def test_read_10x(): anndata = read_10x_vdj("tests/data/10x/all_contig_annotations.json") obs = anndata.obs # this has `is_cell=false` and should be filtered out assert "AAACCTGAGACCTTTG-1" not in anndata.obs_names assert obs.shape[0] == 2 cell1 = obs.iloc[0, :] cell2 = obs.iloc[1, :] assert cell1.name == "AAACCTGAGACCTTTG-2" assert cell1["TRB_1_cdr3"] == "CASSPPSQGLSTGELFF" assert ( cell1["TRB_1_cdr3_nt"] == "TGTGCCAGCTCACCACCGAGCCAGGGCCTTTCTACCGGGGAGCTGTTTTTT" ) assert cell1["TRB_1_junction_ins"] == 4 + 7 assert cell1["TRB_1_expr"] == 1 assert cell1["TRB_1_v_gene"] == "TRBV18" assert cell1["TRB_1_d_gene"] == "TRBD1" assert cell1["TRB_1_j_gene"] == "TRBJ2-2" assert cell1["TRB_1_c_gene"] == "TRBC2" assert _is_false(cell1["multi_chain"]) assert np.all(_is_na(cell1[["TRA_1_cdr3", "TRB_2_cdr3", "TRA_1_junction_ins"]])) assert cell2.name == "AAACCTGAGTACGCCC-1" assert cell2["TRA_1_cdr3"] == "CAMRVGGSQGNLIF" assert cell2["TRA_2_cdr3"] == "CATDAKDSNYQLIW" assert cell2["TRA_1_expr"] == 9 assert cell2["TRA_2_expr"] == 4 assert np.all(_is_na(cell2[["TRB_1_cdr3", "TRB_2_cdr3"]])) assert cell2["TRA_1_junction_ins"] == 4 assert cell2["TRA_2_junction_ins"] == 4
def test_read_10x_csv(): anndata = read_10x_vdj(TESTDATA / "10x/filtered_contig_annotations.csv") obs = anndata.obs assert obs.shape[0] == 5 cell1 = obs.iloc[1, :] cell2 = obs.iloc[3, :] cell3 = obs.iloc[4, :] assert cell1.name == "AAACCTGAGTACGCCC-1" assert cell1["IR_VDJ_1_junction_aa"] == "CASSLGPSTDTQYF" assert cell1[ "IR_VDJ_1_junction"] == "TGTGCCAGCAGCTTGGGACCTAGCACAGATACGCAGTATTTT" assert cell1["IR_VDJ_1_duplicate_count"] == 55 assert cell1["IR_VDJ_1_consensus_count"] == 18021 assert cell1["IR_VDJ_1_v_call"] == "TRBV7-2" assert cell1["IR_VDJ_1_d_call"] == "TRBD2" assert cell1["IR_VDJ_1_j_call"] == "TRBJ2-3" assert cell1["IR_VDJ_1_c_call"] == "TRBC2" assert _is_false(cell1["multi_chain"]) assert cell1["IR_VJ_1_locus"] == "TRA" assert cell1["IR_VDJ_1_locus"] == "TRB" assert cell2.name == "AAACCTGGTCCGTTAA-1" assert cell2["IR_VJ_1_junction_aa"] == "CALNTGGFKTIF" assert cell2["IR_VJ_2_junction_aa"] == "CAVILDARLMF" assert cell2["IR_VJ_1_duplicate_count"] == 5 assert cell2["IR_VJ_2_duplicate_count"] == 5 assert cell2["IR_VJ_1_locus"] == "TRA" assert cell2["IR_VDJ_1_locus"] == "TRB" assert cell2["IR_VJ_2_locus"] == "TRA" assert _is_na(cell2["IR_VDJ_2_junction_aa"]) assert cell3.name == "AAACTTGGTCCGTTAA-1" assert cell3["IR_VJ_1_locus"] == "IGK" assert cell3["IR_VDJ_1_locus"] == "IGH"
def test_read_10x(): anndata = read_10x_vdj(TESTDATA / "10x/all_contig_annotations.json", include_fields=None) obs = anndata.obs # this has `is_cell=false` and should be filtered out assert "AAACCTGAGACCTTTG-1" not in anndata.obs_names assert obs.shape[0] == 3 cell1 = obs.iloc[0, :] cell2 = obs.iloc[1, :] cell3 = obs.iloc[2, :] assert cell1.name == "AAACCTGAGACCTTTG-2" assert cell1["IR_VDJ_1_junction_aa"] == "CASSPPSQGLSTGELFF" assert (cell1["IR_VDJ_1_junction"] == "TGTGCCAGCTCACCACCGAGCCAGGGCCTTTCTACCGGGGAGCTGTTTTTT") assert cell1["IR_VDJ_1_np1_length"] == 4 assert cell1["IR_VDJ_1_np2_length"] == 7 assert cell1["IR_VDJ_1_duplicate_count"] == 1 assert cell1["IR_VDJ_1_consensus_count"] == 494 assert cell1["IR_VDJ_1_v_call"] == "TRBV18" assert cell1["IR_VDJ_1_d_call"] == "TRBD1" assert cell1["IR_VDJ_1_j_call"] == "TRBJ2-2" assert cell1["IR_VDJ_1_c_call"] == "TRBC2" assert _is_false(cell1["multi_chain"]) assert np.all( _is_na(cell1[[ "IR_VJ_1_junction_aa", "IR_VDJ_2_junction_aa", "IR_VJ_1_np1_length" ]])) assert cell2.name == "AAACCTGAGTACGCCC-1" assert cell2["IR_VJ_1_junction_aa"] == "CAMRVGGSQGNLIF" assert cell2["IR_VJ_2_junction_aa"] == "CATDAKDSNYQLIW" assert cell2["IR_VJ_1_duplicate_count"] == 9 assert cell2["IR_VJ_2_duplicate_count"] == 4 assert np.all( _is_na(cell2[["IR_VDJ_1_junction_aa", "IR_VDJ_2_junction_aa"]])) assert cell2["IR_VJ_1_np1_length"] == 4 assert _is_na(cell2["IR_VJ_1_np2_length"]) assert cell2["IR_VJ_2_np1_length"] == 4 assert _is_na(cell2["IR_VJ_2_np2_length"]) assert cell3.name == "CAGGTGCTCGTGGTCG-1" assert cell3["IR_VJ_1_locus"] == "IGK" assert _is_na(cell3["IR_VJ_2_locus"]) # non-productive assert cell3["IR_VDJ_1_locus"] == "IGH" assert _is_na(cell3["IR_VDJ_2_locus"]) # non-productive
def test_read_10x_csv(): anndata = read_10x_vdj("tests/data/10x/filtered_contig_annotations.csv") obs = anndata.obs assert obs.shape[0] == 4 cell1 = obs.iloc[1, :] cell2 = obs.iloc[3, :] assert cell1.name == "AAACCTGAGTACGCCC-1" assert cell1["TRB_1_cdr3"] == "CASSLGPSTDTQYF" assert cell1["TRB_1_cdr3_nt"] == "TGTGCCAGCAGCTTGGGACCTAGCACAGATACGCAGTATTTT" assert _is_na(cell1["TRB_1_junction_ins"]) assert cell1["TRB_1_expr"] == 55 assert cell1["TRB_1_v_gene"] == "TRBV7-2" assert cell1["TRB_1_d_gene"] == "TRBD2" assert cell1["TRB_1_j_gene"] == "TRBJ2-3" assert cell1["TRB_1_c_gene"] == "TRBC2" assert _is_false(cell1["multi_chain"]) assert cell2.name == "AAACCTGGTCCGTTAA-1" assert cell2["TRA_1_cdr3"] == "CALNTGGFKTIF" assert cell2["TRA_2_cdr3"] == "CAVILDARLMF" assert cell2["TRA_1_expr"] == 5 assert cell2["TRA_2_expr"] == 5 assert _is_na(cell2["TRB_2_cdr3"])
def test_is_false(): warnings.filterwarnings("error") assert _is_false(False) assert _is_false(0) assert _is_false("") assert _is_false("False") assert _is_false("false") assert not _is_false(42) assert not _is_false(True) assert not _is_false("true") assert not _is_false("foobar") assert not _is_false(np.nan) assert not _is_false(None) assert not _is_false("nan") assert not _is_false("None") array_test = np.array( ["False", "false", 0, 1, True, False, "true", "Foobar", np.nan, "nan"], dtype=object, ) array_test_str = array_test.astype("str") array_expect = np.array( [True, True, True, False, False, True, False, False, False, False] ) array_test_bool = np.array([True, False, True]) array_expect_bool = np.array([False, True, False]) npt.assert_equal(_is_false(array_test), array_expect) npt.assert_equal(_is_false(array_test_str), array_expect) npt.assert_equal(_is_false(pd.Series(array_test)), array_expect) npt.assert_equal(_is_false(pd.Series(array_test_str)), array_expect) npt.assert_equal(_is_false(array_test_bool), array_expect_bool) npt.assert_equal(_is_false(pd.Series(array_test_bool)), array_expect_bool)
def test_is_false(): warnings.filterwarnings("error") assert _is_false(False) assert _is_false(0) # assert _is_false("") -> I redelacred this as nan, as read_airr results in # null fields being "". assert _is_false("False") assert _is_false("false") assert not _is_false(42) assert not _is_false(True) assert not _is_false("true") assert not _is_false("foobar") assert not _is_false(np.nan) assert not _is_false(None) assert not _is_false("nan") assert not _is_false("None") array_test = np.array( ["False", "false", 0, 1, True, False, "true", "Foobar", np.nan, "nan"], dtype=object, ) array_test_str = array_test.astype("str") array_expect = np.array( [True, True, True, False, False, True, False, False, False, False]) array_test_bool = np.array([True, False, True]) array_expect_bool = np.array([False, True, False]) npt.assert_equal(_is_false(array_test), array_expect) npt.assert_equal(_is_false(array_test_str), array_expect) npt.assert_equal(_is_false(pd.Series(array_test)), array_expect) npt.assert_equal(_is_false(pd.Series(array_test_str)), array_expect) npt.assert_equal(_is_false(array_test_bool), array_expect_bool) npt.assert_equal(_is_false(pd.Series(array_test_bool)), array_expect_bool)