def approx(self, type="norm", from_samples=False, samples=25000, n_components=2): types = ["norm", "uniform", "loggamma", "gaussian_mixture"] if type not in types: raise NotImplementedError("allowed types are " + str(types)) if type == "gaussian_mixture": if n_components <= 1: return self.approx(type="norm", from_samples=from_samples, samples=samples) from_samples=True if from_samples: rv = self.rvs(samples) mean, std, skewness = np.mean(rv), np.std(rv), skew(rv) else: mean, std, skewness = self.mean(), self.std(), self.stats(moments="s") if type == "norm": return norm(mean, std) elif type == "uniform": return uniform(mean - np.sqrt(3) * std, np.sqrt(12) * std) elif type == "loggamma": if skewness == 0: return self.approx(type="norm", from_samples=from_samples, samples=samples) c = get_loggamma_c(skewness) a = loggamma(c) a = scale( offset(a, - a.mean()), -np.sign(skewness) / a.std()) a = offset( scale(a, std), mean) return a elif type == "gaussian_mixture": gm = GaussianMixture(n_components=n_components) gm.fit(np.atleast_2d(rv).T) mean = gm.means_[:, 0] var = gm.covariances_[:,0, 0] weights = gm.weights_ return combination([norm(m, np.sqrt(v)) for m, v in zip(mean, var)], list(weights)) else: raise NotImplementedError('approximation not defined for input type')
c = 0.414 mean, var, skew, kurt = loggamma.stats(c, moments='mvsk') # Display the probability density function (``pdf``): x = np.linspace(loggamma.ppf(0.01, c), loggamma.ppf(0.99, c), 100) ax.plot(x, loggamma.pdf(x, c), 'r-', lw=5, alpha=0.6, label='loggamma pdf') # Alternatively, the distribution object can be called (as a function) # to fix the shape, location and scale parameters. This returns a "frozen" # RV object holding the given parameters fixed. # Freeze the distribution and display the frozen ``pdf``: rv = loggamma(c) ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf') # Check accuracy of ``cdf`` and ``ppf``: vals = loggamma.ppf([0.001, 0.5, 0.999], c) np.allclose([0.001, 0.5, 0.999], loggamma.cdf(vals, c)) # True # Generate random numbers: r = loggamma.rvs(c, size=1000) # And compare the histogram: ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
def all_dists(): # dists param were taken from scipy.stats official # documentaion examples # Total - 89 return { "alpha": stats.alpha(a=3.57, loc=0.0, scale=1.0), "anglit": stats.anglit(loc=0.0, scale=1.0), "arcsine": stats.arcsine(loc=0.0, scale=1.0), "beta": stats.beta(a=2.31, b=0.627, loc=0.0, scale=1.0), "betaprime": stats.betaprime(a=5, b=6, loc=0.0, scale=1.0), "bradford": stats.bradford(c=0.299, loc=0.0, scale=1.0), "burr": stats.burr(c=10.5, d=4.3, loc=0.0, scale=1.0), "cauchy": stats.cauchy(loc=0.0, scale=1.0), "chi": stats.chi(df=78, loc=0.0, scale=1.0), "chi2": stats.chi2(df=55, loc=0.0, scale=1.0), "cosine": stats.cosine(loc=0.0, scale=1.0), "dgamma": stats.dgamma(a=1.1, loc=0.0, scale=1.0), "dweibull": stats.dweibull(c=2.07, loc=0.0, scale=1.0), "erlang": stats.erlang(a=2, loc=0.0, scale=1.0), "expon": stats.expon(loc=0.0, scale=1.0), "exponnorm": stats.exponnorm(K=1.5, loc=0.0, scale=1.0), "exponweib": stats.exponweib(a=2.89, c=1.95, loc=0.0, scale=1.0), "exponpow": stats.exponpow(b=2.7, loc=0.0, scale=1.0), "f": stats.f(dfn=29, dfd=18, loc=0.0, scale=1.0), "fatiguelife": stats.fatiguelife(c=29, loc=0.0, scale=1.0), "fisk": stats.fisk(c=3.09, loc=0.0, scale=1.0), "foldcauchy": stats.foldcauchy(c=4.72, loc=0.0, scale=1.0), "foldnorm": stats.foldnorm(c=1.95, loc=0.0, scale=1.0), # "frechet_r": stats.frechet_r(c=1.89, loc=0.0, scale=1.0), # "frechet_l": stats.frechet_l(c=3.63, loc=0.0, scale=1.0), "genlogistic": stats.genlogistic(c=0.412, loc=0.0, scale=1.0), "genpareto": stats.genpareto(c=0.1, loc=0.0, scale=1.0), "gennorm": stats.gennorm(beta=1.3, loc=0.0, scale=1.0), "genexpon": stats.genexpon(a=9.13, b=16.2, c=3.28, loc=0.0, scale=1.0), "genextreme": stats.genextreme(c=-0.1, loc=0.0, scale=1.0), "gausshyper": stats.gausshyper(a=13.8, b=3.12, c=2.51, z=5.18, loc=0.0, scale=1.0), "gamma": stats.gamma(a=1.99, loc=0.0, scale=1.0), "gengamma": stats.gengamma(a=4.42, c=-3.12, loc=0.0, scale=1.0), "genhalflogistic": stats.genhalflogistic(c=0.773, loc=0.0, scale=1.0), "gilbrat": stats.gilbrat(loc=0.0, scale=1.0), "gompertz": stats.gompertz(c=0.947, loc=0.0, scale=1.0), "gumbel_r": stats.gumbel_r(loc=0.0, scale=1.0), "gumbel_l": stats.gumbel_l(loc=0.0, scale=1.0), "halfcauchy": stats.halfcauchy(loc=0.0, scale=1.0), "halflogistic": stats.halflogistic(loc=0.0, scale=1.0), "halfnorm": stats.halfnorm(loc=0.0, scale=1.0), "halfgennorm": stats.halfgennorm(beta=0.675, loc=0.0, scale=1.0), "hypsecant": stats.hypsecant(loc=0.0, scale=1.0), "invgamma": stats.invgamma(a=4.07, loc=0.0, scale=1.0), "invgauss": stats.invgauss(mu=0.145, loc=0.0, scale=1.0), "invweibull": stats.invweibull(c=10.6, loc=0.0, scale=1.0), "johnsonsb": stats.johnsonsb(a=4.32, b=3.18, loc=0.0, scale=1.0), "johnsonsu": stats.johnsonsu(a=2.55, b=2.25, loc=0.0, scale=1.0), "ksone": stats.ksone(n=1e03, loc=0.0, scale=1.0), "kstwobign": stats.kstwobign(loc=0.0, scale=1.0), "laplace": stats.laplace(loc=0.0, scale=1.0), "levy": stats.levy(loc=0.0, scale=1.0), "levy_l": stats.levy_l(loc=0.0, scale=1.0), "levy_stable": stats.levy_stable(alpha=0.357, beta=-0.675, loc=0.0, scale=1.0), "logistic": stats.logistic(loc=0.0, scale=1.0), "loggamma": stats.loggamma(c=0.414, loc=0.0, scale=1.0), "loglaplace": stats.loglaplace(c=3.25, loc=0.0, scale=1.0), "lognorm": stats.lognorm(s=0.954, loc=0.0, scale=1.0), "lomax": stats.lomax(c=1.88, loc=0.0, scale=1.0), "maxwell": stats.maxwell(loc=0.0, scale=1.0), "mielke": stats.mielke(k=10.4, s=3.6, loc=0.0, scale=1.0), "nakagami": stats.nakagami(nu=4.97, loc=0.0, scale=1.0), "ncx2": stats.ncx2(df=21, nc=1.06, loc=0.0, scale=1.0), "ncf": stats.ncf(dfn=27, dfd=27, nc=0.416, loc=0.0, scale=1.0), "nct": stats.nct(df=14, nc=0.24, loc=0.0, scale=1.0), "norm": stats.norm(loc=0.0, scale=1.0), "pareto": stats.pareto(b=2.62, loc=0.0, scale=1.0), "pearson3": stats.pearson3(skew=0.1, loc=0.0, scale=1.0), "powerlaw": stats.powerlaw(a=1.66, loc=0.0, scale=1.0), "powerlognorm": stats.powerlognorm(c=2.14, s=0.446, loc=0.0, scale=1.0), "powernorm": stats.powernorm(c=4.45, loc=0.0, scale=1.0), "rdist": stats.rdist(c=0.9, loc=0.0, scale=1.0), "reciprocal": stats.reciprocal(a=0.00623, b=1.01, loc=0.0, scale=1.0), "rayleigh": stats.rayleigh(loc=0.0, scale=1.0), "rice": stats.rice(b=0.775, loc=0.0, scale=1.0), "recipinvgauss": stats.recipinvgauss(mu=0.63, loc=0.0, scale=1.0), "semicircular": stats.semicircular(loc=0.0, scale=1.0), "t": stats.t(df=2.74, loc=0.0, scale=1.0), "triang": stats.triang(c=0.158, loc=0.0, scale=1.0), "truncexpon": stats.truncexpon(b=4.69, loc=0.0, scale=1.0), "truncnorm": stats.truncnorm(a=0.1, b=2, loc=0.0, scale=1.0), "tukeylambda": stats.tukeylambda(lam=3.13, loc=0.0, scale=1.0), "uniform": stats.uniform(loc=0.0, scale=1.0), "vonmises": stats.vonmises(kappa=3.99, loc=0.0, scale=1.0), "vonmises_line": stats.vonmises_line(kappa=3.99, loc=0.0, scale=1.0), "wald": stats.wald(loc=0.0, scale=1.0), "weibull_min": stats.weibull_min(c=1.79, loc=0.0, scale=1.0), "weibull_max": stats.weibull_max(c=2.87, loc=0.0, scale=1.0), "wrapcauchy": stats.wrapcauchy(c=0.0311, loc=0.0, scale=1.0), }
def _set_rvdist_(self): """ set the rvdistribution. This method defines which kind of rv_continuous distribution you use """ return stats.loggamma( *stats.loggamma.fit(self.samplers, loc=np.median(self.samplers)))
def get_massestimator(photopoints=None, samplers=None, dist_param=None, nsamples=10000, **kwargs): """ Get the photopoint collection instance that enables to derive the stellar mass of a galaxy. The natural non-parametrized mass estimation is based on rest-frame 'i' and 'g' band measurements following eq. 8 of Taylor et al 2011 (2011MNRAS.418.1587T) ``` log M∗/[M⊙] = 1.15 + 0.70(g − i) − 0.4Mi ``` You can otherwize provide 'samplers' of the mass estimate or a parametrized version of the 'samplers' using 'dist_param'. It has been tested, the natural method returns a galaxy mass pdf well described by a loggamma distribution (3-parameters). By providing a 'dist_param', which parametrizes the scipy's loggamma object, this will draw a fake sampler to set the MassEstimate. Parameters ---------- = One of these must be set. If several are given, the first is used. = photopoints: [2 PhotoPoints: photopoint_g,photopoint_i] Astrobject's PhotoPoint of the g and i band measurements of the galaxy Magnitude should be rest-frame magnitude in the sdss system. samplers: [N-float array] Array of potential mass estimate. From this sampling of masses is drawn the pdf of the galaxy's stellar mass estimate. dist_param: [3-floats] Parameters defining scipy's loggamma functions. The mass estimate will be base on the random drawing of samplers from this distribution. = other options = nsamples: [int] -optional- Number of sampler used to estimae the galaxy's stellar mass. If you set the MassEstimator with the 'samplers' input, nsamples is ignored. **kwargs goes to MassEstimate's __init__ method Return ------ MassEstimate (PhotoPointCollection's child) """ # ------------- # # - Setting - # # ------------- # if photopoints is not None: photopoint_g, photopoint_i = photopoints if photopoint_i is not None and "i" not in photopoint_i.bandname: warnings.warn( "The PhotoPoint with the bandname %s is used as a 'i' band photopoint for the MassEstimator" % photopoint_i.bandname) if photopoint_g is not None and "g" not in photopoint_g.bandname: warnings.warn( "The PhotoPoint with the bandname %s is used as a 'g' band photopoint for the MassEstimator" % photopoint_g.bandname) return MassEstimate(photopoint_g, photopoint_i, **kwargs) if samplers is not None: m = MassEstimate(**kwargs) m.set_samplers(samplers) return m if dist_param is not None: samplers = stats.loggamma(*dist_param).rvs(nsamples) return get_massestimator(samplers=samplers, **kwargs) if "empty" in kwargs.keys(): return MassEstimate(**kwargs) raise ValueError( "You need to provide a setter (photopoints, samplers or dist_param) or to set empty=True" )
def _set_rvdist_(self): """ set the rvdistribution. This method defines which kind of rv_continuous distribution you use """ return stats.loggamma(*stats.loggamma.fit(self.samplers, loc=np.median(self.samplers)))
def get_massestimator(photopoints=None,samplers=None,dist_param=None, nsamples=10000, **kwargs): """ Get the photopoint collection instance that enables to derive the stellar mass of a galaxy. The natural non-parametrized mass estimation is based on rest-frame 'i' and 'g' band measurements following eq. 8 of Taylor et al 2011 (2011MNRAS.418.1587T) ``` log M∗/[M⊙] = 1.15 + 0.70(g − i) − 0.4Mi ``` You can otherwize provide 'samplers' of the mass estimate or a parametrized version of the 'samplers' using 'dist_param'. It has been tested, the natural method returns a galaxy mass pdf well described by a loggamma distribution (3-parameters). By providing a 'dist_param', which parametrizes the scipy's loggamma object, this will draw a fake sampler to set the MassEstimate. Parameters ---------- = One of these must be set. If several are given, the first is used. = photopoints: [2 PhotoPoints: photopoint_g,photopoint_i] Astrobject's PhotoPoint of the g and i band measurements of the galaxy Magnitude should be rest-frame magnitude in the sdss system. samplers: [N-float array] Array of potential mass estimate. From this sampling of masses is drawn the pdf of the galaxy's stellar mass estimate. dist_param: [3-floats] Parameters defining scipy's loggamma functions. The mass estimate will be base on the random drawing of samplers from this distribution. = other options = nsamples: [int] -optional- Number of sampler used to estimae the galaxy's stellar mass. If you set the MassEstimator with the 'samplers' input, nsamples is ignored. **kwargs goes to MassEstimate's __init__ method Return ------ MassEstimate (PhotoPointCollection's child) """ # ------------- # # - Setting - # # ------------- # if photopoints is not None: photopoint_g, photopoint_i = photopoints if photopoint_i is not None and "i" not in photopoint_i.bandname: warnings.warn("The PhotoPoint with the bandname %s is used as a 'i' band photopoint for the MassEstimator"%photopoint_i.bandname) if photopoint_g is not None and "g" not in photopoint_g.bandname: warnings.warn("The PhotoPoint with the bandname %s is used as a 'g' band photopoint for the MassEstimator"%photopoint_g.bandname) return MassEstimate(photopoint_g, photopoint_i,**kwargs) if samplers is not None: m = MassEstimate(**kwargs) m.set_samplers(samplers) return m if dist_param is not None: samplers = stats.loggamma(*dist_param).rvs(nsamples) return get_massestimator(samplers=samplers, **kwargs) if "empty" in kwargs.keys(): return MassEstimate(**kwargs) raise ValueError("You need to provide a setter (photopoints, samplers or dist_param) or to set empty=True")