def test_zmap(self): # This is not in R, so tested by using: # (testcase[i]-mean(testcase,axis=0)) / sqrt(var(testcase)*3/4) y = mstats.zmap(self.testcase, self.testcase) desired_unmaskedvals = ([-1.3416407864999, -0.44721359549996, 0.44721359549996, 1.3416407864999]) assert_array_almost_equal(desired_unmaskedvals, y.data[y.mask == False], decimal=12)
def standardize_pow_mat(stripped_pow_mat, events, sessions, outsample_session=None, outsample_list=None): zpow_mat = np.array(stripped_pow_mat) outsample_mask = None for session in sessions: sess_event_mask = (events.session == session) if session == outsample_session: outsample_mask = (events.list == outsample_list) & sess_event_mask insample_mask = ~outsample_mask & sess_event_mask zpow_mat[outsample_mask] = zmap(zpow_mat[outsample_mask], zpow_mat[insample_mask], axis=0, ddof=1) zpow_mat[insample_mask] = zscore(zpow_mat[insample_mask], axis=0, ddof=1) else: zpow_mat[sess_event_mask] = zscore(zpow_mat[sess_event_mask], axis=0, ddof=1) return zpow_mat, outsample_mask