                     delta = n.coord - d.coord
                     d._nbr_range[n] = numpy.dot(delta, delta) ** 0.5
                     d._nbr_vec[n] = delta
         self.coord_changed = False
         for d in self.devices:
             d.dostep(milliseconds)
 def compute(self, dataset_pool):
     parcels = self.get_dataset()
     arr = self.get_dataset().sum_dataset_over_ids(dataset_pool.get_dataset('household'), constant=1)
     coords = column_stack( (parcels.get_attribute("x_coord_sp"), parcels.get_attribute("y_coord_sp")) )
     kd_tree = KDTree(coords, 100)
     results = kd_tree.query_ball_tree(kd_tree, self.radius)
     return array(map(lambda l: arr[l].sum(), results))
Example #6
0
class test_small(ConsistencyTests):
    def setUp(self):
        self.data = np.array([[0,0,0],
                              [0,0,1],
                              [0,1,0],
                              [0,1,1],
                              [1,0,0],
                              [1,0,1],
                              [1,1,0],
                              [1,1,1]])
        self.kdtree = KDTree(self.data)
        self.n = self.kdtree.n
        self.m = self.kdtree.m
        np.random.seed(1234)
        self.x = np.random.randn(3)
        self.d = 0.5
        self.k = 4

    def test_nearest(self):
        assert_array_equal(
                self.kdtree.query((0,0,0.1), 1),
                (0.1,0))

    def test_nearest_two(self):
        assert_array_equal(
                self.kdtree.query((0,0,0.1), 2),
                ([0.1,0.9],[0,1]))
Example #7
0
def nearest_neighbors(X, k, phi):
  """
  Construct pairwise weights by finding the k nearest neighbors to each point
  and assigning a Gaussian-based distance.

  In particular, w_{i,j} = exp(-phi ||x_i - x_j||_2^2) if j is one of i's k
  closest neighbors.

  If j is one of i's closest neighbors and i is one of j's closest members, the
  edge will only appear once with i < j.

  Parameters
  ----------
  X : [n_samples, n_dim] array
  k : int
      number of neighbors for each sample in X
  phi : float
      non-negative integer dictating how much weight to assign between pairs of points
  """
  from scipy.spatial import KDTree

  tree = KDTree(X)

  weights = []
  for i, x in enumerate(X):
    distances, indices = tree.query(x, k+1)
    for (d, j) in zip(distances, indices)[1:]:
      d = np.exp( -phi * d * d )
      if d == 0: continue
      if i < j:
        weights.append( (i, j, d) )
      else:
        weights.append( (j, i, d) )
  weights = sorted(weights, key=lambda r: (r[0], r[1]))
  return unique_rows(np.asarray(weights))
Example #8
0
def process_image(image_name, colours, thumbs, thumbsize):
    # KD Tree for Nearest-Neighbour
    kdt = KDTree(colours)

    # open image and make it smaller
    img = Image.open(image_name).convert('RGBA')
    img.thumbnail((MAX_RES, MAX_RES))
    img_data = np.array(img)

    # initialise new image
    new_shape = (
        img_data.shape[0] * thumbsize,
        img_data.shape[1] * thumbsize,
        img_data.shape[2]
    )
    new_image = np.zeros(new_shape, dtype=np.float)

    # populate new image
    for x in range(img_data.shape[0]):
        for y in range(img_data.shape[1]):
            _, nn_idx = kdt.query(img_data[x, y, :], k=3)
            thumb_img = thumbs[random.choice(nn_idx)] # TODO: change to distance-weighted probabilities
            x_offset = int((thumbsize - thumb_img.shape[0]) / 2)
            y_offset = int((thumbsize - thumb_img.shape[1]) / 2)
            x1 = (x * thumbsize) + x_offset
            x2 = x1 + thumb_img.shape[0]
            y1 = (y * thumbsize) + y_offset
            y2 = y1 + thumb_img.shape[1]
            new_image[x1:x2, y1:y2, :] = thumb_img
    return new_image
Example #9
0
def nearest_neighbors(n,points,qpoints=None,return_distances=False,slow=False):
    extra = 0
    if qpoints==None:
        qpoints=points
        if len(points)>1:
            extra=1
        elif return_distances:
            return array([]),array([])
        else:
            return array([])
        #end if
    #end if
    if n>len(qpoints)-extra:
        print 'nearest_neighbors Error: requested more than the total number of neighbors\n  maximum is: {0}\n  you requested: {1}\nexiting.'.format(len(qpoints)-extra,n)
        exit()
    #end if
    slow = slow or scipy_unavailable
    if not slow:
        kt = KDTree(points)
        dist,ind = kt.query(qpoints,n+extra)
    else:
        dtable,order = distance_table(points,qpoints,ordering=2)
        dist = dtable[:,0:n+extra]
        ind  = order[:,0:n+extra]
    #end if
    if extra==0 and n==1 and not slow:
        nn = atleast_2d(ind).T
    else:
        nn = ind[:,extra:]
    #end if
    if not return_distances:
        return nn
    else:
        return nn,dist
Example #10
0
def search_headgroup_loss(filename, x_dim):
    from scipy.spatial import KDTree
    mz_tol = 0.005
    rt_tol = 1
    tlc_dataset = TLCdataset(filename, x_dim=x_dim)
    tlc_dataset.get_features_from_mean_spectrum(ppm=6.)
    feature_array = [[f[0], f[1]] for f in tlc_dataset.feature_list]
    kdtree = KDTree(feature_array)
    neutral_losses_rt = {}
    neutral_losses_i = {}
    for head_group in neutral_losses_pos:
        neutral_losses_rt[head_group]=[]
        neutral_losses_i[head_group] = []
    for f in tlc_dataset.feature_list:
        for head_group in neutral_losses_pos.keys():
            neutral_loss_mz = f[0]-neutral_losses_pos[head_group]
            nearest_neighbour = kdtree.query([neutral_loss_mz, f[1]])
            if all([np.abs(nearest_neighbour[0]-neutral_loss_mz < mz_tol), np.abs(f[1]-nearest_neighbour[1]<rt_tol)]):
                neutral_losses_rt[head_group].append(f[1])
                neutral_losses_i[head_group].append(f[2])
    plt.figure()
    for head_group in neutral_losses_rt:
        h = np.histogram(neutral_losses_rt[head_group], bins=tlc_dataset.x_pos, weights=neutral_losses_i[head_group])[0]
        plt.plot(h, label=head_group)
    plt.legend()
    plt.show()
Example #11
0
def findAffineTransform(test_srcs, ref_srcs, max_pix_tol = 2., min_matches_fraction = 0.8, invariantMap=None):
    if len(test_srcs) < 3:
        raise Exception("Test sources has less than the minimum value of points (3).")
    
    if invariantMap is None:
        invMap = InvariantTriangleMapping()
    
    if len(ref_srcs) < 3:
        raise Exception("Test sources has less than the minimum value of points (3).")
    #generateInvariants should return a list of the invariant tuples for each asterism and 
    # a corresponding list of the indices that make up the asterism 
    ref_invariants, ref_asterisms = invMap.generateInvariants(ref_srcs, nearest_neighbors = 7)
    ref_invariant_tree = KDTree(ref_invariants)

    test_invariants, test_asterisms = invMap.generateInvariants(test_srcs, nearest_neighbors = 5)
    test_invariant_tree = KDTree(test_invariants)

    #0.03 is just an empirical number that returns about the same number of matches than inputs
    matches_list = test_invariant_tree.query_ball_tree(ref_invariant_tree, 0.03)

    matches = []
    #t1 is an asterism in test, t2 in ref
    for t1, t2_list in zip(test_asterisms, matches_list):
        for t2 in np.array(ref_asterisms)[t2_list]:
            matches.append(zip(t2, t1))
    matches = np.array(matches)
    
    invModel = invMap.matchTransform(ref_srcs, test_srcs)
    nInvariants = len(matches)
    max_iter = nInvariants
    min_matches = min(10, int(nInvariants * min_matches_fraction))
    bestM = ransac.ransac(matches, invModel, 1, max_iter, max_pix_tol, min_matches)
    return bestM
Example #12
0
class FeaturesQuery(object):

    def __init__(self, fgroup, coord_modes=['lm']):
        self.features1 = fgroup.features
        self.nf1 = len(self.features1) 
        coords1 = np.array([f.get_coord(mode=mode) for mode in coord_modes for f in self.features1])
        if len(self.features1) > 0:
            self.kdtree = KDTree(coords1)

    def get_features(self):
        return set(self.features1)

    def find(self, feature2, tol=np.inf):
        if len(self.features1) == 0:
            return []
        d, i = self.kdtree.query(feature2.get_coord(), k=len(self.features1),
                                 distance_upper_bound=tol)
        if len(self.features1) == 1:
            if d < tol:
                return self.features1
            return []
        i = i[d < tol]
        return nputils.uniq([self.features1[k % self.nf1] for k in i])

    def get_match(self, fgroup2, tol=2):
        if len(self.features1) == 0:
            return FeaturesMatch()
        coords2 = np.array([f.get_coord() for f in fgroup2.features])
        d, i = self.kdtree.query(coords2, k=1, distance_upper_bound=tol)
        i1 = i[d < tol]
        i2 = np.arange(len(coords2))[d < tol]
        features1 = [self.features1[k % self.nf1] for k in i1]
        features2 = [fgroup2.features[k] for k in i2]

        return FeaturesMatch(features1=features1, features2=features2)
 def compute(self, dataset_pool):
     with logger.block(name="compute variable persons_within_DDD_of_parcel with DDD=%s" % self.radius, verbose=False):
         results = None
         with logger.block(name="trying to read cache file %s" % self.cache_file_name, verbose=False):
             try:
                 results = self._load_results()
             except IOError:
                 logger.log_warning("Cache file could not be loaded")
 
         with logger.block(name="initialize datasets", verbose=False):
             parcels = self.get_dataset()
             arr = self.get_dataset().sum_dataset_over_ids(dataset_pool.get_dataset('household'), attribute_name="persons")
 
         if not results:
             with logger.block(name="initialize coords", verbose=False):
                 coords = column_stack( (parcels.get_attribute("x_coord_sp"), parcels.get_attribute("y_coord_sp")) )
     
             with logger.block(name="build KDTree", verbose=False):
                 kd_tree = KDTree(coords, 100)
     
             with logger.block(name="compute"):
                 results = kd_tree.query_ball_tree(kd_tree, self.radius)
 
             with logger.block(name="cache"):
                 if not SimulationState().cache_directory_exists():
                     logger.log_warning("Cache does not exist and is created.")
                     SimulationState().create_cache_directory()
                 self._cache_results(results)
                 
         with logger.block(name="sum results", verbose=False):
             return_values = array(map(lambda l: arr[l].sum(), results))
         
     return return_values
Example #14
0
def fit_mesh(head_mesh,scan_mesh,base,tofit_verts,init_coefs = None,constrained = False,regul = None,niter = 1):
    if isinstance(tofit_verts,str):
        tofit_verts = np.loadtxt(tofit_verts,'int')
    if isinstance(base,str):
        base = TargetBase(prefix = prefix)
        
    verts = base.vert_list
    ntargs = len(base.targets)

    m = head_mesh.copy()
    nverts = len(scan_mesh)
    
    if init_coefs is not None :
        init_target = base.combine_targets(init_coefs)

    m[verts]+=init_target
    
    kd = KDTree(scan_mesh)
    
    for iter in xrange(niter):
        target = np.zeros((nverts,3))
        dist,indx = kd.query(m[tofit_verts])
        target[tofit_verts] = scan_mesh[indx] - m[tofit_verts]
        target = target[verts]
        if constrained :
            coefs = base.compute_combinaison_safe(target,rcond,regul = regul)
            proj = base.combine_targets(coefs)
        else :
            proj = base.project_target(target)
        if niter > 1 : m[verts]+=(1./niter)*(niter)**(float(iter)/(niter-1)) * proj
        else : m[verts]+= proj

    return m-head_mesh
 def compute(self, dataset_pool):
     parcels = self.get_dataset()
     arr = self.get_dataset().compute_variables(['parcel.aggregate(household.children>0)'], dataset_pool=dataset_pool)
     coords = column_stack( (parcels.get_attribute("x_coord_sp"), parcels.get_attribute("y_coord_sp")) )
     kd_tree = KDTree(coords, 100)
     results = kd_tree.query_ball_tree(kd_tree, self.radius)
     return array(map(lambda l: arr[l].sum(), results))
Example #16
0
class test_vectorization_compiled:
    def setUp(self):
        self.data = np.array([[0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1]])
        self.kdtree = KDTree(self.data)

    def test_single_query(self):
        d, i = self.kdtree.query([0, 0, 0])
        assert isinstance(d, float)
        assert isinstance(i, int)

    def test_vectorized_query(self):
        d, i = self.kdtree.query(np.zeros((2, 4, 3)))
        assert_equal(np.shape(d), (2, 4))
        assert_equal(np.shape(i), (2, 4))

    def test_single_query_multiple_neighbors(self):
        s = 23
        kk = self.kdtree.n + s
        d, i = self.kdtree.query([0, 0, 0], k=kk)
        assert_equal(np.shape(d), (kk,))
        assert_equal(np.shape(i), (kk,))
        assert np.all(~np.isfinite(d[-s:]))
        assert np.all(i[-s:] == self.kdtree.n)

    def test_vectorized_query_multiple_neighbors(self):
        s = 23
        kk = self.kdtree.n + s
        d, i = self.kdtree.query(np.zeros((2, 4, 3)), k=kk)
        assert_equal(np.shape(d), (2, 4, kk))
        assert_equal(np.shape(i), (2, 4, kk))
        assert np.all(~np.isfinite(d[:, :, -s:]))
        assert np.all(i[:, :, -s:] == self.kdtree.n)
Example #17
0
def filter_obj_info( OBJ_INFO ):
    #OBJ_info.append( [ X1[i], Y1[i],
    #                   cRA10[i], cDEC10[i],
    #                   MAG1[i],
    #                   X2[j], Y2[j],
    #                   cRA20[j], cDEC20[j],
    #                   MAG2[j], SN1, SN2, NAME ] )

    ### filter on X1, X2, sn
    orig_obj = OBJ_INFO[:]
    OBJ_INFO = numpy.asarray( numpy.asarray( OBJ_INFO ).T[0:-1], dtype='float')

    print OBJ_INFO[10]
    print
    print OBJ_INFO[11]
    
    snv = OBJ_INFO[10]**2 + OBJ_INFO[11]**2

    
    X = OBJ_INFO[0]
    Y = OBJ_INFO[1]
    tree = KDTree( numpy.asarray( [X,Y] ).T )
    keep = []
    for i in range(0, len(X)):
        match_inds = tree.query_ball_point( [X[i],Y[i]], 3.0 )
        if numpy.all( snv[i] >= snv[ match_inds ] ):
            keep.append( orig_obj[i] )

    print ' Original length: %d'%( len(orig_obj) )
    print 'Collapsed length: %d'%( len(keep) )
    
    return keep
Example #18
0
    def generate_capitals(self, map_obj):
        kdtree = KDTree([center.point for center in map_obj.centers])
        centers_index = {}

        for center in map_obj.centers:
            centers_index[key(center.point)] = center

        height = self.cell_size
        width = math.sqrt(3) / 2 * height
        row = 0
        x = height / 2

        while x < 1:
            if row % 2 == 0:
                y = width
            else:
                y = width / 2

            while y < 1:
                _, index = kdtree.query([x, y])
                point = kdtree.data[index]
                center = centers_index[key(point)]

                # Do not put capitals close on to other
                is_neighbor_capital = any([neighbor.region for neighbor in center.neighbors])

                if not center.water and not is_neighbor_capital:
                    center.region = Region(center)
                    map_obj.regions.append(center.region)

                y += width

            row += 1
            x += (height * 3 / 4)
Example #19
0
 def calc_nearest_neighbor_distances(self, detail_level):
     rf = self.get_detail_level_results(detail_level)
     if rf.is_event_list_column_name('eNN_dist') and \
         rf.is_event_list_column_name('eNN_dist') and \
             rf.is_event_list_column_name('eNN_dist'):
         return rf
     cons_points = numpy.array([e.position() for e in rf.consumers()])
     prod_points = numpy.array([e.position() for e in rf.producers()])
     if self.wrapping:
         cons_points = wrap_points(cons_points, self.side_length, is_3d=self.is_3d)
         prod_points = wrap_points(prod_points, self.side_length, is_3d=self.is_3d)
     cons_tree = KDTree(cons_points)
     prod_tree = KDTree(prod_points)
     for e in rf.events:
         c_dist = cons_tree.query(e.position(), k=2)[0]
         p_dist= prod_tree.query(e.position(), k=2)[0]
         if (e.vars['mark'] == 2):
             e.vars['sNN_dist'] = c_dist[1]
             e.vars['oNN_dist'] = p_dist[0]
         else:
             e.vars['sNN_dist'] = p_dist[1]
             e.vars['oNN_dist'] = c_dist[0]
         e.vars['eNN_dist'] = min(e.vars['sNN_dist'], e.vars['oNN_dist'])
     rf.add_event_list_column_name('eNN_dist')
     rf.add_event_list_column_name('oNN_dist')
     rf.add_event_list_column_name('sNN_dist')
     #rf.eventList.update_text()
     rf.write()
     return rf
Example #20
0
def _kill_duplicates(arr, minimum_distance=10):
    """
    Attempts to eliminate garbage coordinates
    
    arr is a 2D array of (npeaks)x4 coordinates.
        0:1 is the x and y coordinates.
        2 is the peak height
        3 is the peak width
    """
    import scipy
    from scipy.spatial import KDTree
    tree = KDTree(arr)
    
    match_list = tree.query_ball_tree(tree,minimum_distance)
    match_list=[list_item for list_item in match_list if len(list_item)>1]
    
    chuck_list=[]
    
    for match in match_list:
        # compile the heights from the table
        #heights=arr[match][:,2]
        #best=np.argmax(heights)
        match.remove(match[0])
        chuck_list += match
        
    keepers = range(arr.shape[0])
    [keepers.remove(chuck) for chuck in chuck_list if chuck in keepers]
    return arr[keepers]
Example #21
0
File: ICP.py Project: mindis/CV2
def ICP(base, target):
    geoCenterTarget = np.mean(target, axis=1)
    R = np.eye(3)
    t = np.array([0,0,0])
    
    KDindex = KDTree(target.T)
    lastDistance = np.array([1,1,1])
    
    sample = base
    for i in range(150):
        transformedSample = np.dot(sample.T, R) + t

        I = KDindex.query(transformedSample)
        idx = I[1]
        
        distance = np.sqrt(np.sum(I[0])**2 / transformedSample.shape[0])
        
        if np.sum(np.abs(lastDistance - distance)) < 1e-7:
            break

        lastDistance = distance
        
        geoCenterTransformedSample = transformedSample.mean(axis=0)
        geoCenterTarget = target[:, idx].T.mean(axis = 0)
        
        #Normalize
        A = np.dot( (transformedSample - geoCenterTransformedSample).T, (target[:, idx].T - geoCenterTarget) )
        
        U, s, V = np.linalg.svd(A)
        R = np.dot(U,V)
        geoCentersample = sample.mean(axis=1)
        t = geoCenterTarget - np.dot(geoCentersample, R)
    
    return R, t, distance
Example #22
0
	def get_picking_position_for_single_item_bin(self, bin_letter, cur_camera_R, cur_camera_t, limb, 
		colorful=True, fit=False, threshold=0.01, crop=False, bin_bound=None, perturb_xform=None, 
		return_bin_content_cloud=False, return_normal=False):
		'''
		physical pre-condition: place the camera to the hard-coded tote-viewing position. 

		return (x,y,z) coordinate in global frame of position that has something to suck. 
		'''
		bin_content_cloud = self.get_current_bin_content_cloud(bin_letter, cur_camera_R, cur_camera_t, limb, 
			colorful=colorful, fit=fit, threshold=threshold, crop=crop, bin_bound=bin_bound, perturb_xform=perturb_xform)
		pos = self.find_max_density_3d(bin_content_cloud)
		bin_content_tree = KDTree(bin_content_cloud[:,0:3])
		neighbor_idxs = bin_content_tree.query_ball_point(pos, r=0.002)
		print 'neighbor_idxs is of type', neighbor_idxs.__class__
		if len(neighbor_idxs)==0:
			print 'no neighbors!'
			normal = [-1,0,0]
		else:
			pts = bin_content_tree[neighbor_idxs,0:3]
			normal = get_normal(pts)
		return_list = [pos]
		if return_bin_content_cloud:
			return_list += [bin_content_cloud]
		if return_normal:
			return_list += [normal]
		if len(return_list)==1:
			return return_list[0]
		else:
			return return_list
    def get_velocity(self, longitude, latitude, height, date):
        """
        Find plume velocity that is closest to the given location and time.

        :type longitude: float
        :param longitude: Longitude of the point of interest.
        :type latitude: float
        :param latitude: Latitude of the point of interest.
        :type altitude: float
        :param altitude: Altitude in meters of the point of interest.
        :type date: str
        :param date: Date of interest formatted according to the ISO8601
            standard.
        """
        from scipy.spatial import KDTree
        from spectroscopy.util import parse_iso_8601
        _d = parse_iso_8601(date)
        _ts = calendar.timegm((_d.utctimetuple()))
        # find nearest point
        _t = np.atleast_2d(self.time).T
        # TODO: this needs to be changed to account for regular and irregular
        # grids
        a = np.append(self.position, _t, axis=1)
        tree = KDTree(a, leafsize=a.shape[0] + 1)
        point = [longitude, latitude, height, _ts]
        distances, ndx = tree.query([point], k=1)
        vx = self.vx[ndx[0]]
        vx_error = self.vx_error[ndx[0]]
        vy = self.vy[ndx[0]]
        vy_error = self.vy_error[ndx[0]]
        vz = self.vz[ndx[0]]
        vz_error = self.vz_error[ndx[0]]
        time = self.time[ndx[0]]
        lon, lat, hght = self.position[ndx[0], :]
        return (lon, lat, hght, time, vx, vx_error, vy, vy_error, vz, vz_error)
Example #24
0
 def _pointwiseF(self):
     d = np.array(self.rcentroids)
     tree = KDTree(d)
     # get the 4 nearest neighbors (obviously the first one is the point itself)
     nn = tree.query(d,k=4)[1]
     N = len(self.rcentroids)
     X = []
     x = []
     for i in xrange(N):
         W = np.zeros((3,3),float)
         w = np.zeros((3,3),float)
         for j in xrange(3):
             W[j,:] = self.rcentroids[nn[i,j+1]]-self.rcentroids[i]
             w[j,:] = self.dcentroids[nn[i,j+1]]-self.dcentroids[i]
         X.append(W)
         x.append(w)
     #Solve the linear system for each pointwise F
     for i in xrange(N):
         W = X[i]
         w = x[i]
         A = np.zeros((9,9),float)
         A[0,0:3] = W[0,:]
         A[1,3:6] = W[0,:]
         A[2,6:9] = W[0,:]
         A[3,0:3] = W[1,:]
         A[4,3:6] = W[1,:]
         A[5,6:9] = W[1,:]
         A[6,0:3] = W[2,:]
         A[7,3:6] = W[2,:]
         A[8,6:9] = W[2,:]
         b = w.flatten().T
         F = np.linalg.solve(A,b)
         self.localFs.append(F.reshape(3,3))
def extraCredit(tripLocations, startPolygon, endPolygon):
    #indices is a list that should contain the indices of the trips in the tripLocations list
    #which start in the startPolygon region and end in the endPolygon region
    indices = []

    #TODO: insert your code here. You should build the kdtree and use it to query the closest
    #      intersection for each trip
    startpoint = []
    endpoint = []
    for item in tripLocations:
        startpoint.append([item[0],item[1]])
        endpoint.append([item[2],item[3]])
    #print start
    startTime = time.time()



    rs = ((startRectangle[0][0] - startRectangle[0][1])**2 + (startRectangle[1][0] - startRectangle[1][1])**2)**0.5/float(2)
    re = ((endRectangle[0][0] - endRectangle[0][1])**2 + (endRectangle[1][0] - endRectangle[1][1])**2)**0.5/float(2)
    os = [(startRectangle[0][0] + startRectangle[0][1])/2,(startRectangle[1][0] + startRectangle[1][1])/2]
    oe = [(endRectangle[0][0] + endRectangle[0][1])/2,(endRectangle[1][0] + endRectangle[1][1])/2]


    Stree = KDTree(startpoint)
    Etree = KDTree(endpoint)
    startpoint = set(Stree.query_ball_point(os, rs))
    endpoint = set(Etree.query_ball_point(oe, re))
    s_e = list(startpoint.intersection(endpoint))
    for point in s_e:
        if point_inside_polygon(tripLocations[point][0],tripLocations[point][1],startPolygon) and point_inside_polygon(tripLocations[point][2],tripLocations[point][3],endPolygon):
            indices.append(i)
    return indices    
def kdtreeApproach(intersections, tripLocations):
    #counts is a dictionary that has as keys the intersection index in the intersections list
    #and as values the number of trips in the tripLocation list which has the key as the closest
    #intersection.
    counts = {}
    startTime = time.time()
    tree = KDTree(intersections)
    points = tree.query(tripLocations,k = 1)
    indeces = points[1]
    counts = Counter(indeces)
    #key = indeces.keys()
    #value = key[indeces.values().index(max(indeces.values()))]
    #print value
    #print intersections[value]
    #print counts.keys()
    #busy = indeces.keys().index(value.index(max(value)))
    #print busy
    #TODO: insert your code here. You should build the kdtree and use it to query the closest
    #      intersection for each trip


    #
    endTime = time.time()
    print 'The kdtree computation took', (endTime - startTime), 'seconds'
    return counts
Example #27
0
def daves_super_saturate(atoms):
    pos = atoms.get_positions()
    tree = KDTree(atoms.get_positions())
    list_tree = list(tree.query_pairs(1.430))
    bondedTo = [ [] for i in xrange(len(atoms))] 

    for bond in list_tree:
        bondedTo[bond[0]].append(bond[1])
        bondedTo[bond[1]].append(bond[0])

    Zs = atoms. get_atomic_numbers()
# figure out what needs a hydrogen atom
    for iatom in xrange(len(atoms)):
        nbonds = len( bondedTo[iatom] )
        Z = Zs[iatom]
        if (Z,nbonds) == (6,2):
            print "we should add H to atom ", iatom
            

            r0 = pos[iatom, :]
            bond1 = pos[ bondedTo[iatom][0] , : ] - r0
            bond2 = pos[ bondedTo[iatom][1],   :]  -r0
            rH = -(bond1 + bond2)
            rH = 1.09 * rH / np.linalg.norm(rH)
            atoms.append(Atom('H',  r0+rH ))
Example #28
0
        def compare_image(the_image):
            """Return the fraction of sources found in the original image"""
            # pixel comparison is not good, doesn't work. Compare catalogs.
            if isinstance(the_image, np.ma.MaskedArray):
                full_algn = the_image.filled(fill_value=np.median(the_image))\
                    .astype('float32')
            else:
                full_algn = the_image.astype('float32')
            full_algn[the_image == 0] = np.median(the_image)
            import sep
            bkg = sep.Background(full_algn)
            thresh = 3.0 * bkg.globalrms
            allobjs = sep.extract(full_algn - bkg.back(), thresh)
            allxy = np.array([[obj['x'], obj['y']] for obj in allobjs])

            from scipy.spatial import KDTree
            ref_coordtree = KDTree(self.star_new_pos)

            # Compare here srcs list with self.star_ref_pos
            num_sources = 0
            for asrc in allxy:
                found_source = ref_coordtree.query_ball_point(asrc, 3)
                if found_source:
                    num_sources += 1
            fraction_found = float(num_sources) / float(len(allxy))
            return fraction_found
Example #29
0
	def cluster(self, data):
		# maps data point to cluster index; optimizes stopping criteria
		data_length = len(data)
		cluster_map = [-1] * data_length
		# start off with a few random cluster centers;
		# this is the Forgy method and usually OK for standard k-means.
		current_cluster_centers = data[np.random.choice(data_length, size=self.k, replace=False), :]

		# repeat the loop until the cluster assignments do not change anymore
		at_least_one_assignment_changed = True
		
		while at_least_one_assignment_changed:
			# consult a KD tree for performance improvement
			cluster_center_tree = KDTree(current_cluster_centers, leafsize=5)
			_, data_membership  = cluster_center_tree.query(data)

			# update stopping condition
			# manual loop instead of equality operator as the latter always checks all elements, ...
			at_least_one_assignment_changed = False
			for i in range(data_length):
				if cluster_map[i] == data_membership[i]: continue
				at_least_one_assignment_changed = True
				break
			
			# and finally update the cluster centers to be the centroids of the voronoi subsets
			cluster_map = data_membership
			current_cluster_centers = [np.median(data[cluster_map == i, :], axis=0) for i in range(self.k)]
		
		return Clusters(data = data, 
						membership = cluster_map, 
						cluster_centers = current_cluster_centers)
 def jiggle_points(self):
     max_y, min_y = self.y + self.max_height/2, self.y - self.max_height/2
     more_to_do = (len(self.points) > 0)
     while more_to_do:
         for i in range(len(self.points)):
             current = self.points.pop(0)
             points_array = numpy.array([[p.x, p.y] for p in self.points])
             kdtree = KDTree(points_array)
             ids = kdtree.query_ball_point([current.x, current.y], self.min_dist)
             # If there are any neighbours too near
             counter = 0
             while not ids == []:
                 rand = random.uniform(-self.min_dist, self.min_dist)
                 current.y = min(max_y, max(min_y, current.y + rand))
                 ids = kdtree.query_ball_point([current.x, current.y], self.min_dist)
                 counter += 1
                 if counter > 100: break
             self.points.append(current)
         for i in range(len(self.points)):
             current = self.points.pop(0)
             points_array = numpy.array([[p.x, p.y] for p in self.points])
             kdtree = KDTree(points_array)
             ids = kdtree.query_ball_point([current.x, current.y], self.min_dist)
             self.points.append(current)
             more_to_do = (not ids == [])
             if more_to_do: break
Example #31
0
class WaypointUpdater(object):
    def __init__(self):
        rospy.init_node('waypoint_updater')

        rospy.Subscriber('/current_pose',
                         PoseStamped,
                         self.pose_cb,
                         queue_size=2)
        rospy.Subscriber('/base_waypoints',
                         Lane,
                         self.waypoints_cb,
                         queue_size=8)

        # TODO: Add a subscriber for /traffic_waypoint and /obstacle_waypoint below
        rospy.Subscriber('/traffic_waypoint', Int32, self.traffic_cb)
        #rospy.Subscriber('/obstacle_waypoint', Int32, self.obstacle_cb, queue_size=1)

        self.final_waypoints_pub = rospy.Publisher('final_waypoints',
                                                   Lane,
                                                   queue_size=1)

        # TODO: Add other member variables you need below
        self.base_lane = None
        self.pose = None
        self.waypoints_2d = None
        self.waypoint_tree = None
        self.stopline_wp_idx = -1
        #rospy.spin()
        self.decelerate_count = 0

        self.loop()

    # Infinite loop
    def loop(self):
        rate = rospy.Rate(PUB_FREQUENCY)
        while not rospy.is_shutdown():
            if self.pose and self.base_lane and self.waypoint_tree:
                self.publish_waypoints()

            rate.sleep()

    def pose_cb(self, msg):
        # TODO: Implement
        self.pose = msg
        #rospy.logwarn("Pose")

    def waypoints_cb(self, waypoints):
        # TODO: Implement
        self.base_lane = waypoints
        #rospy.logwarn("Waypoints in Baselane")
        if not self.waypoints_2d:
            self.waypoints_2d = [[
                waypoint.pose.pose.position.x, waypoint.pose.pose.position.y
            ] for waypoint in waypoints.waypoints]
            #rospy.logwarn("Waypoints in waypoint treed{}".format(self.waypoints_2d))
            self.waypoint_tree = KDTree(self.waypoints_2d)
            #rospy.logwarn("Waypoints in waypoint tree")

    def traffic_cb(self, msg):
        # TODO: Callback for /traffic_waypoint message. Implement
        #if self.stopline_wp_idx != msg.data:
        rospy.logwarn(
            "LIGHT: new stopline_wp_idx={}, old stopline_wp_idx={}".format(
                msg.data, self.stopline_wp_idx))
        self.stopline_wp_idx = msg.data

    def obstacle_cb(self, msg):
        # TODO: Callback for /obstacle_waypoint message. We will implement it later
        # I am not using it in this project
        pass

    # Get the closest waypoint index
    def get_closest_waypoint_idx(self):
        # Current pose (x,y) and index
        x = self.pose.pose.position.x
        y = self.pose.pose.position.y
        closest_idx = self.waypoint_tree.query([x, y], 1)[1]

        # Check if point is ahead or behind the car
        closest_coord = self.waypoints_2d[closest_idx]
        prev_coord = self.waypoints_2d[closest_idx - 1]

        # Equation for hyperplane through closest_coords
        cl_vect = np.array(closest_coord)
        prev_vect = np.array(prev_coord)
        pos_vect = np.array([x, y])

        val = np.dot(cl_vect - prev_vect, pos_vect - cl_vect)
        if val > 0:
            closest_idx = (closest_idx + 1) % len(self.waypoints_2d)

        return closest_idx

    # Publishes the final lane
    def publish_waypoints(self):
        final_lane = self.generate_lane()
        self.final_waypoints_pub.publish(final_lane)

    def generate_lane(self):
        lane = Lane()
        # Get the closest and farthest index
        closest_idx = self.get_closest_waypoint_idx()
        farthest_idx = closest_idx + LOOKAHEAD_WPS
        base_waypoints = self.base_lane.waypoints[closest_idx:farthest_idx]
        rospy.logwarn("closest index :{}  and stopline index:{}".format(
            closest_idx, self.stopline_wp_idx))
        # If no traffic light was detected, publish the base_waypoints as it is
        if (self.stopline_wp_idx
                == -1) or (self.stopline_wp_idx >= farthest_idx):
            lane.waypoints = base_waypoints
            rospy.logwarn("No Change")
        else:
            rospy.logwarn("Reduce speed")
            lane.waypoints = self.decelerate_waypoints(base_waypoints,
                                                       closest_idx)

        return lane

    def decelerate_waypoints(self, waypoints, closest_idx):
        temp = []
        for i, wp in enumerate(waypoints):
            p = Waypoint()
            p.pose = wp.pose
            stop_idx = max(self.stopline_wp_idx - closest_idx - 2, 0)
            dist = self.distance(waypoints, i, stop_idx)
            vel = math.sqrt(2 * MAX_DECEL * dist)
            if vel < 1.:
                vel = 0

            p.twist.twist.linear.x = min(vel, wp.twist.twist.linear.x)
            temp.append(p)

        self.decelerate_count += 1
        if (self.decelerate_count % 5) == 0:
            size = len(waypoints) - 1
            vel_start = temp[0].twist.twist.linear.x
            vel_end = temp[size].twist.twist.linear.x
            rospy.logwarn("DECEL: vel[0]={:.2f}, vel[{}]={:.2f}".format(
                vel_start, size, vel_end))

        return temp

    def get_waypoint_velocity(self, waypoint):
        return waypoint.twist.twist.linear.x

    def set_waypoint_velocity(self, waypoints, waypoint, velocity):
        waypoints[waypoint].twist.twist.linear.x = velocity

    def distance(self, waypoints, wp1, wp2):
        dist = 0
        dl = lambda a, b: math.sqrt(((a.x - b.x)**2) + ((a.y - b.y)**2) +
                                    ((a.z - b.z)**2))
        for i in range(wp1, wp2 + 1):
            dist += dl(waypoints[wp1].pose.pose.position,
                       waypoints[i].pose.pose.position)
            wp1 = i
        return dist
class TLDetector(object):
    def __init__(self):
        rospy.init_node('tl_detector_site')

        self.pose = None
        self.waypoints = None
        self.camera_image = None
        self.lights = []
        self.xycoords_orig_waypoints = None
        self.kdtree_orig_waypoints = None

        self.state = TrafficLight.UNKNOWN
        self.last_state = TrafficLight.UNKNOWN
        self.last_wp = -1
        self.state_count = 0

        self.bridge = CvBridge()
        self.light_classifier_site = TLClassifier()
        #classify a blank black image at first, since the first image takes too long to classify
        self.light_classifier_site.get_classification(np.zeros((600, 800, 3)))
        self.listener = tf.TransformListener()

        config_string = rospy.get_param("/traffic_light_config")
        self.config = yaml.load(config_string)

        sub1 = rospy.Subscriber('/current_pose', PoseStamped, self.pose_cb)
        sub2 = rospy.Subscriber('/base_waypoints', Lane, self.waypoints_cb)
        '''
        /vehicle/traffic_lights provides you with the location of the traffic light in 3D map space and
        helps you acquire an accurate ground truth data source for the traffic light
        classifier by sending the current color state of all traffic lights in the
        simulator. When testing on the vehicle, the color state will not be available. You'll need to
        rely on the position of the light and the camera image to predict it.
        '''
        sub3 = rospy.Subscriber('/vehicle/traffic_lights', TrafficLightArray,
                                self.traffic_cb)
        sub6 = rospy.Subscriber('/image_color', Image, self.image_cb)

        self.upcoming_red_light_pub = rospy.Publisher('/traffic_waypoint',
                                                      Int32,
                                                      queue_size=1)

        rospy.spin()

    def pose_cb(self, msg):
        self.pose = msg

    def waypoints_cb(self, waypoints):
        self.waypoints = waypoints
        if not self.xycoords_orig_waypoints:
            self.xycoords_orig_waypoints = [[
                waypoint.pose.pose.position.x, waypoint.pose.pose.position.y
            ] for waypoint in waypoints.waypoints]
            self.kdtree_orig_waypoints = KDTree(self.xycoords_orig_waypoints)

    def traffic_cb(self, msg):
        self.lights = msg.lights

    def image_cb(self, msg):
        """Identifies red lights in the incoming camera image and publishes the index
            of the waypoint closest to the red light's stop line to /traffic_waypoint
        Args:
            msg (Image): image from car-mounted camera
        """
        self.has_image = True
        self.camera_image = msg

        state = TrafficLight.UNKNOWN

        if self.pose and self.kdtree_orig_waypoints:
            light_wp, state = self.process_traffic_lights()
        '''
        Publish upcoming red lights at camera frequency.
        Each predicted state has to occur `STATE_COUNT_THRESHOLD` number
        of times till we start using it. Otherwise the previous stable state is
        used.
        '''
        if self.state != state:
            self.state_count = 0
            self.state = state
        elif self.state_count >= STATE_COUNT_THRESHOLD:
            self.last_state = self.state
            light_wp = light_wp if (state == TrafficLight.RED
                                    or state == TrafficLight.YELLOW) else -1
            self.last_wp = light_wp
            self.upcoming_red_light_pub.publish(Int32(light_wp))
            #rospy.loginfo("Red light at " + str(light_wp))
        else:
            self.upcoming_red_light_pub.publish(Int32(self.last_wp))
            #rospy.loginfo("published previous signal")
        self.state_count += 1

    def get_closest_waypoint(self, xcoord, ycoord):
        """Identifies the closest path waypoint to the given position
            https://en.wikipedia.org/wiki/Closest_pair_of_points_problem
        Args:
            pose (Pose): position to match a waypoint to
        Returns:
            int: index of the closest waypoint in self.waypoints
        """
        id_closest_waypoint = self.kdtree_orig_waypoints.query(
            [xcoord, ycoord], 1)[1]
        return id_closest_waypoint

    def get_light_state(self, light):
        """Determines the current color of the traffic light
        Args:
            light (TrafficLight): light to classify
        Returns:
            int: ID of traffic light color (specified in styx_msgs/TrafficLight)
        """
        if (not self.has_image):
            #    self.prev_light_loc = None
            return False

        cv_image = self.bridge.imgmsg_to_cv2(self.camera_image, "bgr8")
        state = self.light_classifier_site.get_classification(cv_image)

        return state

    def process_traffic_lights(self):
        """Finds closest visible traffic light, if one exists, and determines its
            location and color
        Returns:
            int: index of waypoint closes to the upcoming stop line for a traffic light (-1 if none exists)
            int: ID of traffic light color (specified in styx_msgs/TrafficLight)
        """
        closest_traffic_light = None

        if (self.pose):
            xpos = self.pose.pose.position.x
            ypos = self.pose.pose.position.y
            id_wp_car_position = self.get_closest_waypoint(xpos, ypos)

        # List of positions that correspond to the line to stop in front of for a given intersection
        stop_line_positions = self.config['stop_line_positions']

        #min_delta_wpid_car_line = len(self.waypoints.waypoints)
        min_delta_wpid_car_line = 100  #using only 100 waypoints limits load on camera/classification

        for i, light in enumerate(self.lights):
            stop_line_xycoord = stop_line_positions[i]
            id_wp_stop_line_i = self.get_closest_waypoint(
                stop_line_xycoord[0], stop_line_xycoord[1])
            delta_wpid_car_line = id_wp_stop_line_i - id_wp_car_position
            if delta_wpid_car_line >= 0 and delta_wpid_car_line < min_delta_wpid_car_line:
                id_wp_closest_stop_line = id_wp_stop_line_i
                min_delta_wpid_car_line = delta_wpid_car_line
                closest_traffic_light = light

        if closest_traffic_light:
            state = self.get_light_state(closest_traffic_light)
            return id_wp_closest_stop_line, state

        return -1, TrafficLight.UNKNOWN
class TLDetector(object):
    def __init__(self):
        rospy.init_node('tl_detector')

        self.pose = None
        self.waypoints = None
        self.camera_image = None
        self.lights = []
        self.waypoints_2d = None
        self.waypoint_tree = None

        sub1 = rospy.Subscriber('/current_pose', PoseStamped, self.pose_cb)
        sub2 = rospy.Subscriber('/base_waypoints', Lane, self.waypoints_cb)

        '''
        /vehicle/traffic_lights provides you with the location of the traffic light in 3D map space and
        helps you acquire an accurate ground truth data source for the traffic light
        classifier by sending the current color state of all traffic lights in the
        simulator. When testing on the vehicle, the color state will not be available. You'll need to
        rely on the position of the light and the camera image to predict it.
        '''
        sub3 = rospy.Subscriber('/vehicle/traffic_lights', TrafficLightArray, self.traffic_cb)
        sub6 = rospy.Subscriber('/image_color', Image, self.image_cb)

        config_string = rospy.get_param("/traffic_light_config")
        self.config = yaml.load(config_string)

        self.upcoming_red_light_pub = rospy.Publisher('/traffic_waypoint', Int32, queue_size=1)

        self.bridge = CvBridge()
        self.light_classifier = TLClassifier()
        self.listener = tf.TransformListener()

        self.state = TrafficLight.UNKNOWN
        self.last_state = TrafficLight.UNKNOWN
        self.last_wp = -1
        self.state_count = 0
        #self.counter = 0
        #self.light_list = []

        rospy.spin()

    def pose_cb(self, msg):
        self.pose = msg

    def waypoints_cb(self, waypoints):
        self.waypoints = waypoints
        if not self.waypoints_2d:
            self.waypoints_2d = [[waypoint.pose.pose.position.x, waypoint.pose.pose.position.y] for waypoint in waypoints.waypoints]
            self.waypoint_tree = KDTree(self.waypoints_2d)


    def traffic_cb(self, msg):
        self.lights = msg.lights

    def image_cb(self, msg):
        """Identifies red lights in the incoming camera image and publishes the index
            of the waypoint closest to the red light's stop line to /traffic_waypoint

        Args:
            msg (Image): image from car-mounted camera

        """
        self.has_image = True
        self.camera_image = msg
        light_wp, state = self.process_traffic_lights()         

        '''
        Publish upcoming red lights at camera frequency.
        Each predicted state has to occur `STATE_COUNT_THRESHOLD` number
        of times till we start using it. Otherwise the previous stable state is
        used.
        '''
        if self.state != state:
            self.state_count = 0
            self.state = state
        elif self.state_count >= STATE_COUNT_THRESHOLD:
            self.last_state = self.state
            light_wp = light_wp if state == TrafficLight.RED else -1
            self.last_wp = light_wp
            self.upcoming_red_light_pub.publish(Int32(light_wp))
        else:
            self.upcoming_red_light_pub.publish(Int32(self.last_wp))
        self.state_count += 1

    def get_closest_waypoint(self, x, y):
        """Identifies the closest path waypoint to the given position
            https://en.wikipedia.org/wiki/Closest_pair_of_points_problem
        Args:
            pose (Pose): position to match a waypoint to

        Returns:
            int: index of the closest waypoint in self.waypoints

        """
        # implement
        closest_idx = self.waypoint_tree.query([x,y], 1)[1]
        return closest_idx

    def get_light_state(self, light):
        """Determines the current color of the traffic light

        Args:
            light (TrafficLight): light to classify

        Returns:
            int: ID of traffic light color (specified in styx_msgs/TrafficLight)

        """
        # Save Images
        """ cv_image = self.bridge.imgmsg_to_cv2(self.camera_image, "bgr8")
        resized_image = cv2.resize(cv_image, (320, 240)) 
        cv2.imwrite("images/img-{0}.png".format(self.counter),resized_image)
        img = []
        img.append("img-{0}.png".format(self.counter))
        img.append(light.state)
        #self.light_list.append(img)
        self.counter += 1

        with open("training/output.csv", "a") as f:
            writer = csv.writer(f)
            writer.writerow(img)
        f.close() """

        return light.state
        """ if(not self.has_image):
            self.prev_light_loc = None
            return False

        cv_image = self.bridge.imgmsg_to_cv2(self.camera_image, "bgr8")

        #Get classification
        return self.light_classifier.get_classification(cv_image) """

    def process_traffic_lights(self):
        """Finds closest visible traffic light, if one exists, and determines its
            location and color

        Returns:
            int: index of waypoint closes to the upcoming stop line for a traffic light (-1 if none exists)
            int: ID of traffic light color (specified in styx_msgs/TrafficLight)

        """
        closest_light = None
        line_wp_idx = None

        # List of positions that correspond to the line to stop in front of for a given intersection
        stop_line_positions = self.config['stop_line_positions']
        if(self.pose):
            car_wp_idx = self.get_closest_waypoint(self.pose.pose.position.x, self.pose.pose.position.y)

        # find the closest visible traffic light (if one exists)
        diff  = len(self.waypoints.waypoints)
        for i, light in enumerate(self.lights):
            # Get stop line waypoint
            line = stop_line_positions[i]
            temp_wp_idx = self.get_closest_waypoint(line[0], line[1])
            # Find closest stop line waypoint index
            d = temp_wp_idx - car_wp_idx
            if d >= 0 and d < diff:
                diff = d
                closest_light = light
                line_wp_idx = temp_wp_idx

        if closest_light:
            state = self.get_light_state(closest_light)
            return line_wp_idx, state

        return -1, TrafficLight.UNKNOWN
Example #34
0
def calculate_surface_points(receptor,
                             ligand,
                             num_points,
                             rec_translation,
                             surface_density,
                             seed=STARTING_POINTS_SEED,
                             has_membrane=False,
                             num_sphere_points=100):
    """Calculates the position of num_points on the surface of the given protein"""
    if num_points < 0:
        raise SetupError(
            "Invalid number of points to generate over the surface")

    receptor_atom_coordinates = receptor.representative(has_membrane)

    distances_matrix_rec = distance.pdist(receptor_atom_coordinates)
    receptor_max_diameter = np.max(distances_matrix_rec)
    distances_matrix_lig = distance.pdist(ligand.representative())
    ligand_max_diameter = np.max(distances_matrix_lig)
    surface_distance = ligand_max_diameter / 4.0

    # Surface
    pdb_file_name = Path(
        receptor.structure_file_names[receptor.representative_id])
    molecule = parsePDB(pdb_file_name).select('protein or nucleic')
    if has_membrane:
        pdb_no_membrane = str(
            pdb_file_name.absolute().parent /
            f"{pdb_file_name.stem}_no_membrane{pdb_file_name.suffix}")
        writePDB(pdb_no_membrane, molecule)
    surface = molecule.select('protein and surface or nucleic and name P')
    coords = surface.getCoords()

    # SASA
    if num_points == 0:
        if has_membrane:
            structure = freesasa.Structure(pdb_no_membrane)
        else:
            structure = freesasa.Structure(str(pdb_file_name))
        result = freesasa.calc(structure)
        total_sasa = result.totalArea()
        num_points = ceil(total_sasa / surface_density)

    # Surface clusters
    if len(coords) > num_points:
        # Extremely important to set seed in order to get reproducible results
        np.random.seed(seed)
        surface_clusters = kmeans2(data=coords,
                                   k=num_points,
                                   minit='points',
                                   iter=100)
        surface_centroids = surface_clusters[0]
    else:
        surface_centroids = coords

    # Create points over the surface of each surface cluster
    sampling = []
    for sc in surface_centroids:
        sphere_points = np.array(points_on_sphere(num_sphere_points))
        surface_points = sphere_points * surface_distance + sc
        sampling.append(surface_points)

    # Filter out not compatible points
    centroids_kd_tree = KDTree(surface_centroids)
    for i_centroid in range(len(sampling)):
        # print('.', end="", flush=True)
        centroid = surface_centroids[i_centroid]
        # Search for this centroid neighbors
        centroid_neighbors = centroids_kd_tree.query_ball_point(centroid,
                                                                r=20.)
        # For each neighbor, remove points too close
        for n in centroid_neighbors:
            points_to_remove = []
            if n != i_centroid:
                for i_p, p in enumerate(sampling[i_centroid]):
                    if np.linalg.norm(
                            p - surface_centroids[n]) <= surface_distance:
                        points_to_remove.append(i_p)
                points_to_remove = list(set(points_to_remove))
                sampling[i_centroid] = [sampling[i_centroid][i_p] \
                    for i_p in range(len(sampling[i_centroid])) if i_p not in points_to_remove]

    s = []
    for points in sampling:
        s.extend(points)

    # Final cluster of points
    if len(s) > num_points:
        # Extremely important to set seed in order to get reproducible results
        np.random.seed(seed)
        s_clusters = kmeans2(data=s, k=num_points, minit='points', iter=100)
        s = s_clusters[0]

    for p in s:
        p += rec_translation

    return s, receptor_max_diameter, ligand_max_diameter
Example #35
0
class TLDetector(object):
    def __init__(self):
        rospy.init_node('tl_detector')

        self.pose = None
        self.waypoints = None
        self.waypoints_2d = None
        self.waypoint_tree = None
        self.camera_image = None
        self.lights = []

        sub1 = rospy.Subscriber('/current_pose', PoseStamped, self.pose_cb)
        sub2 = rospy.Subscriber('/base_waypoints', Lane, self.waypoints_cb)

        '''
        /vehicle/traffic_lights provides you with the location of the traffic light in 3D map space and
        helps you acquire an accurate ground truth data source for the traffic light
        classifier by sending the current color state of all traffic lights in the
        simulator. When testing on the vehicle, the color state will not be available. You'll need to
        rely on the position of the light and the camera image to predict it.
        '''
        sub3 = rospy.Subscriber('/vehicle/traffic_lights', TrafficLightArray, self.traffic_cb)
        sub6 = rospy.Subscriber('/image_color', Image, self.image_cb)

        config_string = rospy.get_param("/traffic_light_config")
        self.config = yaml.load(config_string)

        self.upcoming_light_pub = rospy.Publisher('/traffic_waypoint', Int32, queue_size=1)
        self.upcoming_red_light_pub = rospy.Publisher('/red_traffic_waypoint', Int32, queue_size=1)
        self.classifier_state_pub = rospy.Publisher('/class_state', Int32, queue_size=1)
        
        self.bridge = CvBridge()
        self.light_classifier = TLClassifier()
        self.listener = tf.TransformListener()

        self.state = TrafficLight.UNKNOWN
        self.last_state = TrafficLight.UNKNOWN
        self.last_wp = -1
        self.state_count = 0
        self.cl_stat=0

        rospy.spin()

    def pose_cb(self, msg):
        self.pose = msg

    def waypoints_cb(self, waypoints):
        self.waypoints = waypoints
        if not self.waypoints_2d:
            self.waypoints_2d = [[waypoint.pose.pose.position.x, waypoint.pose.pose.position.y] for waypoint in waypoints.waypoints]
            self.waypoint_tree = KDTree(self.waypoints_2d)
            

    def traffic_cb(self, msg):
        self.lights = msg.lights

    def image_cb(self, msg):
        """Identifies red lights in the incoming camera image and publishes the index
            of the waypoint closest to the red light's stop line to /traffic_waypoint

        Args:
            msg (Image): image from car-mounted camera

        """
        self.has_image = True
        self.camera_image = msg
        light_wp, state = self.process_traffic_lights()

        '''
        Publish upcoming red lights at camera frequency.
        Each predicted state has to occur `STATE_COUNT_THRESHOLD` number
        of times till we start using it. Otherwise the previous stable state is
        used.
        '''
        self.upcoming_light_pub.publish(Int32(light_wp))
        
        if self.state != state:
            self.state_count = 0
            self.state = state
        elif self.state_count >= STATE_COUNT_THRESHOLD:
            self.last_state = self.state
            if state == TrafficLight.UNKNOWN: 
                self.cl_stat =9
                
            else:
                self.cl_stat =1
            self.classifier_state_pub.publish(Int32(self.cl_stat))    
            light_wp = light_wp if state == TrafficLight.RED else -1
            #rospy.logwarn('red light waypoint: {}'.format(light_wp))
            self.last_wp = light_wp
            self.upcoming_red_light_pub.publish(Int32(light_wp))
        else:
            self.upcoming_red_light_pub.publish(Int32(self.last_wp))
        self.state_count += 1

    def get_closest_waypoint(self,x,y):
        """Identifies the closest path waypoint to the given position
            https://en.wikipedia.org/wiki/Closest_pair_of_points_problem
        Args:
            pose (Pose): position to match a waypoint to

        Returns:
            int: index of the closest waypoint in self.waypoints

        """
        #TODO implement
        #x = self.pose.pose.position.x
        #y = self.pose.pose.position.y
        closest_idx = self.waypoint_tree.query([x,y],1)[1]
        
        #rospy.logwarn(closest_idx)
        return closest_idx
        

    def get_light_state(self, light):
        """Determines the current color of the traffic light

        Args:
            light (TrafficLight): light to classify

        Returns:
            int: ID of traffic light color (specified in styx_msgs/TrafficLight)

              """
       ## ground truth       
       # return light.state 
       
        if(not self.has_image):
            self.prev_light_loc = None
            return False

        cv_image = self.bridge.imgmsg_to_cv2(self.camera_image, "bgr8")

        # #Get classification
        result = self.light_classifier.get_classification(cv_image)
        #rospy.logwarn('ground truth/prediction: {0}/{1}'.format(COLOR_NAME_MAPPING[light.state], COLOR_NAME_MAPPING[result]))
        return result

    def process_traffic_lights(self):
        """Finds closest visible traffic light, if one exists, and determines its
            location and color

        Returns:
            int: index of waypoint closes to the upcoming stop line for a traffic light (-1 if none exists)
            int: ID of traffic light color (specified in styx_msgs/TrafficLight)

        """
        #light = None
        closest_light = None
        line_wp_idx = None
        

        # List of positions that correspond to the line to stop in front of for a given intersection
        stop_line_positions = self.config['stop_line_positions']
        if(self.pose):
            #car_position = self.get_closest_waypoint(self.pose.pose)
            car_wp_idx = self.get_closest_waypoint(self.pose.pose.position.x, self.pose.pose.position.y)
            
            diff = len(self.waypoints.waypoints)
            for i, light in enumerate(self.lights):
                line = stop_line_positions[i]
                temp_wp_idx =self.get_closest_waypoint(line[0],line[1])
                
                d = temp_wp_idx - car_wp_idx
                #rospy.logwarn('distance between ego and closest light is :{}'.format(d))
                if d>=0 and d<diff:
                    diff=d
                    closest_light=light
                    line_wp_idx=temp_wp_idx
                    
                    #rospy.logwarn(closest_light.state)
        #TODO find the closest visible traffic light (if one exists)

        if closest_light:
        
            state = self.get_light_state(closest_light)
            #rospy.logwarn('closest light state: {}'.format(state))
            #rospy.logwarn('closest stop line index: {}'.format(line_wp_idx))
            #rospy.logwarn('closest ego index: {}'.format(car_wp_idx))
            return line_wp_idx, state
           
        #self.waypoints = None
        return -1, TrafficLight.UNKNOWN
Example #36
0
def cal_all_mapping_action(writer, sheetName, e_df, l_df):
    """
    Main function to calcualte mapping action:
        
        First using kdtree to get the nearest 20 points to search,
        and calculate the 20 points for the possible loss value.

        Finally get the minmum loss from the possible candidate above.
    """

    # Parse the whole dataFrame into two list of 3Darrays
    print('INTO dataE')
    with ThreadPoolExecutor(max_workers=MAX_THREAD_NUM) as exe:
        dataE = list(
            exe.map(parse_row_to_list_of_3Darray, e_df.values, chunksize=20))
    print('Finish dataE')

    dataL = l_df.values

    # Parse the last item, end position, to find the nearest 20 actions,
    # to calculate possible loss values.
    print('INTO dataEndPos')
    parse_end_posE = functools.partial(parse_end_pos_to_3Darray, idx=E_END_POS)
    parse_end_posL = functools.partial(parse_end_pos_to_3Darray, idx=L_END_POS)
    with ThreadPoolExecutor(max_workers=MAX_THREAD_NUM) as exe:
        dataEndPosE = list(exe.map(parse_end_posE, e_df.values, chunksize=20))
    with ThreadPoolExecutor(max_workers=MAX_THREAD_NUM) as exe:
        dataEndPosL = list(exe.map(parse_end_posL, l_df.values, chunksize=200))
    print('Finish dataEndPos')

    print('INTO rowCandidate')
    # Using KDTree to find nearnest 20 end positions.
    kdL = KDTree(dataEndPosL)
    print('Finish rowCandidate')
    # rowCandidate stores 20 indices of expert dataFrame, which are 20 nearest
    # end positions.
    rowCandidate = []

    for rowData in dataEndPosE:
        _, idx = kdL.query(x=rowData, k=50)
        rowCandidate.append(idx)

    # Using ThreadPoolExecutor will decreasing the data comparing time while looking up table, dataL.
    # And without the ordering problem.
    print('INTO mapData')
    partial_cal_action = functools.partial(cal_mapping_action, dataL=dataL)
    with ThreadPoolExecutor(max_workers=MAX_THREAD_NUM) as exe:
        mapData = list(exe.map(partial_cal_action, dataE, rowCandidate))
    # mapData = cal_angLoss(mapData)
    data = np.array(mapData)
    # data = smooth_mapping_data(data, dataE, dataL, rowCandidate)
    # data = np.array(mapData)
    print('Finish mapData')
    # After the construction of all action mapping and loss calculation,
    # I use pandas to write into excel.
    print('INTO Excel')
    header = []
    for i, col in enumerate(list(l_df.columns)):
        if (i % L_NUM_IN_TUPLE == 0):
            # e.g [joint 0 pos] [joint 0 posSensor] [joint 1 pos] [joint 1 posSensor]
            # so need to pick i % L_NUM_IN_TUPLE == 0.
            header.append(col)
    header[0] = 'learner num'
    header.append('loss')
    header.append('ang loss')

    df = pd.DataFrame(data=data, columns=header)
    df.to_excel(writer, sheet_name=sheetName, index=True)
    # set layout
    (_, max_col) = df.shape
    worksheet = writer.sheets[sheetName]
    worksheet.set_column(0, max_col, 15)
    print('Finish Excel')
Example #37
0
            ent_indx += 1
            entities.append(ent_indx)
            pose_map[ent_indx] = []
            pose_map[ent_indx].append([tuple(f) for f in frame[x]])
            print('\t> Append Entity ID: ', ent_indx)

            # Construct 2D-KD Tree Mapping of Joints
            X = []
            Y = []
            lookup = dict()
            for y in range(18):
                X.append(frame[x][y][0])
                Y.append(frame[x][y][1])
                lookup[tuple(frame[x][y])] = ent_indx

            kd_frame.append(KDTree(zip(X, Y)))
            kp_lookup.append(lookup)

        # pp = pprint.PrettyPrinter()
        # pp.pprint(kp_lookup)

    elif len(frame) == len(entities):   # Same count as previous frame
        print('No changes in entity counts...')

        # Map Candidate from Previous Frame and Build Lookup Dictionary
        for x in range(len(frame)):
            # Query Candidate Joint
            cand = []
            for y in range(18):
                query = kd_frame[x].query(frame[x][y], len(frame))
                cand.append(zip(query[0], query[1]))
Example #38
0
 def waypoints_cb(self, waypoints):
     self.base_waypoints = waypoints
     if not self.waypoints_2D:
         self.waypoints_2D = [[waypoint.pose.pose.position.x, waypoint.pose.pose.position.y] for waypoint in waypoints.waypoints]
         #Creating a K-Dimension Binary search tree
         self.waypoints_tree = KDTree(self.waypoints_2D)
Example #39
0
    def fit(self, X, grid=1.):
        """
        fit the Means-Shift Model
        :param X:
        :param grid:
        :return:
        """
        centers = self.genMeshGridPoints(X, grid)
        nc = len(centers)

        kdtree = KDTree(X, leafsize=8)
        centers_update = copy.deepcopy(centers)
        for i in range(self.max_iter):
            print('iter: ', i)
            delete_idx = []
            rnn_nums = [0] * nc
            for j in range(nc):
                query = centers[j, :]
                neighbot_index = kdtree.query_ball_point(query, r=self.r)
                rnn_nums[j] = len(neighbot_index)
                if len(neighbot_index) > self.lessK:
                    # if the current center has neighbors, then recompute the center
                    center = np.mean(X[neighbot_index, :], axis=0)
                    centers[j, :] = center
                else:
                    # if the current center has no neighbors, record the index and prepare to delete it
                    delete_idx.append(j)

            # delete some centers who has no neighbors
            if delete_idx:
                centers = np.delete(centers, delete_idx, axis=0)
                centers_update = np.delete(centers_update, delete_idx, axis=0)
                rnn_nums = np.delete(np.array(rnn_nums), delete_idx, axis=0)
                nc = len(centers)

            # NMS, Non-Maximum Suppression
            # 如果两个中心点坐标之差很小,则剔除radiusNN点较少的中心点
            delete_idx = set()
            for jj in range(nc):
                diff_c = centers - centers[jj, :]
                diff = np.sum(diff_c**2, axis=1)
                diff[jj] = 1e3  # ensure the current center will not be delete
                nms_idx = np.array(range(nc))[
                    diff < self.
                    nms]  # get the point indexs that around the current center
                for k in nms_idx:
                    if rnn_nums[k] < rnn_nums[
                            jj]:  # record and delete the index whose neighbor'size is less
                        delete_idx.add(k)
            if delete_idx:
                delete_idx = list(delete_idx)
                centers = np.delete(centers, delete_idx, axis=0)
                centers_update = np.delete(centers_update, delete_idx, axis=0)
                nc = len(centers)

            show = 1
            if show:
                plt.figure()
                plt.scatter(datas[:, 0], datas[:, 1], s=5, color='r')
                plt.scatter(centers[:, 0], centers[:, 1], c='blue', s=8)
                ax = plt.gca()
                plot_args = {
                    'fc': 'None',
                    'lw': 2,
                    'edgecolor': 'b',
                    'ls': ':'
                }
                for j in range(nc):
                    circle = Circle(centers[j, :], radius=self.r, **plot_args)
                    ax.add_patch(circle)
                plt.show()

            # determine whether the iteration terminates or not
            diff_sum = np.sum(np.fabs(centers_update - centers))
            if diff_sum < self.tolerance:
                print('centers do not change, break at iter:{}!'.format(i))
                break
            else:
                centers_update = copy.deepcopy(centers)

        # TODO: need NMS again

        self.n_clusters, self.centers = len(centers), copy.deepcopy(centers)
Example #40
0
 def kdtree(self):
     if 'kdtree' in self._cache:
         return self._cache.get('kdtree')
     with self._cache:
         kdtree = KDTree(self.vertices.view(np.ndarray))
     return self._cache.set('kdtree', kdtree)
class TLDetector(object):
    def __init__(self):
        rospy.init_node('tl_detector')

        self.has_image = False
        self.pose = None
        self.waypoints = None
        self.waypoints_2d = None
        self.waypoints_tree = None
        self.camera_image = None
        self.lights = []

        rospy.Subscriber('/current_pose', PoseStamped, self.cb_pose)
        rospy.Subscriber('/base_waypoints', Lane, self.cb_waypoints)

        '''
        /vehicle/traffic_lights provides you with the location of the traffic light in 3D map space and
        helps you acquire an accurate ground truth data source for the traffic light
        classifier by sending the current color state of all traffic lights in the
        simulator. When testing on the vehicle, the color state will not be available. You'll need to
        rely on the position of the light and the camera image to predict it.
        '''
        rospy.Subscriber('/vehicle/traffic_lights', TrafficLightArray, self.cb_traffic)
        rospy.Subscriber('/image_color', Image, self.cb_image)

        config_string = rospy.get_param("/traffic_light_config")
        self.config = yaml.load(config_string)

        self.upcoming_red_light_pub = rospy.Publisher('/traffic_waypoint', Int32, queue_size=1)

        self.bridge = CvBridge()
        self.light_classifier = TLClassifier()
        self.listener = tf.TransformListener()

        self.state = TrafficLight.UNKNOWN
        self.last_state = TrafficLight.UNKNOWN
        self.last_wp = -1
        self.state_count = 0

        self.state_mapper = {
            TrafficLight.UNKNOWN: 'UNKNOWN',
            TrafficLight.RED: 'RED',
            TrafficLight.YELLOW: 'YELLOW',
            TrafficLight.GREEN: 'GREEN',
        }

        rospy.spin()

    def cb_pose(self, msg):
        self.pose = msg

    def cb_waypoints(self, waypoints):
        self.waypoints = waypoints
        if not self.waypoints_2d:
            self.waypoints_2d = [[waypoint.pose.pose.position.x, waypoint.pose.pose.position.y]
                                 for waypoint in waypoints.waypoints]
            self.waypoints_tree = KDTree(self.waypoints_2d)

    def cb_traffic(self, msg):
        self.lights = msg.lights

    def cb_image(self, msg):
        """Identifies red lights in the incoming camera image and publishes the index
            of the waypoint closest to the red light's stop line to /traffic_waypoint

        Args:
            msg (Image): image from car-mounted camera

        """
        self.has_image = True
        self.camera_image = msg
        light_wp, state = self.process_traffic_lights()
        rospy.logwarn('Caught traffic light WP at index {} with state {}'.format(
            light_wp, self.state_mapper[state]))

        '''
        Publish upcoming red lights at camera frequency.
        Each predicted state has to occur `STATE_COUNT_THRESHOLD` number
        of times till we start using it. Otherwise the previous stable state is
        used.
        '''
        if self.state != state:
            self.state_count = 0
            self.state = state
        elif self.state_count >= STATE_COUNT_THRESHOLD:
            self.last_state = self.state
            light_wp = light_wp if state == TrafficLight.RED else -1
            self.last_wp = light_wp
            self.upcoming_red_light_pub.publish(Int32(light_wp))
        else:
            self.upcoming_red_light_pub.publish(Int32(self.last_wp))
        self.state_count += 1

    def get_closest_waypoint(self, x, y):
        """Identifies the closest path waypoint to the given position
            https://en.wikipedia.org/wiki/Closest_pair_of_points_problem
        Args:
            x : position to match a waypoint to in the x direction
            y : position to match a waypoint to in the y direction

        Returns:
            int: index of the closest waypoint in self.waypoints

        """
        return self.waypoints_tree.query([x, y], 1)[1]

    def get_light_state(self, light):
        """Determines the current color of the traffic light

        Args:
            light (TrafficLight): light to classify

        Returns:
            int: ID of traffic light color (specified in styx_msgs/TrafficLight)

        """
        # if not self.has_image:
        #     self.prev_light_loc = None
        #     return False
        #
        # cv_image = self.bridge.imgmsg_to_cv2(self.camera_image, "bgr8")
        #
        # get classification
        return light.state
        # cv_image = None
        # return self.light_classifier.get_classification(cv_image)

    def process_traffic_lights(self):
        """Finds closest visible traffic light, if one exists, and determines its
            location and color

        Returns:
            int: index of waypoint closes to the upcoming stop line for a traffic light (-1 if none exists)
            int: ID of traffic light color (specified in styx_msgs/TrafficLight)

        """
        if not self.waypoints_tree:
            # cant do any logic about traffic lights positions
            return -1, TrafficLight.UNKNOWN

        closest_light = None
        wp_index_line = None

        # list of positions that correspond to the line to stop in front of
        # for a given intersection
        stop_line_positions = self.config['stop_line_positions']
        if self.pose:
            wp_index_car = self.get_closest_waypoint(
                self.pose.pose.position.x, self.pose.pose.position.y)

            lookahead = len(self.waypoints.waypoints)
            for i, (light, line) in enumerate(zip(self.lights, stop_line_positions)):
                # since there are just a few traffic lights wps doesnt make any
                # sense to use a kdtree here, just iterate and find a closest wp
                # in the the neighborhood. also, the problem of getting a wp
                # behind the car here is less important as there are much less
                # wps and more spaced apart
                wp_index_tmp = self.get_closest_waypoint(line[0], line[1])
                diff = wp_index_tmp - wp_index_car
                if 0 <= diff < lookahead:
                    lookahead = diff
                    closest_light = light
                    wp_index_line = wp_index_tmp

        if closest_light:
            state = self.get_light_state(closest_light)
            return wp_index_line, state

        return -1, TrafficLight.UNKNOWN
Example #42
0
 def waypoints_cb(self, waypoints):
     if not self.base_waypoints:
       self.base_waypoints = waypoints
       self.base_waypoint_count = len(waypoints.waypoints)
       waypoints_xy = [[waypoint.pose.pose.position.x, waypoint.pose.pose.position.y] for waypoint in waypoints.waypoints]
       self.waypoints_tree = KDTree(waypoints_xy)
Example #43
0
def test_kdtree_comparisons():
    # Regression test: node comparisons were done wrong in 0.12 w/Py3.
    nodes = [KDTree.node() for _ in range(3)]
    assert_equal(sorted(nodes), sorted(nodes[::-1]))
def build_correspondence(VS, FS, VT, FT, maxind, thres, FileNameTo_Save):
    """
    build correspondence using the proximity and face normals of source and target meshes
    :param VS: deformed source mesh matched with target nS * 3
    :param FS: Triangle indices of source mesh mS * 3
    :param VT: Target mesh nT * 3
    :param FT: Triangle indices of target mesh mT * 3
    :param maxind: Maximum correspondence
    :param thres: Distance threshold for correspondence
    :param FileNameTo_Save: string for speed up code
    :return: corres mT * # of correspondence for each triangles of target mesh
    """
    if os.path.exists(FileNameTo_Save):
        corres = load_pickle_file(FileNameTo_Save)
        return corres
    else:
        TS, NS, VS4, FS4 = v4_normal(VS, FS)
        TT, NT, VT4, FT4 = v4_normal(VT, FT)
        VS_C = np.zeros((FS.shape[0], 3))
        VT_C = np.zeros((FT.shape[0], 3))
        for i in range(0, FT.shape[0]):
            VT_C[i, :] = np.mean(VT[FT[i, :] - 1, :], axis=0)
        for i in range(0, FS.shape[0]):
            VS_C[i, :] = np.mean(VS[FS[i, :] - 1, :], axis=0)
        S_tree = KDTree(VS_C)
        T_tree = KDTree(VT_C)
        corres1 = -np.ones((FT.shape[0], maxind))
        corres2 = -np.ones((FT.shape[0], maxind))
        templength = 0
        len_n = 0
        ## for source to target triangle coresspondence
        rowlen = -1
        for i in range(0, FS.shape[0]):
            _, corresind = T_tree.query(VS_C[i, :],
                                        k=maxind,
                                        distance_upper_bound=thres)
            corresind = corresind[corresind >= 0]
            corresind = corresind[corresind < T_tree.data.shape[0]]
            len_n = corresind.shape[0]
            corresind[
                np.sum(np.tile(NS[i, :], [NT[corresind, :].shape[0], 1]) *
                       NT[corresind, :],
                       axis=1) >= np.pi / 2] = -1
            if len(corresind) != 0:
                for j in range(0, len_n):
                    templength = np.max([
                        rowlen, corres2[corresind[j], :][
                            corres2[corresind[j], :] > -1].shape[0]
                    ])
                    rowlen = corres2[corresind[j], :][
                        corres2[corresind[j], :] > -1].shape[0]
                    if rowlen == 10:
                        corres2[corresind[j], rowlen - 1] = i
                    else:
                        corres2[corresind[j], rowlen] = i
        corres2 = corres2[:, 0:templength]

        for i in range(0, FT.shape[0]):
            _, corresind = S_tree.query(VT_C[i, :],
                                        k=maxind,
                                        distance_upper_bound=thres)
            corresind = corresind[corresind >= 0]
            corresind = corresind[corresind < S_tree.data.shape[0]]
            templength = np.max([len_n, corresind.shape[0]])
            len_n = corresind.shape[0]
            corresind[
                np.sum(np.tile(NT[i, :], [NS[corresind, :].shape[0], 1]) *
                       NS[corresind, :],
                       axis=1) >= np.pi / 2] = -1
            corres1[i, 0:len_n] = corresind[0:len_n]
        corres1 = corres1[:, 0:templength]
        tempcorres = np.hstack((corres1, corres2))
        corres = []
        for i in range(0, FT.shape[0]):
            temp = np.unique(tempcorres[i, :])
            temp = temp[temp >= 0]  # here delete -1 term
            corres.append(temp)
        save_pickle_file(FileNameTo_Save, corres)
    return corres
Example #45
0
class Test_sparse_distance_matrix_compiled(sparse_distance_matrix_consistency):
    def setup_method(self):
        n = 50
        m = 4
        np.random.seed(0)
        data1 = np.random.randn(n, m)
        data2 = np.random.randn(n, m)
        self.T1 = cKDTree(data1, leafsize=2)
        self.T2 = cKDTree(data2, leafsize=2)
        self.ref_T1 = KDTree(data1, leafsize=2)
        self.ref_T2 = KDTree(data2, leafsize=2)
        self.r = 0.5
        self.n = n
        self.m = m
        self.data1 = data1
        self.data2 = data2
        self.p = 2

    def test_consistency_with_python(self):
        M1 = self.T1.sparse_distance_matrix(self.T2, self.r)
        M2 = self.ref_T1.sparse_distance_matrix(self.ref_T2, self.r)
        assert_array_almost_equal(M1.todense(), M2.todense(), decimal=14)

    def test_against_logic_error_regression(self):
        # regression test for gh-5077 logic error
        np.random.seed(0)
        too_many = np.array(np.random.randn(18, 2), dtype=int)
        tree = cKDTree(too_many, balanced_tree=False, compact_nodes=False)
        d = tree.sparse_distance_matrix(tree, 3).todense()
        assert_array_almost_equal(d, d.T, decimal=14)

    def test_ckdtree_return_types(self):
        # brute-force reference
        ref = np.zeros((self.n, self.n))
        for i in range(self.n):
            for j in range(self.n):
                v = self.data1[i, :] - self.data2[j, :]
                ref[i, j] = np.dot(v, v)
        ref = np.sqrt(ref)
        ref[ref > self.r] = 0.
        # test return type 'dict'
        dist = np.zeros((self.n, self.n))
        r = self.T1.sparse_distance_matrix(self.T2, self.r, output_type='dict')
        for i, j in r.keys():
            dist[i, j] = r[(i, j)]
        assert_array_almost_equal(ref, dist, decimal=14)
        # test return type 'ndarray'
        dist = np.zeros((self.n, self.n))
        r = self.T1.sparse_distance_matrix(self.T2,
                                           self.r,
                                           output_type='ndarray')
        for k in range(r.shape[0]):
            i = r['i'][k]
            j = r['j'][k]
            v = r['v'][k]
            dist[i, j] = v
        assert_array_almost_equal(ref, dist, decimal=14)
        # test return type 'dok_matrix'
        r = self.T1.sparse_distance_matrix(self.T2,
                                           self.r,
                                           output_type='dok_matrix')
        assert_array_almost_equal(ref, r.todense(), decimal=14)
        # test return type 'coo_matrix'
        r = self.T1.sparse_distance_matrix(self.T2,
                                           self.r,
                                           output_type='coo_matrix')
        assert_array_almost_equal(ref, r.todense(), decimal=14)
class TLDetector(object):
    def __init__(self):
        rospy.init_node('tl_detector')

        # Important: SET THIS TO FALSE IN PRODUCTION
        self.simulate_lights = False

        self.pose = None
        self.waypoints = None
        self.camera_image = None
        self.lights = []

        self.waypoint_tree = None
        self.waypoints_received = False

        # Initialize the classifier before subscribing to topics
        if not self.simulate_lights:
            rospy.loginfo('Loading Classifier')
            self.light_classifier = TLClassifier()
            rospy.loginfo('Loaded Classifier')
        else:
            rospy.logwarn('Simulated Traffic lights')

        sub1 = rospy.Subscriber('/current_pose', PoseStamped, self.pose_cb)
        sub2 = rospy.Subscriber('/base_waypoints', Lane, self.waypoints_cb)
        '''
        /vehicle/traffic_lights provides you with the location of the traffic light in 3D map space and
        helps you acquire an accurate ground truth data source for the traffic light
        classifier by sending the current color state of all traffic lights in the
        simulator. When testing on the vehicle, the color state will not be available. You'll need to
        rely on the position of the light and the camera image to predict it.
        '''
        sub3 = rospy.Subscriber('/vehicle/traffic_lights', TrafficLightArray,
                                self.traffic_cb)
        sub6 = rospy.Subscriber('/image_color', Image, self.image_cb)

        config_string = rospy.get_param("/traffic_light_config")
        self.config = yaml.load(config_string)

        self.upcoming_red_light_pub = rospy.Publisher('/traffic_waypoint',
                                                      Int32,
                                                      queue_size=1)

        self.bridge = CvBridge()

        self.listener = tf.TransformListener()

        self.state = TrafficLight.UNKNOWN
        self.last_state = TrafficLight.UNKNOWN
        self.last_wp = -1
        self.state_count = 0

        self.loop()

    def pose_cb(self, msg):
        self.pose = msg

    def waypoints_cb(self, lane):
        self.waypoints = lane.waypoints

        xy_waypoint_list = [[
            waypoint.pose.pose.position.x, waypoint.pose.pose.position.y
        ] for waypoint in self.waypoints]
        self.waypoint_tree = KDTree(xy_waypoint_list)

        self.waypoints_received = True

    def traffic_cb(self, msg):
        self.lights = msg.lights

    def image_cb(self, msg):
        """Identifies red lights in the incoming camera image and publishes the index
            of the waypoint closest to the red light's stop line to /traffic_waypoint

        Args:
            msg (Image): image from car-mounted camera

        """
        self.has_image = True
        self.camera_image = msg

    def loop(self):
        rate = rospy.Rate(2.)  # 2.0Hz
        while not rospy.is_shutdown():
            if self.camera_image or self.simulate_lights:
                self.publish_light_state()
            rate.sleep()

    def publish_light_state(self):
        light_wp, state = self.process_traffic_lights()
        '''
        Publish upcoming red lights at camera frequency.
        Each predicted state has to occur `STATE_COUNT_THRESHOLD` number
        of times till we start using it. Otherwise the previous stable state is
        used.
        '''
        if self.state != state:
            self.state_count = 0
            self.state = state
        elif self.state_count >= STATE_COUNT_THRESHOLD:
            self.last_state = self.state
            light_wp = light_wp if state == TrafficLight.RED else -1
            self.last_wp = light_wp
            self.upcoming_red_light_pub.publish(Int32(light_wp))
        else:
            self.upcoming_red_light_pub.publish(Int32(self.last_wp))
        self.state_count += 1

    def get_closest_waypoint(self, pose=None, x=None, y=None):
        """Identifies the closest path waypoint to the given position
            https://en.wikipedia.org/wiki/Closest_pair_of_points_problem
        Args:
            pose (Pose): position to match a waypoint to

        Returns:
            int: index of the closest waypoint in self.waypoints

        """
        if pose is not None:
            _, nearest_waypoint = self.waypoint_tree.query(
                [pose.position.x, pose.position.y])
        else:
            _, nearest_waypoint = self.waypoint_tree.query([x, y])
        return nearest_waypoint

    def get_simulated_light_state(self, light):
        """
        Returns:
            state: The state of the light from the simulator, which is always correct
        """
        return light.state

    def get_light_state(self, light):
        """Determines the current color of the traffic light

        Args:
            light (TrafficLight): light to classify

        Returns:
            int: ID of traffic light color (specified in styx_msgs/TrafficLight)

        """
        if (not self.has_image):
            self.prev_light_loc = None
            return False

        cv_image = self.bridge.imgmsg_to_cv2(self.camera_image, "bgr8")
        self.camera_image = None

        #Get classification
        return self.light_classifier.get_classification(cv_image)

    def process_traffic_lights(self):
        """Finds closest visible traffic light, if one exists, and determines its
            location and color

        Returns:
            int: index of waypoint closes to the upcoming stop line for a traffic light (-1 if none exists)
            int: ID of traffic light color (specified in styx_msgs/TrafficLight)

        """
        light = None

        if not self.waypoints_received: return -1, TrafficLight.UNKNOWN

        # List of positions that correspond to the line to stop in front of for a given intersection
        stop_line_positions = self.config['stop_line_positions']
        if (self.pose):
            car_position = self.get_closest_waypoint(self.pose.pose)
        else:
            return -1, TrafficLight.UNKNOWN

        #TODO find the closest visible traffic light (if one exists)
        stop_line_indices = [
            self.get_closest_waypoint(x=slp[0], y=slp[1])
            for slp in stop_line_positions
        ]

        nearest_stopline_dist = None
        nearest_light_idx = None

        for idx, sli in enumerate(stop_line_indices):
            #TODO this is incomplete and does not account for wrapping:
            distance = sli - car_position
            if distance > 0 and nearest_stopline_dist is None or nearest_stopline_dist > distance:
                nearest_stopline_dist = distance
                nearest_light_idx = idx

        if nearest_light_idx is not None and self.lights:
            light = self.lights[nearest_light_idx]
            light_wp = stop_line_indices[nearest_light_idx]

        if light:
            if self.simulate_lights:
                state = self.get_simulated_light_state(light)
            else:
                state = self.get_light_state(light)
                rospy.loginfo("classified image " + str(state))
            return light_wp, state

        return -1, TrafficLight.UNKNOWN
Example #47
0
 def setup_method(self):
     self.data = np.array([[0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1],
                           [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1]])
     self.kdtree = KDTree(self.data)
Example #48
0
def test_query_pairs_single_node():
    tree = KDTree([[0, 1]])
    assert_equal(tree.query_pairs(0.5), set())
Example #49
0
    def __init__(self, conf, problem, **kwargs):
        from sfepy.discrete.state import State
        from sfepy.discrete import Problem
        from sfepy.base.conf import ProblemConf, get_standard_keywords
        from scipy.spatial import cKDTree as KDTree

        ScipyDirect.__init__(self, conf, **kwargs)

        # init subproblems
        pb_vars = problem.get_variables()
        # get "master" DofInfo and last index
        pb_adi_indx = problem.equations.variables.adi.indx
        self.adi_indx = pb_adi_indx.copy()
        last_indx = -1
        for ii in six.itervalues(self.adi_indx):
            last_indx = nm.max([last_indx, ii.stop])

        # coupling variables
        self.cvars_to_pb = {}
        for jj in conf.coupling_variables:
            self.cvars_to_pb[jj] = [None, None]
            if jj in pb_vars.names:
                if pb_vars[jj].dual_var_name is not None:
                    self.cvars_to_pb[jj][0] = -1

                else:
                    self.cvars_to_pb[jj][1] = -1

        # init subproblems
        self.subpb = []
        required, other = get_standard_keywords()
        master_prefix = output.get_output_prefix()
        for ii, ifname in enumerate(conf.others):
            sub_prefix = master_prefix[:-1] + '-sub%d:' % (ii + 1)
            output.set_output_prefix(sub_prefix)
            kwargs['master_problem'] = problem
            confi = ProblemConf.from_file(ifname,
                                          required,
                                          other,
                                          define_args=kwargs)
            pbi = Problem.from_conf(confi, init_equations=True)
            sti = State(pbi.equations.variables)
            pbi.equations.set_data(None, ignore_unknown=True)
            pbi.time_update()
            pbi.update_materials()
            sti.apply_ebc()
            pbi_vars = pbi.get_variables()
            output.set_output_prefix(master_prefix)
            self.subpb.append([pbi, sti, None])

            # append "slave" DofInfo
            for jj in pbi_vars.names:
                if not (pbi_vars[jj].is_state()):
                    continue

                didx = pbi.equations.variables.adi.indx[jj]
                ndof = didx.stop - didx.start
                if jj in self.adi_indx:
                    if ndof != \
                      (self.adi_indx[jj].stop - self.adi_indx[jj].start):
                        raise ValueError('DOFs do not match!')

                else:
                    self.adi_indx.update(
                        {jj: slice(last_indx, last_indx + ndof, None)})
                    last_indx += ndof

            for jj in conf.coupling_variables:
                if jj in pbi_vars.names:
                    if pbi_vars[jj].dual_var_name is not None:
                        self.cvars_to_pb[jj][0] = ii

                    else:
                        self.cvars_to_pb[jj][1] = ii

        self.subpb.append([problem, None, None])

        self.cvars_to_pb_map = {}
        for varname, pbs in six.iteritems(self.cvars_to_pb):
            # match field nodes
            coors = []
            for ii in pbs:
                pbi = self.subpb[ii][0]
                pbi_vars = pbi.get_variables()
                fcoors = pbi_vars[varname].field.coors
                dc = nm.abs(nm.max(fcoors, axis=0)\
                            - nm.min(fcoors, axis=0))
                ax = nm.where(dc > 1e-9)[0]
                coors.append(fcoors[:, ax])

            if len(coors[0]) != len(coors[1]):
                raise ValueError('number of nodes does not match!')

            kdtree = KDTree(coors[0])
            map_12 = kdtree.query(coors[1])[1]

            pbi1 = self.subpb[pbs[0]][0]
            pbi1_vars = pbi1.get_variables()
            eq_map_1 = pbi1_vars[varname].eq_map

            pbi2 = self.subpb[pbs[1]][0]
            pbi2_vars = pbi2.get_variables()
            eq_map_2 = pbi2_vars[varname].eq_map

            dpn = eq_map_2.dpn
            nnd = map_12.shape[0]

            map_12_nd = nm.zeros((nnd * dpn, ), dtype=nm.int32)
            if dpn > 1:
                for ii in range(dpn):
                    map_12_nd[ii::dpn] = map_12 * dpn + ii
            else:
                map_12_nd = map_12

            idx = nm.where(eq_map_2.eq >= 0)[0]
            self.cvars_to_pb_map[varname] = eq_map_1.eq[map_12[idx]]
Example #50
0
 def setup_method(self):
     n = 50
     m = 2
     np.random.seed(1234)
     self.T1 = KDTree(np.random.randn(n, m), leafsize=2)
     self.T2 = KDTree(np.random.randn(n, m), leafsize=2)
 def find_nearest_node(self, x, y, node):
     tree = KDTree(np.vstack((x, y)).T)
     distance, index = tree.query(np.array([node.x, node.y]), eps=0.5)
     return index
Example #52
0
 def setup_method(self):
     Test_small.setup_method(self)
     self.kdtree = KDTree(self.data, leafsize=1)
class TLDetector(object):
    def __init__(self):
        rospy.init_node('tl_detector')

        self.pose = None
        self.waypoints = None
        self.camera_image = None
        self.lights = []
        self.waypoints_2d = None
        self.waypoint_tree = None

        sub1 = rospy.Subscriber('/current_pose', PoseStamped, self.pose_cb)
        sub2 = rospy.Subscriber('/base_waypoints', Lane, self.waypoints_cb)

        '''
        /vehicle/traffic_lights provides you with the location of the traffic light in 3D map space and
        helps you acquire an accurate ground truth data source for the traffic light
        classifier by sending the current color state of all traffic lights in the
        simulator. When testing on the vehicle, the color state will not be available. You'll need to
        rely on the position of the light and the camera image to predict it.
        '''
        sub3 = rospy.Subscriber('/vehicle/traffic_lights', TrafficLightArray, self.traffic_cb)
        sub6 = rospy.Subscriber('/image_color', Image, self.image_cb)

        config_string = rospy.get_param("/traffic_light_config")
        self.config = yaml.load(config_string, Loader=yaml.FullLoader)

        self.upcoming_red_light_pub = rospy.Publisher('/traffic_waypoint', Int32, queue_size=1)

        self.bridge = CvBridge()
        self.light_classifier = TLClassifier()
        self.listener = tf.TransformListener()

        self.state = TrafficLight.UNKNOWN
        self.last_state = TrafficLight.UNKNOWN
        self.last_wp = -1
        self.state_count = 0

        rospy.spin()

    def pose_cb(self, msg):
        self.pose = msg

    def waypoints_cb(self, lane):
        self.waypoints = lane
        if not self.waypoints_2d:
            self.waypoints_2d = [[waypoint.pose.pose.position.x, waypoint.pose.pose.position.y] for waypoint in
                                 lane.waypoints]
            self.waypoint_tree = KDTree(self.waypoints_2d)

    def traffic_cb(self, msg):
        self.lights = msg.lights

    def image_cb(self, msg):
        """Identifies red lights in the incoming camera image and publishes the index
            of the waypoint closest to the red light's stop line to /traffic_waypoint

        Args:
            msg (Image): image from car-mounted camera

        """
        # Only process every 10th image
        self.has_image = True
        self.camera_image = msg
        light_wp, state = self.process_traffic_lights()
        if self.state != state:
            self.state_count = 0
            self.state = state
        elif self.state_count >= STATE_COUNT_THRESHOLD:
            self.last_state = self.state
            light_wp = light_wp if state == TrafficLight.RED else -1
            self.last_wp = light_wp
            self.upcoming_red_light_pub.publish(Int32(light_wp))
        else:
            self.upcoming_red_light_pub.publish(Int32(self.last_wp))
        self.state_count += 1

    def get_closest_waypoint(self, x, y):
        """Identifies the closest path waypoint to the given position
            https://en.wikipedia.org/wiki/Closest_pair_of_points_problem
        Args:
            pose (Pose): position to match a waypoint to

        Returns:
            int: index of the closest waypoint in self.waypoints

        """
        # TODO implement
        closest_idx = self.waypoint_tree.query([x, y], 1)[1]
        return closest_idx

    def get_light_state(self, light):
        """Determines the current color of the traffic light

        Args:
            light (TrafficLight): light to classify

        Returns:
            int: ID of traffic light color (specified in styx_msgs/TrafficLight)

        """
        # TODO Remove... For testing, just return the light state
        # return light.state
        if(not self.has_image):
            self.prev_light_loc = None
            return False

        cv_image = self.bridge.imgmsg_to_cv2(self.camera_image, "bgr8")

        #Get classification
        return self.light_classifier.get_classification(cv_image)

    def process_traffic_lights(self):
        """Finds closest visible traffic light, if one exists, and determines its
            location and color

        Returns:
            int: index of waypoint closes to the upcoming stop line for a traffic light (-1 if none exists)
            int: ID of traffic light color (specified in styx_msgs/TrafficLight)

        """
        closest_light = None
        line_wp_idx = None

        # List of positions that correspond to the line to stop in front of for a given intersection
        stop_line_positions = self.config['stop_line_positions']
        if (self.pose):
            car_wp_idx = self.get_closest_waypoint(self.pose.pose.position.x, self.pose.pose.position.y)

            # TODO find the closest visible traffic light (if one exists)
            diff = len(self.waypoints.waypoints)
            for i, light in enumerate(self.lights):

                # Get stop waypoint index
                line = stop_line_positions[i]
                temp_wp_idx = self.get_closest_waypoint(line[0], line[1])

                # Find closest stop line waypoint index
                d = temp_wp_idx - car_wp_idx
                if d >= 0 and d < diff:
                    diff = d
                    closest_light = light
                    line_wp_idx = temp_wp_idx
        else:
            rospy.logerr("pose not set")

        if closest_light:
            state = self.get_light_state(light)
            return line_wp_idx, state

        return -1, TrafficLight.UNKNOWN
Example #54
0
class TLDetector(object):
    def __init__(self):
        rospy.init_node('tl_detector')

        self.pose = None
        self.base_waypoints = None
        self.waypoints_2d = None
        self.waypoint_tree = None
        self.camera_image = None
        self.lights = []

        self.bridge = CvBridge()

        self.light_classifier = TLClassifier(rospy.get_param('~model_file'))
        #self.light_classifier = TLClassifier()
        self.listener = tf.TransformListener()

        self.state = TrafficLight.UNKNOWN
        self.last_state = TrafficLight.UNKNOWN
        self.last_wp = -1
        self.state_count = 0
        self.class_count = 0
        self.process_count = 0

        config_string = rospy.get_param("/traffic_light_config")
        self.config = yaml.load(config_string)

        rospy.Subscriber('/current_pose',
                         PoseStamped,
                         self.pose_cb,
                         queue_size=2)
        rospy.Subscriber('/base_waypoints',
                         Lane,
                         self.waypoints_cb,
                         queue_size=8)
        rospy.Subscriber('/vehicle/traffic_lights',
                         TrafficLightArray,
                         self.traffic_cb,
                         queue_size=2)
        rospy.Subscriber('/image_color', Image, self.image_cb, queue_size=1)
        self.upcoming_red_light_pub = rospy.Publisher('/traffic_waypoint',
                                                      Int32,
                                                      queue_size=1)

        rospy.spin()

    def pose_cb(self, msg):
        self.pose = msg

    def waypoints_cb(self, waypoints):
        self.base_waypoints = waypoints
        if not self.waypoints_2d:
            self.waypoints_2d = [[
                waypoint.pose.pose.position.x, waypoint.pose.pose.position.y
            ] for waypoint in waypoints.waypoints]
            self.waypoint_tree = KDTree(self.waypoints_2d)

    def traffic_cb(self, msg):
        self.lights = msg.lights

    def image_cb(self, msg):
        """
        Identifies red lights in the incoming camera image and publishes the index of the waypoint closest to the red
        light's stop line to /traffic_waypoint
        :param msg: image from car-mounted camera
        """
        self.camera_image = msg
        light_wp, state = self.process_traffic_lights()
        '''
        Publish upcoming red lights at camera frequency.
        Each predicted state has to occur `STATE_COUNT_THRESHOLD` number
        of times till we start using it. Otherwise the previous stable state is
        used.
        '''
        if self.state != state:
            self.state_count = 0
            self.state = state
        elif self.state_count >= STATE_COUNT_THRESHOLD:
            self.last_state = self.state
            light_wp = light_wp if state == TrafficLight.RED else -1
            self.last_wp = light_wp
            self.upcoming_red_light_pub.publish(Int32(light_wp))
        else:
            self.upcoming_red_light_pub.publish(Int32(self.last_wp))
        self.state_count += 1

    def process_traffic_lights(self):
        """
        Finds closest visible traffic light, if one exists, and determines its location and color
        :return:
        int: index of waypoint closest to the upcoming stop line for a traffic light (-1 if none exists)
        int: ID of traffic light color (specified in styx_msgs/TrafficLight)
        """
        closest_light = None
        line_wp_idx = -1
        state = TrafficLight.UNKNOWN

        # List of positions that correspond to the line to stop in front of for a given intersection
        stop_line_positions = self.config['stop_line_positions']
        if self.pose:
            car_wp_idx = self.get_closest_waypoint(self.pose.pose.position.x,
                                                   self.pose.pose.position.y)

            diff = len(self.base_waypoints.waypoints)
            for i, light in enumerate(self.lights):
                # Get stop line waypoint index
                line = stop_line_positions[i]
                temp_wp_idx = self.get_closest_waypoint(line[0], line[1])
                # Find closest stop line waypoint index
                d = temp_wp_idx - car_wp_idx
                if 0 <= d < diff:
                    diff = d
                    closest_light = light
                    line_wp_idx = temp_wp_idx

        # if we have found a closest light to monitor, then determine the stop line position of this light
        if closest_light:
            self.process_count += 1
            state = self.get_light_state(closest_light)
            if (self.process_count % LOGGING_THROTTLE_FACTOR) == 0:
                rospy.logwarn("DETECT: line_wp_idx={}, state={}".format(
                    line_wp_idx, self.to_string(state)))

        return line_wp_idx, state

    def get_closest_waypoint(self, x, y):
        """
        Identifies the closest path waypoint to the given position
        https://en.wikipedia.org/wiki/Closest_pair_of_points_problem
        :param x: x coord position to match a waypoint to
        :param y: y coord position to match a waypoint to
        :return: index of the closest waypoint in self.waypoints
        """
        closest_idx = self.waypoint_tree.query([x, y], 1)[1]
        return closest_idx

    def get_light_state(self, light):
        """
        Determines the current color of the traffic light
        :param light: light to classify
        :return: ID of traffic light color (specified in styx_msgs/TrafficLight)
        """

        # For test mode, just return the light state
        if TEST_MODE_ENABLED:
            classification = light.state
        else:
            cv_image = self.bridge.imgmsg_to_cv2(self.camera_image, "bgr8")

            # Get classification
            classification = self.light_classifier.get_classification(cv_image)

            # Save image (throttled)
            if SAVE_IMAGES and (self.process_count % LOGGING_THROTTLE_FACTOR
                                == 0):
                save_file = "../../../imgs/{}-{:.0f}.jpeg".format(
                    self.to_string(classification), (time.time() * 100))
                cv2.imwrite(save_file, cv_image)

        return classification

    def to_string(self, state):
        out = "unknown"
        if state == TrafficLight.GREEN:
            out = "green"
        elif state == TrafficLight.YELLOW:
            out = "yellow"
        elif state == TrafficLight.RED:
            out = "red"
        return out
Example #55
0
class TLDetector(object):
    def __init__(self):
        rospy.init_node('tl_detector')

        # Parameters
        config_string = rospy.get_param("/traffic_light_config")
        self.config = yaml.load(config_string)

        # Subscribers
        self.current_pose_sub = rospy.Subscriber('/current_pose', PoseStamped,
                                                 self.pose_cb)
        self.base_waypoints_sub = rospy.Subscriber('/base_waypoints', Lane,
                                                   self.base_waypoints_cb)
        self.traffic_lights_sub = rospy.Subscriber('/vehicle/traffic_lights',
                                                   TrafficLightArray,
                                                   self.traffic_cb)
        self.image_color_sub = rospy.Subscriber(
            '/image_color', Image,
            self.image_cb)  #TODO: evaluate using image_raw instead

        # Publishers
        self.upcoming_red_light_pub = rospy.Publisher('/traffic_waypoint',
                                                      Int32,
                                                      queue_size=1)

        # TL detector node variables
        self.current_pose = None
        self.base_waypoints = None
        self.base_waypoints_init = False
        self.base_waypoints_tree = None
        self.camera_image = None
        self.current_traffic_lights = []
        self.bridge = CvBridge()
        self.light_classifier = TLClassifier()
        self.listener = tf.TransformListener()
        self.state = TrafficLight.UNKNOWN
        self.last_state = TrafficLight.UNKNOWN
        self.last_wp = -1
        self.state_count = 0

        self.step()

    def step(self):
        rate = rospy.Rate(50)
        while not rospy.is_shutdown():
            rate.sleep()

    '''
    This method updates the current ego vehicle pose
    '''

    def pose_cb(self, data):
        self.current_pose = data

    '''
    This method stores the base waypoints in the class variables
    '''

    def base_waypoints_cb(self, input_waypoints):
        if not self.base_waypoints_init:
            self.base_waypoints = input_waypoints
            self.base_waypoints_2d = [[
                wp.pose.pose.position.x, wp.pose.pose.position.y
            ] for wp in input_waypoints.waypoints]
            self.base_waypoints_tree = KDTree(self.base_waypoints_2d)
            self.base_waypoints_init = True
            #rospy.loginfo('Base waypoints initialized.')

    '''
    This method stores the traffic light data in the class variables
    '''

    def traffic_cb(self, data):
        self.current_traffic_lights = data.lights

    '''
    This method identifies the current state of the traffic light in the incoming front camera sensor image
    '''

    def image_cb(self, data):
        self.has_image = True
        self.camera_image = data
        light_wp, state = self.process_traffic_lights()

        if self.state != state:
            self.state_count = 0
            self.state = state
        elif self.state_count >= STATE_COUNT_THRESHOLD:
            self.last_state = self.state
            red = state == TrafficLight.RED or state == TrafficLight.UNKNOWN
            light_wp = light_wp if red else -1
            self.last_wp = light_wp
            self.upcoming_red_light_pub.publish(Int32(light_wp))
        else:
            self.upcoming_red_light_pub.publish(Int32(self.last_wp))
        self.state_count += 1

    '''
    This method identifies the closest path waypoint to a given position
    '''

    def get_closest_waypoint(self, pose_x, pose_y):
        closest_wp_idx = self.base_waypoints_tree.query([pose_x, pose_y], 1)[1]
        return closest_wp_idx

    '''
    This method determines the current state of the traffic light
    '''

    def get_light_state(self, light):
        if (not self.has_image):
            self.prev_light_loc = None
            return False

        cv_image = self.bridge.imgmsg_to_cv2(self.camera_image, "bgr8")

        #Get classification
        return self.light_classifier.get_classification(cv_image)

    '''
    This method finds the closest traffic light within a max distance and determines the distance to its stop line and its state
    '''

    def process_traffic_lights(self):
        closest_line_wp_idx = None
        closest_light = None

        # List of positions that correspond to the line to stop in front of for a given intersection
        stop_line_positions = self.config['stop_line_positions']
        if (self.current_pose):
            current_pose_wp_idx = self.get_closest_waypoint(
                self.current_pose.pose.position.x,
                self.current_pose.pose.position.y)

            diff = len(self.base_waypoints.waypoints)
            for i, current_light in enumerate(self.current_traffic_lights):
                line = stop_line_positions[i]
                current_line_wp_idx = self.get_closest_waypoint(
                    line[0], line[1])
                d = current_line_wp_idx - current_pose_wp_idx
                if d >= 0 and d < diff and d < MAX_STOP_LINE_DIST:
                    diff = d
                    closest_light = current_light
                    closest_line_wp_idx = current_line_wp_idx

        if closest_light:
            #rospy.loginfo('Close traffic light found.')
            closest_light_state = self.get_light_state(closest_light)
            #closest_light_state = closest_light.state
            #rospy.loginfo('Current pose waypoint index: x = %s', current_pose_wp_idx)
            #rospy.loginfo('Closest stop line waypoint index: x = %s', closest_line_wp_idx)
            #rospy.loginfo('Closest traffic light state: %s', closest_light_state)
            if closest_light_state is None:
                closest_light_state = TrafficLight.UNKNOWN
            #if closest_light_state == TrafficLight.UNKNOWN:
            #rospy.loginfo('Unknown Traffic light state.')
            return closest_line_wp_idx, closest_light_state

        #rospy.loginfo('No close traffic light detected.')
        return -1, TrafficLight.UNKNOWN
 def waypoints_cb(self, lane):
     self.waypoints = lane
     if not self.waypoints_2d:
         self.waypoints_2d = [[waypoint.pose.pose.position.x, waypoint.pose.pose.position.y] for waypoint in
                              lane.waypoints]
         self.waypoint_tree = KDTree(self.waypoints_2d)
    return int(h[0:4], 16), int(('0x' + h[4:6]), 16), int(('0x' + h[6:8]), 16)


filename = input("What's the image name? ")
new_w, new_h = map(
    int,
    raw_input("What's the new height x width? Like 28 28. ").split(' '))
palette_hex = [
    '0xFF0000', '0xF83800', '0xF0D0B0', '0x503000', '0xFFE0A8', '0x0058F8',
    '0xFCFCFC', '0xBCBCBC', '0xA40000', '0xD82800', '0xFC7460', '0xFCBCB0',
    '0xF0BC3C', '0xAEACAE', '0x363301', '0x6C6C01', '0xBBBD00', '0x88D500',
    '0x398802', '0x65B0FF', '0x155ED8', '0x800080', '0x24188A'
]
palette_rgb = [hex_to_rgb(color) for color in palette_hex]

pixel_tree = KDTree(palette_rgb)
im = Image.open("./sprite_originals/" + filename +
                ".png")  #Can be many different formats.
im = im.convert("RGBA")
im = im.resize((new_w, new_h), Image.ANTIALIAS)  # regular resize
pix = im.load()
pix_freqs = Counter(
    [pix[x, y] for x in range(im.size[0]) for y in range(im.size[1])])
pix_freqs_sorted = sorted(pix_freqs.items(), key=lambda x: x[1])
pix_freqs_sorted.reverse()
print(pix)
outImg = Image.new('RGB', im.size, color='white')
outFile = open("./sprite_bytes/" + filename + '.txt', 'w')
i = 0
for y in range(im.size[1]):
    for x in range(im.size[0]):
Example #58
0
def findfiducials(spots, input_transform=None, separation=8.):

    global metrology_pinholes_table
    global metrology_fiducials_table
    log = get_logger()

    log.debug(
        "load input tranformation we will use to go from FP to FVC pixels")
    if input_transform is None:
        input_transform = resource_filename('desimeter',
                                            "data/single-lens-fvc2fp.json")

    log.info("loading input tranform from {}".format(input_transform))
    try:
        input_tx = FVCFP_ZhaoBurge.read_jsonfile(input_transform)
    except AssertionError as e:
        log.warning(
            "Failed to read input transfo as Zhao Burge, try polynomial...")
        input_tx = FVCFP_Polynomial.read_jsonfile(input_transform)

    if metrology_pinholes_table is None:

        filename = resource_filename('desimeter', "data/fp-metrology.csv")
        if not os.path.isfile(filename):
            log.error("cannot find {}".format(filename))
            raise IOError("cannot find {}".format(filename))
        log.info("reading metrology in {}".format(filename))
        metrology_table = Table.read(filename, format="csv")

        log.debug("keep only the pinholes")
        metrology_pinholes_table = metrology_table[:][
            metrology_table["PINHOLE_ID"] > 0]

        # use input transform to convert X_FP,Y_FP to XPIX,YPIX
        xpix, ypix = input_tx.fp2fvc(metrology_pinholes_table["X_FP"],
                                     metrology_pinholes_table["Y_FP"])
        metrology_pinholes_table["XPIX"] = xpix
        metrology_pinholes_table["YPIX"] = ypix

        log.debug("define fiducial location as central dot")
        metrology_fiducials_table = metrology_pinholes_table[:][
            metrology_pinholes_table["PINHOLE_ID"] == 4]

    # find fiducials candidates
    log.info("select spots with at least two close neighbors (in pixel units)")
    xy = np.array([spots["XPIX"], spots["YPIX"]]).T
    tree = KDTree(xy)
    measured_spots_distances, measured_spots_indices = tree.query(
        xy, k=4, distance_upper_bound=separation)
    number_of_neighbors = np.sum(measured_spots_distances < separation, axis=1)
    fiducials_candidates_indices = np.where(
        number_of_neighbors >= 3)[0]  # including self, so at least 3 pinholes

    # match candidates to fiducials from metrology

    log.info(
        "first match {} fiducials candidates to metrology ({}) with iterative fit"
        .format(fiducials_candidates_indices.size,
                len(metrology_fiducials_table)))
    x1 = spots["XPIX"][fiducials_candidates_indices]
    y1 = spots["YPIX"][fiducials_candidates_indices]
    x2 = metrology_fiducials_table["XPIX"]  # do I need to do this?
    y2 = metrology_fiducials_table["YPIX"]

    nloop = 20
    saved_median_distance = 0
    for loop in range(nloop):
        indices_2, distances = match_same_system(x1, y1, x2, y2)
        mdist = np.median(distances[indices_2 >= 0])
        if loop < nloop - 1:
            maxdistance = max(10, 3. * 1.4 * mdist)
        else:  # final iteration
            maxdistance = 10  # pixel
        selection = np.where((indices_2 >= 0) & (distances < maxdistance))[0]
        log.info("iter #{} median_dist={} max_dist={} matches={}".format(
            loop, mdist, maxdistance, selection.size))
        corr21 = SimpleCorr()
        corr21.fit(x2[indices_2[selection]], y2[indices_2[selection]],
                   x1[selection], y1[selection])
        x2, y2 = corr21.apply(x2, y2)
        if np.abs(saved_median_distance - mdist) < 0.0001:
            break  # no more improvement
        saved_median_distance = mdist

    # use same coord system match (note we now match the otherway around)
    indices_1, distances = match_same_system(x2, y2, x1, y1)
    maxdistance = 10.  # FVC pixels
    selection = np.where((indices_1 >= 0) & (distances < maxdistance))[0]
    fiducials_candidates_indices = fiducials_candidates_indices[
        indices_1[selection]]
    matching_known_fiducials_indices = selection

    log.debug(
        "mean distance = {:4.2f} pixels for {} matched and {} known fiducials".
        format(np.mean(distances[distances < maxdistance]),
               fiducials_candidates_indices.size,
               metrology_fiducials_table["XPIX"].size))

    log.debug("now matching pinholes ...")

    nspots = spots["XPIX"].size
    if 'LOCATION' not in spots.dtype.names:
        spots.add_column(Column(np.zeros(nspots, dtype=int)), name='LOCATION')
    if 'PINHOLE_ID' not in spots.dtype.names:
        spots.add_column(Column(np.zeros(nspots, dtype=int)),
                         name='PINHOLE_ID')

    for index1, index2 in zip(fiducials_candidates_indices,
                              matching_known_fiducials_indices):
        location = metrology_fiducials_table["LOCATION"][index2]

        # get indices of all pinholes for this matched fiducial
        # note we now use the full pinholes metrology table
        pi1 = measured_spots_indices[index1][
            measured_spots_distances[index1] < separation]
        pi2 = np.where(metrology_pinholes_table["LOCATION"] == location)[0]

        x1 = spots["XPIX"][pi1]
        y1 = spots["YPIX"][pi1]

        x2 = metrology_pinholes_table["XPIX"][pi2]
        y2 = metrology_pinholes_table["YPIX"][pi2]

        indices_2, distances = match_arbitrary_translation_dilatation(
            x1, y1, x2, y2)

        metrology_pinhole_ids = metrology_pinholes_table["PINHOLE_ID"][pi2]
        pinhole_ids = np.zeros(x1.size, dtype=int)
        matched = (indices_2 >= 0)
        pinhole_ids[matched] = metrology_pinhole_ids[indices_2[matched]]

        spots["LOCATION"][pi1[matched]] = location
        spots["PINHOLE_ID"][pi1[matched]] = pinhole_ids[matched]

        if np.sum(pinhole_ids == 0) > 0:
            log.warning(
                "only matched pinholes {} for {} detected at LOCATION {} xpix~{} ypix~{}"
                .format(pinhole_ids[pinhole_ids > 0], x1.size, location,
                        int(np.mean(x1)), int(np.mean(y1))))

        # check duplicates
        if np.unique(
                pinhole_ids[pinhole_ids > 0]).size != np.sum(pinhole_ids > 0):
            xfp = np.mean(metrology_pinholes_table[pi2]["X_FP"])
            yfp = np.mean(metrology_pinholes_table[pi2]["Y_FP"])
            log.warning(
                "duplicate(s) pinhole ids in {} at LOCATION={} xpix~{} ypix~{} xfp~{} yfp~{}"
                .format(pinhole_ids, location, int(np.mean(x1)),
                        int(np.mean(y1)), int(xfp), int(yfp)))
            bc = np.bincount(pinhole_ids[pinhole_ids > 0])
            duplicates = np.where(bc > 1)[0]
            for duplicate in duplicates:
                log.warning(
                    "Unmatch ambiguous pinhole id = {}".format(duplicate))
                selection = (spots["LOCATION"]
                             == location) & (spots["PINHOLE_ID"] == duplicate)
                spots["PINHOLE_ID"][selection] = 0

    spots["PETAL_LOC"] = spots["LOCATION"] // 1000
    spots["DEVICE_LOC"] = spots["LOCATION"] % 1000

    n_matched_pinholes = np.sum(spots["PINHOLE_ID"] > 0)
    n_matched_fiducials = np.sum(spots["PINHOLE_ID"] == 4)
    log.info("matched {} pinholes from {} fiducials".format(
        n_matched_pinholes, n_matched_fiducials))
    return spots
 def waypoints_cb(self, waypoints):
     self.waypoints = waypoints
     if not self.waypoints_2d:
         self.waypoints_2d = [[waypoint.pose.pose.position.x, waypoint.pose.pose.position.y] for waypoint in waypoints.waypoints]
         self.waypoint_tree = KDTree(self.waypoints_2d)
Example #60
0
class TLDetector(object):
    def __init__(self):
        rospy.init_node('tl_detector')

        self.on_simulator = rospy.get_param('~on_simulator')
        self.use_ground_truth = False

        self.pose = None
        self.waypoints = None
        self.camera_image = None
        self.camera_image_count = 1
        self.lights = []

        self.waypoint_tree = None
        self.waypoints_2d = None

        sub1 = rospy.Subscriber('/current_pose', PoseStamped, self.pose_cb)
        sub2 = rospy.Subscriber('/base_waypoints', Lane, self.waypoints_cb)
        '''
        /vehicle/traffic_lights provides you with the location of the traffic light in 3D map space and
        helps you acquire an accurate ground truth data source for the traffic light
        classifier by sending the current color state of all traffic lights in the
        simulator. When testing on the vehicle, the color state will not be available. You'll need to
        rely on the position of the light and the camera image to predict it.
        '''
        sub3 = rospy.Subscriber('/vehicle/traffic_lights', TrafficLightArray,
                                self.traffic_cb)
        sub6 = rospy.Subscriber('/image_color', Image, self.image_cb)

        config_string = rospy.get_param("/traffic_light_config")
        self.config = yaml.load(config_string)

        self.upcoming_red_light_pub = rospy.Publisher('/traffic_waypoint',
                                                      Int32,
                                                      queue_size=1)

        self.bridge = CvBridge()
        self.light_classifier = TLClassifier(self.on_simulator)
        self.listener = tf.TransformListener()

        self.state = TrafficLight.UNKNOWN
        self.last_state = TrafficLight.UNKNOWN
        self.last_wp = -1
        self.state_count = 0

        rospy.spin()

    def pose_cb(self, msg):
        self.pose = msg

    def waypoints_cb(self, waypoints):
        self.waypoints = waypoints
        if not self.waypoints_2d:
            self.waypoints_2d = [[
                waypoint.pose.pose.position.x, waypoint.pose.pose.position.y
            ] for waypoint in waypoints.waypoints]
            self.waypoint_tree = KDTree(self.waypoints_2d)
            #rospy.logwarn(self.waypoint_tree)

    def traffic_cb(self, msg):
        self.lights = msg.lights
        #rospy.loginfo("tl_detector::traffic_cb: {0}".format(self.lights))

    def image_cb(self, msg):
        """Identifies red lights in the incoming camera image and publishes the index
            of the waypoint closest to the red light's stop line to /traffic_waypoint

        Args:
            msg (Image): image from car-mounted camera

        """
        # only process every n-th image to improve performance.
        if self.camera_image_count < 10:
            self.camera_image_count += 1
            self.has_image = False
            self.camera_image = None
        else:
            self.camera_image_count = 1
            self.has_image = True
            self.camera_image = msg
            light_wp, state = self.process_traffic_lights()
            '''
            Publish upcoming red lights at camera frequency.
            Each predicted state has to occur `STATE_COUNT_THRESHOLD` number
            of times till we start using it. Otherwise the previous stable state is
            used.
            '''
            if self.state != state:
                self.state_count = 0
                self.state = state
            elif self.state_count >= STATE_COUNT_THRESHOLD:
                self.last_state = self.state
                light_wp = light_wp if state == TrafficLight.RED else -1
                self.last_wp = light_wp
                self.upcoming_red_light_pub.publish(Int32(light_wp))
            else:
                self.upcoming_red_light_pub.publish(Int32(self.last_wp))
            self.state_count += 1

    def get_closest_waypoint(self, x, y):
        """Identifies the closest path waypoint to the given position
            https://en.wikipedia.org/wiki/Closest_pair_of_points_problem
        Args:
            pose (Pose): position to match a waypoint to

        Returns:
            int: index of the closest waypoint in self.waypoints

        """
        #TODO implement
        closest_idx = self.waypoint_tree.query([x, y], 1)[1]
        return closest_idx

    def get_light_state(self, light):
        """Determines the current color of the traffic light

        Args:
            light (TrafficLight): light to classify

        Returns:
            int: ID of traffic light color (specified in styx_msgs/TrafficLight)

        """
        # For testing, just return the light state
        # return light.state

        # if(not self.has_image):
        #     self.prev_light_loc = None
        #     return False

        # cv_image = self.bridge.imgmsg_to_cv2(self.camera_image, "bgr8")

        # #Get classification
        # return self.light_classifier.get_classification(cv_image)

        if self.use_ground_truth:
            rospy.loginfo("debugging, using ground truth")
            return light.state

        if (not self.has_image):
            # rospy.loginfo("no image info!")
            self.prev_light_loc = None
            return TrafficLight.RED

        cv_image = self.bridge.imgmsg_to_cv2(self.camera_image, "bgr8")

        ##Get classification
        # return self.light_classifier.get_classification(cv_image)

        pred_state = self.light_classifier.get_classification(cv_image)
        rospy.loginfo("SSD network says: %s (wright answer is %s)", pred_state,
                      light.state)
        return pred_state

    def euclidian_distance(self, position1, position2):
        x, y, z = position1.x - position2.x, position1.y - position2.y, position1.z - position2.z
        return math.sqrt(x * x + y * y + z * z)

    def process_traffic_lights(self):
        """Finds closest visible traffic light, if one exists, and determines its
            location and color

        Returns:
            int: index of waypoint closes to the upcoming stop line for a traffic light (-1 if none exists)
            int: ID of traffic light color (specified in styx_msgs/TrafficLight)

        """
        closest_light = None
        line_wp_idx = None

        # List of positions that correspond to the line to stop in front of for a given intersection
        stop_line_positions = self.config['stop_line_positions']
        if (self.pose):
            car_wp_idx = self.get_closest_waypoint(self.pose.pose.position.x,
                                                   self.pose.pose.position.y)

            #TODO find the closest visible traffic light (if one exists)
            diff = len(self.waypoints.waypoints)
            for i, light in enumerate(self.lights):
                # Get stop line waypoint index
                line = stop_line_positions[i]
                temp_wp_idx = self.get_closest_waypoint(line[0], line[1])
                # Find closest stop line waypoint index
                d = temp_wp_idx - car_wp_idx
                if d >= 0 and d < diff:
                    diff = d
                    closest_light = light
                    line_wp_idx = temp_wp_idx

        # check the distance from car to closest_light
        closest_light_distance = self.euclidian_distance(
            self.pose.pose.position,
            self.waypoints.waypoints[line_wp_idx].pose.pose.position)

        if closest_light and closest_light_distance < LIGHT_DISTANCE_THRESHOLD:
            state = self.get_light_state(
                closest_light
            )  # approaching a light, try to determine its state
            rospy.loginfo("approaching %s traffic light %f ahead", state,
                          closest_light_distance)
            if state == TrafficLight.RED:
                return line_wp_idx, state
            else:
                return -1, TrafficLight.UNKNOWN
        else:  # far away from light, hence state is don't care.
            return -1, TrafficLight.UNKNOWN