#################################################
#################################################

# for each bin in delta compute vmax mean and its std
pcs = [0, 1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 99, 100]
bins = n.hstack((0,n.logspace(-3, 4, 60)))
vmaxBar = n.empty(len(bins)-1)
vmaxStd = n.empty(len(bins)-1)
distrib = n.empty((len(bins)-1, len(pcs)))
Nbins = 10
bbs = n.empty((len(bins)-1, Nbins+1))
N = n.empty((len(bins)-1, Nbins))
for ii in range(len(bins)-1):
	sel = (hd['DF']>bins[ii]) & (hd['DF']<bins[ii+1])
	y = hd['Vmax'][sel]
	vmaxBar[ii], vmaxStd[ii], distrib[ii] = n.mean(y), n.std(y), sc(y,pcs)
	N[ii],bbs[ii] = n.histogram(y, bins= Nbins )
	
ok = (vmaxBar>0)&(vmaxStd>0)&(bins[1:]>0.4)&(bins[:-1]<100)&(N.sum(axis=1)>100)
x = n.log10(1.+(bins[1:]*bins[:-1])**0.5)[ok]
y = n.log10(vmaxBar)[ok]
yerr = vmaxStd[ok] / vmaxBar[ok]

f= lambda x,a,b : a*x+b
out, cov = curve_fit(f, x, y, (1,0), yerr )

p.figure(0)
p.plot(n.log10(1+hd['DF']), n.log10(hd['Vmax']),'r.',alpha=0.1, label='QSO z=0.7',rasterized = True)
p.errorbar(x,y,yerr=yerr/2.,label='mean - std')
p.plot(x, f(x,out[0],out[1]),'k--',lw=2,label='fit y='+str(n.round(out[0],3))+'x+'+str(n.round(out[1],3)))
p.xlabel(r'$log_{10}(1+\delta)$')
Example #2
0
#################################################
#################################################

# for each bin in delta compute vmax mean and its std
pcs = [0, 1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 99, 100]
bins = n.hstack((0, n.logspace(-3, 4, 60)))
vmaxBar = n.empty(len(bins) - 1)
vmaxStd = n.empty(len(bins) - 1)
distrib = n.empty((len(bins) - 1, len(pcs)))
Nbins = 10
bbs = n.empty((len(bins) - 1, Nbins + 1))
N = n.empty((len(bins) - 1, Nbins))
for ii in range(len(bins) - 1):
    sel = (hd['DF'] > bins[ii]) & (hd['DF'] < bins[ii + 1])
    y = hd['Vmax'][sel]
    vmaxBar[ii], vmaxStd[ii], distrib[ii] = n.mean(y), n.std(y), sc(y, pcs)
    N[ii], bbs[ii] = n.histogram(y, bins=Nbins)

ok = (vmaxBar > 0) & (vmaxStd > 0) & (bins[1:] > 0.4) & (bins[:-1] < 100) & (
    N.sum(axis=1) > 100)
x = n.log10(1. + (bins[1:] * bins[:-1])**0.5)[ok]
y = n.log10(vmaxBar)[ok]
yerr = vmaxStd[ok] / vmaxBar[ok]

f = lambda x, a, b: a * x + b
out, cov = curve_fit(f, x, y, (1, 0), yerr)

p.figure(0)
p.plot(n.log10(1 + hd['DF']),
       n.log10(hd['Vmax']),
       'r.',
Example #3
0
dex02 = (dex04) & (-n.log10(catalog[prefix + 'stellar_mass_low_1sig']) +
                   n.log10(catalog[prefix + 'stellar_mass_up_1sig']) < 0.4)

#target_bits

program_names = n.array(list(set(catalog['PROGRAMNAME'])))
program_names.sort()

sourcetypes = n.array(list(set(catalog['SOURCETYPE'])))
sourcetypes.sort()

length = lambda selection: len(selection.nonzero()[0])

pcs_ref = list(n.arange(0., 101, 5))
g = lambda key, s1, pcs=pcs_ref: n.hstack(
    (length(s1), sc(catalog[key][s1], pcs)))

sel_pg = lambda pgr: (catalog_zOk) & (catalog['PROGRAMNAME'] == pgr)

sel_st = lambda pgr: (catalog_zOk) & (catalog['SOURCETYPE'] == pgr)

sel0_pg = lambda pgr: (catalog_0) & (catalog['PROGRAMNAME'] == pgr)

sel0_st = lambda pgr: (catalog_0) & (catalog['SOURCETYPE'] == pgr)

all_galaxies = []

tpps = []

for pg in sourcetypes:
    sel_all = sel_st(pg)
Example #4
0
delta_i = catalog['fiberMag_i'] - catalog['modelMag_i']

delta_m = n.array([delta_g, delta_r, delta_i])
#target_bits

program_names = n.array(list(set(catalog['PROGRAMNAME'])))
program_names.sort()

sourcetypes = n.array(list(set(catalog['SOURCETYPE'])))
sourcetypes.sort()

length = lambda selection: len(selection.nonzero()[0])

pcs_ref = n.arange(0., 101, 5)
g = lambda key, s1, pcs=pcs_ref: n.hstack(
    (length(s1), sc(catalog[key][s1], pcs)))

sel_pg = lambda pgr: (catalog_zOk) & (catalog['PROGRAMNAME'] == pgr)

sel_st = lambda pgr: (catalog_zOk) & (catalog['SOURCETYPE'] == pgr)

sel0_pg = lambda pgr: (catalog_0) & (catalog['PROGRAMNAME'] == pgr)

sel0_st = lambda pgr: (catalog_0) & (catalog['SOURCETYPE'] == pgr)

all_galaxies = []

tpps = []

for pg in sourcetypes:
    print(pg)
dex04 = (converged) & (catalog[prefix+'stellar_mass'] < 10**14. ) & (catalog[prefix+'stellar_mass'] > 0 )  & (catalog[prefix+'stellar_mass'] > catalog[prefix+'stellar_mass_low_1sig'] ) & (catalog[prefix+'stellar_mass'] < catalog[prefix+'stellar_mass_up_1sig'] ) & ( - n.log10(catalog[prefix+'stellar_mass_low_1sig'])  + n.log10(catalog[prefix+'stellar_mass_up_1sig']) < 0.8 )

dex02 = (dex04) & ( - n.log10(catalog[prefix+'stellar_mass_low_1sig'])  + n.log10(catalog[prefix+'stellar_mass_up_1sig']) < 0.4 )


#target_bits

program_names = n.array(list(set( catalog['PROGRAMNAME'] )))
program_names.sort()

sourcetypes = n.array(list(set( catalog['SOURCETYPE'] )))
sourcetypes.sort()

length = lambda selection : len(selection.nonzero()[0]) 

g = lambda key, s1, pcs = n.array([10., 25., 50., 75., 90. ]) : n.hstack(( length(s1), sc(catalog[key][s1], pcs) ))

sel_pg = lambda pgr : (catalog_zOk) & (catalog['PROGRAMNAME']==pgr)

sel_st = lambda pgr : (catalog_zOk) & (catalog['SOURCETYPE']==pgr)

sel0_pg = lambda pgr : (catalog_0) & (catalog['PROGRAMNAME']==pgr)

sel0_st = lambda pgr : (catalog_0) & (catalog['SOURCETYPE']==pgr)

all_galaxies = []

tpps = []

for pg in sourcetypes:
	n_targets = length( (catalog['SOURCETYPE']==pg))