def makeFit_logratiosValues(df,numGenes,fractionImportant,noise):
	normNum=int(np.ceil(numGenes*(1-fractionImportant)))
	phenNum = numGenes-normNum
	c1Vals = skewnorm.rvs(-2, scale=0.99, size=normNum,random_state=random_state)
	c1PhenoVals = skewnorm.rvs(0, scale=noise, size=phenNum,random_state=random_state)
	c2Vals = list(map(add, c1Vals, skewnorm.rvs(0, scale=noise*2, size=normNum,random_state=random_state)))
	c2PhenoVals = skewnorm.rvs(-20, scale=4, size=phenNum,random_state=random_state)
	df['setAS2 c1']=np.append(c1Vals,c1PhenoVals)
	df['setAS3 c2']=np.append(c2Vals,c2PhenoVals)
	return(df)
    def gen_remainder(self, height, width, time, y, x):
        """
        Finds the values for the Dren and Vaelf Magics depending on the Magic
        values from the previous time step.

        :param height: The number of points in the y-dimension of the Map.
        :param width: The number of points in the x-dimension of the Map.
        :param time: The current time.
        :param y: The y-location of the given point.
        :param x: The x-location of the given point.
        """

        if time == 0:
            # Want higher end to be at 3.3;     exp(1.1939) = 3.3
            # Want lowest end to be at 0.7;     exp(-0.3567) = 0.7
            # Therefore use (1.1939 + 0.3567) / width
            decay_loc = np.exp(1.1939 - ((1.5506 * x) / width))
            growth_loc = np.exp(-0.3567 + ((1.5506 * x) / width))

            # Want higher end to be at 0.5;     exp(-0.6931) = 0.5
            # Want lowest end to be at 0.25;    exp(-1.3863) = 0.25
            # Therefore use (-1.3863 + 0.6931) / height
            decay_scale = np.exp(-0.6931 - ((0.6932 * x) / width))
            growth_scale = np.exp(-1.3863 + ((0.6932 * x) / width))

            self.magics[time, 8, y, x] = np.round(skewnorm.rvs(0,
                                                               loc=growth_loc,
                                                               scale=growth_scale))
            self.magics[time, 11, y, x] = np.round(skewnorm.rvs(0,
                                                                loc=decay_loc,
                                                                scale=decay_scale))
        else:
            log_avg = self.find_LR_average(height, time-1, 8, y, x)
            exp_avg = self.find_LR_average(height, time-1, 11, y, x)

            decay_loc = np.exp(1.1939 - ((1.5506 * x) / width))
            growth_loc = np.exp(-0.3567 + ((1.5506 * x) / width))
            decay_scale = np.exp(-0.6931 - ((0.6932 * x) / width))
            growth_scale = np.exp(-1.3863 + ((0.6932 * x) / width))
            decay_skew = 3 * (log_avg - decay_loc)
            growth_skew = 3 * (exp_avg - growth_loc)

            self.magics[time, 8, y, x] = np.round(skewnorm.rvs(growth_skew,
                                                               loc=growth_loc,
                                                               scale=growth_scale))
            self.magics[time, 11, y, x] = np.round(skewnorm.rvs(decay_skew,
                                                                loc=decay_loc,
                                                                scale=decay_scale))
def data_simulator4(ntrain, ntest, p, seeding, return_mean=False, corr=0):
    nobs = ntrain + ntest    
    np.random.seed(seeding)
    
    if corr != 0:
        cov = gen_ar1_corr_matrix(corr, p)
        mvnorm_x = np.random.multivariate_normal([0]*p, cov, nobs)
        X = norm.cdf(mvnorm_x)
    else:
        X = np.random.uniform(size=(nobs, p))
        
    if not return_mean:
        Y = (10*np.sin(2*np.pi*X[:,0]*X[:,1]) 
        + 10*X[:,3] + 20*np.square((X[:,2] - 0.5)) 
        + 5*X[:,4]) + skewnorm.rvs(-5, size=nobs)
    else:
        Y = (10*np.sin(2*np.pi*X[:,0]*X[:,1]) 
        + 10*X[:,3] + 20*np.square((X[:,2] - 0.5)) 
        + 5*X[:,4])       
    
    Y = Y.reshape(-1,1)
    
    TrainX = X[:ntrain,:]
    TrainY = Y[:ntrain,:]
    
    TestX  = X[ntrain:,:]
    TestY  = Y[ntrain:,:]
    
    return TrainX, TrainY, TestX, TestY
Example #4
0
def rand_frag_size(dist_string):
    dist_list = dist_string.split(',')
    if dist_list[0] == 'skewed-normal':
        rand_size = abs(
            int(
                round(
                    skewnormdist.rvs(float(dist_list[3]),
                                     loc=float(dist_list[1]),
                                     scale=float(dist_list[2])))))
    elif dist_list[0] == 'normal':
        rand_size = abs(
            int(
                round(
                    normdist.rvs(loc=float(dist_list[1]),
                                 scale=float(dist_list[2])))))
    elif dist_list[0] == 'uniform':
        rand_size = abs(
            int(
                round(
                    uniformdist.rvs(loc=float(dist_list[1]),
                                    scale=float(dist_list[2])))))
    elif dist_list[0] == 'truncated-normal':
        rand_size = abs(
            int(
                round(
                    truncnormdist.rvs(float(dist_list[3]),
                                      float(dist_list[4]),
                                      loc=float(dist_list[1]),
                                      scale=float(dist_list[2])))))
    return (rand_size)
Example #5
0
def get_data(n):
    data = np.concatenate(
        (expon.rvs(scale=1, size=n // 2), skewnorm.rvs(5, loc=3, size=n // 2)))
    #getting exp dist data
    #now shuffle the data
    np.random.shuffle(data)
    return data
Example #6
0
def asymmetric_samples(mean, plus, minus, size=5000):
    if (plus == 0.0) and (minus == 0.0):
        samples = np.ones(size)*mean
        return samples

    x = np.array([mean-minus, mean, mean+plus])
    data = np.array([0.16, 0.5, 0.84])
    
    params = Parameters()
    params.add('mu', value=mean)
    params.add('sigma', value=np.mean([minus, plus]))
    params.add('alpha', value=0.0)
    
    try:
        minner = Minimizer(fnc2min, params, fcn_args=(x, data))
        result = minner.minimize()
    
        mu = result.params['mu'].value
        sigma = result.params['sigma'].value
        alpha = result.params['alpha'].value
    
        samples = skewnorm.rvs(a=alpha, loc=mu, scale=sigma, size=size)
    
    except ValueError:
        print("Problem producing the distribution ot sampling from it.")
        print("\nReversing to a Normal Distribution")
        print("\nwith scale given by the average between the maximum and minimum errors.")
        samples = norm.rvs(loc=mean, scale=np.mean([minus, plus]), size=size)
    
    return samples
def old():
    n, d = 10000, 100
    random = check_random_state(0)
    bg_weight = random.beta(1, 10, size=d)
    bg_weight /= np.linalg.norm(bg_weight)
    fg_weight = random.beta(1, 5, size=d)
    fg_weight /= np.linalg.norm(fg_weight)

    alpha = .5
    skew = 0
    loc = n / 5 * 4
    scale = n / 10 * 3 / 4
    bg_ts = uniform.rvs(0, n, size=int(n * (1 - alpha)), random_state=random)
    fg_ts = skewnorm.rvs(skew,
                         loc,
                         scale,
                         size=int(n * alpha),
                         random_state=random)
    bg_X = random.normal(scale=bg_weight, size=(len(bg_ts), len(bg_weight)))
    fg_X = random.normal(scale=fg_weight, size=(len(fg_ts), len(fg_weight)))

    ts = np.concatenate((bg_ts, fg_ts))
    X = np.concatenate((bg_X, fg_X), axis=0)
    order = np.argsort(ts)
    ts = ts[order]
    X = X[order]
    np.savetxt('ts.csv', ts, fmt='%.2f')
    np.savetxt('X.csv', X, fmt='%.5f')
Example #8
0
    def init_event_occuring(self,max_pos_skew = -5, max_neg_skew = 5):

        """
        Initialise probabilities of event occurring. Generates a matrix of
        probability distributions. Each row represents number of days passed due
        date to visit location. Each row contains Gaussian distribution of
        probability values form 0-1 where as the number of days passed due date
        increases so the probability distribution becomes more negatively skewed
         to higher probability values indicating increasing urgency of visiting
         a location
        """


        # Define list of distributions relating to the number of frames since last visited
        # so let's say we base it over 100 frames
        skewness_values  = np.linspace(max_neg_skew, max_pos_skew, 100)
        # generate 1000 random values for each skewness setting
        dist_sample_size = 1000

        # initialize the _sm_probabilities numpy array
        self._probabilities = np.zeros((dist_sample_size, len(skewness_values)))

        # Populate numpy array with probabilities changing the skewness of the prob distribution depending on how long it is since the agent last visited a specific destination
        for idx, skewness in enumerate(skewness_values):
            # generate _sm_probabilities distributions for each time frame
            self._probabilities[:,idx] = skewnorm.rvs(a = skewness,loc=100, size=dist_sample_size)

            # shift values so that lowest value is 0
            self._probabilities[:,idx] = self._probabilities[:,idx] - np.min(self._probabilities[:,idx])

            # standardise all values between 0 and 1
            self._probabilities[:,idx] = self._probabilities[:,idx] / np.max(self._probabilities[:,idx])
        return self._probabilities
Example #9
0
def create_pdf(sd, mean, alfa):
    #invertire il segno di alfa
    x = skewnorm.rvs(alfa, size=1000000)

    def calc(k, sd, mean):
        return (k * sd) + mean

    x = calc(x, sd, mean)  #standard distribution
Example #10
0
def _get_age_dist_values(total_users, *, seed=None):
    """Return Numpy array of age values, given total_users"""
    if seed:
        np.random.seed(seed)

    # negative skewnorm dist - age range of 16 to 60 ish
    return ((27 + 10 * skewnorm.rvs(a=2, size=total_users)).astype(int).clip(
        min=16))
    def gen_cold_and_ice(self, height, width, time, y, x):
        """
        Determines the value of both Cold and Ice Magic at a point given the
        values of the points nearby in the previous time step.

        :param height: The number of points in the y-dimension of the Map.
        :param width: The number of points in the x-dimension of the Map.
        :param time: The value of time since the Map started its weather
                     tracking.
        :param y: The y-location of the given point.
        :param x: The x-location of the given point.
        """

        if time == 0:
            # Want higher end to be at 3.3;     exp(1.1939) = 3.3
            # Want lowest end to be at 0.7;     exp(-0.3567) = 0.7
            # Therefore use (1.1939 + 0.3567) / width
            growth_loc = np.exp(-0.3567 + ((1.5506 * y) / height))

            # Want higher end to be at 0.5;     exp(-0.6931) = 0.5
            # Want lowest end to be at 0.25;    exp(-1.3863) = 0.25
            # Therefore use (-1.3863 + 0.6931) / height
            growth_scale = np.exp(-1.3863 + ((0.6932 * y) / height))

            self.magics[time, 5, y, x] = np.round(skewnorm.rvs(0, loc=growth_loc,
                                                               scale=growth_scale))
            self.magics[time, 7, y, x] = np.round(skewnorm.rvs(0, loc=growth_loc,
                                                               scale=growth_scale))
        else:
            average1 = self.find_BT_average(width, time-1, 4, y, x)
            average2 = self.find_BT_average(width, time-1, 6, y, x)

            growth_loc = np.exp(-0.3567 + ((1.5506 * y) / height))
            skew_value1 = 3 * (average1 - growth_loc)
            skew_value2 = 3 * (average2 - growth_loc)
            growth_scale = np.exp(-1.3863 + ((0.6932 * y) / height))

            seasonal_shift = 0.7 + 0.3 * np.cos(np.pi + 8.7266 * (10**-4)
                                                * (time % 7200))

            self.magics[time, 5, y, x] = np.round(skewnorm.rvs(skew_value1,
                                                               loc=growth_loc * seasonal_shift,
                                                               scale=growth_scale))
            self.magics[time, 7, y, x] = np.round(skewnorm.rvs(skew_value2,
                                                               loc=growth_loc,
                                                               scale=growth_scale))
Example #12
0
def get_skew_distribution(a, num_vertices):
    # A is the skew, and num_vertices tells how many samples to take
    r = skewnorm.rvs(a, size=num_vertices)
    lower, upper = skewnorm.interval(.999, a)
    # shifted = [x - lower for x in r]
    diff = upper - lower
    rescaled = [abs((x - lower) / diff) / 2 for x in r]
    return rescaled
def conditional_sample_func4(X, nobs, seeding=1234):
    
    loc1 = (10*np.sin(2*np.pi*X[0]*X[1]) + 10*X[3] + 20*np.square((X[2]-0.5))
    + 5*X[4])
    
    np.random.seed(seed=seeding)
    samples = loc1 + skewnorm.rvs(-5, size=nobs)
    
    return samples
Example #14
0
def test_joint_entropyND():
    """
        Test that our implemented function to return the entropy corresponds 
        to Scipy's entropy method in multiple dimensions.
    """
    gridpoints = 10 # for KDE estimation

    ## Test 2D joint entropy:
    X = skewnorm.rvs(size=1000, a=-3, loc=0, scale=2)
    Y = skewnorm.rvs(size=1000, a=-3, loc=0, scale=2) 
    
    data = pd.DataFrame({'X':X, 'Y':Y})
    
    ## So this is valid if test_get_pdf passes   
    pdf = get_pdf(data,gridpoints=gridpoints) 

    ## The estimated entropy should correspond to scipy's value (to 5 d.p.) 
    assert_almost_equal(get_entropy(data,gridpoints=gridpoints), entropy(pdf.flatten(),base=2), 5)
Example #15
0
def ABCsimulation(param): #param = [om, w0]
    if param[0] < 0.0 or param[0] > 1.0:
        return [None]*len(zbins)
    else:
        model_1_class = DistanceCalc(param[0],0,1-param[0],0,[param[1],0],0.7)  #om,ok,ol,wmodel,de_params,h0
        data_abc = np.zeros(len(zbins))
        for i in range(len(zbins)):
                data_abc[i] = model_1_class.mu(zbins[i]) + skewnorm.rvs(a, loc=e, scale=w, size=1)
        return data_abc
Example #16
0
def skewnorm_distribution_maker(bins, skew, focus=1.0, size=10000):
    distro = skewnorm.rvs(skew, 1, 1, size=10000)
    distro_histro = np.histogram(distro,
                                 bins=bins,
                                 range=(0, 10),
                                 density=True)[0]
    distro_histro = [i**0.25 for i in distro_histro]
    distro_histro /= np.sum(distro_histro)
    return distro_histro
Example #17
0
def scale_obj(obj, mean_size=60, max_size=103, size_real=0, distance=0):
    """
    Inputs: obj - object to work with
            distance - distance in mm from camera, randomized if not set
            size_real - length in mm of object, if not set this is randomized
                        based on species mean and maximum sizes
            mean_size - common length of species
            max_size  - maximum length of species

    Assuming a horizontal object, we scale it to the correct pixel size
    based on distance from camera and known fields of view.
    """

    if (distance == 0):
        # cross section is trapezoid, height increases towards back of image.
        # we want distribution to reflect this

        max_distance = 700
        min_distance = 200

        s = skewnorm.rvs(-5, size=1, loc=650, scale=120)
        s2 = (int)(np.clip(s, 200, 700))

        distance = np.random.choice(s2)

    if (size_real == 0):
        # add some variance
        var_size = (max_size - mean_size) / 3
        #print(max_size, mean_size, var_size)
        size_real = np.random.normal(mean_size, var_size)
        #print('mean size = ' + str(mean_size) + ', var size = ' + str(var_size))

    # in front of image, size is 1392px/339mm
    # in back of image, size is 1392px/1190mm

    pix_per_mm = (1392 / (339 + (distance - 200) * ((1190 - 339) /
                                                    (max_distance - 200))))
    new_length = (int)(pix_per_mm * size_real)
    ratio = new_length / (int)(np.shape(obj)[1])
    #print('distance ' +str(distance))

    #print('pix per mm ', str(pix_per_mm))
    #print('ratio ' + str(ratio))
    #print('new length ' + str(new_length) + 'px, ' + str(size_real) + ' mm')
    new_height = (int)(np.shape(obj)[0] * ratio)
    #print('new height ' + str(new_height))

    # ensure nothing is resized to 0
    if (new_length < 1):
        new_length = 1
    if (new_height < 1):
        new_height = 1

    new_obj = obj.resize((new_length, new_height))

    return new_obj, distance
def test_error_when_nan_introduced_during_transform():
    # test error when NA are introduced during the discretisation.
    rng = default_rng()

    # create dataframe with 2 variables, 1 normal and 1 skewed
    random = skewnorm.rvs(a=-50, loc=4, size=100)
    random = random - min(
        random)  # Shift so the minimum value is equal to zero.

    train = pd.concat(
        [
            pd.Series(rng.standard_normal(100)),
            pd.Series(random),
        ],
        axis=1,
    )

    train.columns = ["var_a", "var_b"]

    # create a dataframe with 2 variables normally distributed
    test = pd.concat(
        [
            pd.Series(rng.standard_normal(100)),
            pd.Series(rng.standard_normal(100)),
        ],
        axis=1,
    )

    test.columns = ["var_a", "var_b"]

    msg = ("During the discretisation, NaN values were introduced "
           "in the feature(s) var_b.")

    limits_dict = {"var_a": [-5, -2, 0, 2, 5], "var_b": [0, 2, 5]}

    # check for warning when errors equals 'ignore'
    with pytest.warns(UserWarning) as record:
        transformer = ArbitraryDiscretiser(binning_dict=limits_dict,
                                           errors="ignore")
        transformer.fit(train)
        transformer.transform(test)

    # check that only one warning was returned
    assert len(record) == 1
    # check that message matches
    assert record[0].message.args[0] == msg

    # check for error when errors equals 'raise'
    with pytest.raises(ValueError) as record:
        transformer = ArbitraryDiscretiser(binning_dict=limits_dict,
                                           errors="raise")
        transformer.fit(train)
        transformer.transform(test)

    # check that error message matches
    assert str(record.value) == msg
Example #19
0
def skewNormGen(s1, xi_popts, ome_popts, alp_popts):
    """
    skewNormGen
    Generated S1 events using the effective marginalized pdf in S1.
    inputs: s1, xi optimums, omega optimums, alpha optimums
    """
    xi = FUNC_EPS(s1, *xi_popts)
    omega = FUNC_OME(s1, *ome_popts)
    alpha = FUNC_ALP(s1, *alp_popts)
    return skewnorm.rvs(alpha, loc=xi, scale=omega)
Example #20
0
def get_samples_from_percentiles(val,
                                 ehi,
                                 elo,
                                 Nsamp=1e3,
                                 add_p5_p95=True,
                                 pltt=False):
    '''Given the 16, 50, and 84 percentiles of a parameter's distribution,
    fit a Skew normal CDF and sample it.'''
    # don't do anything if NaNs are input
    if np.any(np.isnan([val, ehi, elo])):
        return np.nan, np.nan, np.repeat(np.nan, int(Nsamp))

    # get percentiles
    p16, med, p84 = float(val - elo), float(val), float(val + ehi)
    assert p16 < med
    assert med < p84

    # add approximate percentiles to help with fitting the wings
    # otherwise the resulting fitting distritubions tend to
    if add_p5_p95:
        p5_approx = med - 2 * (med - p16)
        p95_approx = med + 2 * (p84 - med)
        xin = [p5_approx, p16, med, p84, p95_approx]
        yin = [.05, .16, .5, .84, .95]
    else:
        xin, yin = [p16, med, p84], [.16, .5, .84]

    # make initial parameter guess
    mu, sig = med, np.mean([abs(p16), abs(p84)])
    a = (abs(p16) - abs(p84)) / sig
    p0 = a, mu, sig
    popt, pcov = curve_fit(Skewnorm_CDF_func,
                           xin,
                           yin,
                           p0=p0,
                           sigma=np.repeat(.01, len(yin)),
                           absolute_sigma=False)

    # sample the fitted pdf
    samples = skewnorm.rvs(*popt, size=int(Nsamp))

    # plot distribution if desired
    if pltt:
        plt.hist(samples,
                 bins=30,
                 normed=True,
                 label='Sampled parameter posterior')
        plt.plot(np.sort(samples),
                 skewnorm.pdf(np.sort(samples), *popt),
                 '-',
                 label='Skew-normal fit: a=%.3f, m=%.3f, s=%.3f' % tuple(popt))
        plt.xlabel('Parameter values'), plt.legend(loc='upper right')
        plt.show()

    return p0, popt, samples
Example #21
0
    def generate(self) -> datetime:
        """
        Generate a random date taken from a Skewed Normal Distribution

        :return: datetime
        """
        timestamp = round(self.center.timestamp())
        generated = skewnorm.rvs(self.skew,
                                 loc=timestamp,
                                 scale=self.dispersion)
        return datetime.fromtimestamp(generated)
Example #22
0
 def next_transaction(self):
     # price
     rand_delta = skewnorm.rvs(self.skewness, size=1)[0]
     price = self.average_price * (rand_delta + 1)
     price = max(self.min_gas_price, price)
     if self.max_gas_price:
         price = min(self.max_gas_price, price)
     # gas consumed
     # 1 <= gas_consumed <= 2* block_size / txs_per_block
     gas = random.randint(1,
                          2 * int(self.block_gas_size / self.txs_per_block))
     return Tx(gas, price)
Example #23
0
def sim_data(chronological=True):
    a = random.choice([2., 3., 4.])
    ys = skewnorm.rvs(a, size=1000)
    outliers = [
        random.choice([-1., 1.]) * 10. if np.random.rand() < 0.05 else 0.
        for _ in ys
    ]
    xs = np.cumsum(0.1 * np.random.randn(1000))
    zs = [
        x + y * random.choice([-1., 1.]) + o
        for x, y, o in zip(xs, ys, outliers)
    ]
    return zs if chronological else list(reversed(zs))
Example #24
0
def skewed_dist(max_value=10,
                min_value=0,
                num_values=10000,
                skewness=5,
                integers=False):
    """ generate skewed distribution """
    # Negative skewness values are left skewed (long right tail), positive values are right skewed (left tail).
    random_list = skewnorm.rvs(a=skewness, loc=max_value, size=num_values)

    return scale_a_distribution(random_list,
                                integers=integers,
                                max_value=max_value,
                                min_value=min_value)
Example #25
0
def skew():
    fig, ax = plt.subplots(1, 1) # This function creates a figure and a grid of subplots

    a = 5 # skewness parameter, when a = 0 the distribution is identical to a normal distribution

    # mean, variance, skew, kurt = skewnorm.stats ( a, moments='mvsk' )

    d = skewnorm.rvs(a, size=350000)

    ax.hist(d, density=True, histtype='stepfilled', alpha=0.2) # histogram of numbers generated
    plt.show()

    return d # return all the numbers generated with skew distribution
def rand_normal(loc=0, sigma=1, size=1, skew=0, decimals='all'):
    #  Normal distribution centered at loc
    data = skewnorm.rvs(a=skew, loc=loc, scale=sigma, size=size)

    if decimals != 'all':
        data = np.around(data, decimals)
    if decimals == 0:
        data = data.astype(int)

    if size == 1:
        return data[0]
    else:
        return data
Example #27
0
 def generate_random_c_x1(self):
     '''Function to generate random c and x1 from either Normal or skew normal distributions'''
     if bench:
         print 'Drawing color and stretch rvs...'
     if self.c_pdf == 'Normal':
         self.simc = np.random.normal(loc=self.c_params[0],
                                      scale=self.c_params[1],
                                      size=len(self.totz))
     elif self.c_pdf == 'SkewNormal':
         self.simc = skewnorm.rvs(self.c_params[2],
                                  loc=self.c_params[0],
                                  scale=self.c_params[1],
                                  size=len(self.totz))
     if self.x1_pdf == 'Normal':
         self.simx1 = np.random.normal(loc=self.x1_params[0],
                                       scale=self.x1_params[1],
                                       size=len(self.totz))
     elif self.x1_pdf == 'SkewNormal':
         self.simx1 = skewnorm.rvs(self.x1_params[2],
                                   loc=self.x1_params[0],
                                   scale=self.x1_params[1],
                                   size=len(self.totz))
    def gen_waxing_burst(self, time, y, x):
        """
        Generates points where Waxing Magic is extremely strong.

        :param time: The value of time since the Map started its weather
                     tracking.
        :param y: The y-location of the given point.
        :param x: The x-location of the given point.
        """

        self.magics[time, 3, y, x] = np.round(skewnorm.rvs(4, loc=0, scale=1.4))

        if self.magics[time, 3, y, x] < 4:
            self.magics[time, 3, y, x] = 0
Example #29
0
def simulate_PDF(median, lower_err, upper_err, size=1, plot=True):
    '''
    Simulates a draw of posterior samples from a value and asymmetric errorbars
    by assuming the underlying distribution is a skewed normal distribution.
    
    Developed to estimate PDFs from literature exoplanet parameters that did not report their MCMC chains.
    
    Inputs:
    -------
    median : float
        the median value that was reported
    lower_err : float
        the lower errorbar that was reported
    upper_err : float
        the upper errorbar that was reported
    size : int
        the number of samples to be drawn
        
    Returns:
    --------
    samples : array of float
        the samples drawn from the simulated skrewed normal distribution
    '''

    sigma, omega, alpha = calculate_skewed_normal_params(
        median, lower_err, upper_err)
    samples = skewnorm.rvs(alpha, loc=sigma, scale=omega, size=size)

    if plot == False:
        return samples

    else:
        lower_err = np.abs(lower_err)
        upper_err = np.abs(upper_err)
        x = np.arange(median - 4 * lower_err, median + 4 * upper_err, 0.01)
        fig = plt.figure()
        for i in range(3):
            plt.axvline([median - lower_err, median, median + upper_err][i],
                        color='k',
                        lw=2)
        plt.plot(x, skewnorm.pdf(x, alpha, loc=sigma, scale=omega), 'r-', lw=2)
        fit_percentiles = skewnorm.ppf([0.16, 0.5, 0.84],
                                       alpha,
                                       loc=sigma,
                                       scale=omega)
        for i in range(3):
            plt.axvline(fit_percentiles[i], color='r', ls='--', lw=2)
        plt.hist(samples, density=True, color='red', alpha=0.5)
        return samples, fig
Example #30
0
    def draw_strain_skewstep(self, x, iter, beta):

        q = x.copy()
        lqxy = 0

        a = 2
        s = 1

        diff = skewnorm.rvs(a, scale=s)
        q[self.pnames.index(
            'log10_h')] = x[self.pnames.index('log10_h')] - diff
        lqxy = skewnorm.logpdf(-diff, a, scale=s) - skewnorm.logpdf(
            diff, a, scale=s)

        return q, float(lqxy)
Example #31
0

"""

###############################################################################
# By default, ChainConsumer uses maximum likelihood statistics. Thus you do not
# need to explicitly enable maximum likelihood statistics. If you want to
# anyway, the keyword is `"max"`.

import numpy as np
from scipy.stats import skewnorm
from chainconsumer import ChainConsumer

# Lets create some data here to set things up
np.random.seed(0)
data = skewnorm.rvs(5, size=(1000000, 2))
parameters = ["$x$", "$y$"]


# Now the normal way of giving data is passing a numpy array and parameter separately
c = ChainConsumer().add_chain(data, parameters=parameters).configure(statistics="max")
fig = c.plotter.plot()
fig.set_size_inches(4.5 + fig.get_size_inches())  # Resize fig for doco. You don't need this.

###############################################################################
# Or we can enable cumulative statistics

c = ChainConsumer().add_chain(data, parameters=parameters).configure(statistics="cumulative")
fig = c.plotter.plot()
fig.set_size_inches(4.5 + fig.get_size_inches())  # Resize fig for doco. You don't need this.