Example #1
0
def r_squared(returns, benchmark):
    """ measures the straight line fit of the equity curve """
    # slope, intercept, r_val, p_val, std_err = _linregress(
    _, _, r_val, _, _ = _linregress(
        _utils._prepare_returns(returns),
        _utils._prepare_benchmark(benchmark, returns.index))
    return r_val**2
Example #2
0
def polynomial_fit(x, y, n):
    """
    Returns a polynomial fit for y given x of order n
    with an R-squared score of the fit

    Parameters
    -----------
    x : numpy array
        x data for polynomial fit.
    y : numpy array
        y data for polynomial fit.
    n : int
        order of the polynomial fit.

    Returns
    ----------
    polynomial_coefficients : numpy polynomial
        List of polynomial coefficients
    R2 : float
        Polynomical fit coeffcient of determination
    
    """
    try:
        x = np.array(x)
    except:
        pass
    try:
        y = np.array(y)
    except:
        pass
    assert isinstance(x, np.ndarray), 'x must be of type np.ndarray'
    assert isinstance(y, np.ndarray), 'y must be of type np.ndarray'
    assert isinstance(n, int), 'n must be of type int'
    
    # Get coeffcients of polynomial of order n 
    polynomial_coefficients = np.poly1d(np.polyfit(x, y, n))
    
    # Calculate the coeffcient of determination
    slope, intercept, r_value, p_value, std_err = _linregress(y, polynomial_coefficients(x))
    R2 = r_value**2
    
    return polynomial_coefficients, R2