def test_vaneylen19_single(self): with self._model(): vaneylen19("ecc", fixed=True, multi=False, shape=2) trace = self._sample() ecc = trace["ecc"].flatten() assert np.all((0 <= ecc) & (ecc <= 1)) f = 0.76 cdf = lambda x: ( # NOQA (1 - f) * halfnorm.cdf(x, scale=0.049) + f * rayleigh.cdf( x, scale=0.26)) s, p = kstest(ecc, cdf) assert s < 0.05
x = np.linspace(halfnorm.ppf(0.01), halfnorm.ppf(0.99), 100) ax.plot(x, halfnorm.pdf(x), 'r-', lw=5, alpha=0.6, label='halfnorm pdf') # Alternatively, the distribution object can be called (as a function) # to fix the shape, location and scale parameters. This returns a "frozen" # RV object holding the given parameters fixed. # Freeze the distribution and display the frozen ``pdf``: rv = halfnorm() ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf') # Check accuracy of ``cdf`` and ``ppf``: vals = halfnorm.ppf([0.001, 0.5, 0.999]) np.allclose([0.001, 0.5, 0.999], halfnorm.cdf(vals)) # True # Generate random numbers: r = halfnorm.rvs(size=1000) # And compare the histogram: ax.hist(r, density=True, histtype='stepfilled', alpha=0.2) ax.legend(loc='best', frameon=False) plt.show()