def testOnes(self): # make new datasets with ones print("test ones") dds = np.ones(3, dtype=np.float) if isjava: self.assertEqual(1, dds.dtype.elements) self.assertEqual(1, dds.ndim) self.assertEqual(3, dds.shape[0]) self.assertEqual(1, dds[0]) dds = np.ones((2, 3), np.float) if isjava: self.assertEqual(1, dds.dtype.elements) self.assertEqual(2, dds.ndim) self.assertEqual(2, dds.shape[0]) self.assertEqual(3, dds.shape[1]) self.assertEqual(1, dds[0, 0]) dds = np.ones_like(dds) if isjava: self.assertEqual(1, dds.dtype.elements) self.assertEqual(2, dds.ndim) self.assertEqual(2, dds.shape[0]) self.assertEqual(3, dds.shape[1]) self.assertEqual(1, dds[0, 0]) dds = np.ones(np.array([1, 2]), dtype=np.float) self.assertEqual((1, 2), dds.shape) self.assertEqual(1, dds[0, 0]) dds = np.ones_like(np.array([1, 2]), dtype=np.float) self.assertEqual((2, ), dds.shape) self.assertEqual(1, dds[0])
def testOnes(self): # make new datasets with ones print("test ones") dds = np.ones(3, dtype=np.float) if isjava: self.assertEquals(1, dds.dtype.elements) self.assertEquals(1, dds.ndim) self.assertEquals(3, dds.shape[0]) self.assertEquals(1, dds[0]) dds = np.ones((2,3), np.float) if isjava: self.assertEquals(1, dds.dtype.elements) self.assertEquals(2, dds.ndim) self.assertEquals(2, dds.shape[0]) self.assertEquals(3, dds.shape[1]) self.assertEquals(1, dds[0,0]) dds = np.ones_like(dds) if isjava: self.assertEquals(1, dds.dtype.elements) self.assertEquals(2, dds.ndim) self.assertEquals(2, dds.shape[0]) self.assertEquals(3, dds.shape[1]) self.assertEquals(1, dds[0,0]) dds = np.ones(np.array([1,2]), dtype=np.float) self.assertEqual((1,2), dds.shape) self.assertEquals(1, dds[0,0]) dds = np.ones_like(np.array([1,2]), dtype=np.float) self.assertEquals((2,), dds.shape) self.assertEquals(1, dds[0])
def testOnes(self): # make new datasets with ones print "test ones" dds = np.ones(3, np.float) if isjava: self.assertEquals(1, dds.dtype.elements) self.assertEquals(1, dds.ndim) self.assertEquals(3, dds.shape[0]) self.assertEquals(1, dds[0]) dds = np.ones((2,3), np.float) if isjava: self.assertEquals(1, dds.dtype.elements) self.assertEquals(2, dds.ndim) self.assertEquals(2, dds.shape[0]) self.assertEquals(3, dds.shape[1]) self.assertEquals(1, dds[0,0])
def testScisoft(self): a = np.ones([3,4]) print(a.shape) a.shape = [2,6] print(a.shape) a.shape = 12 print(a.shape) a.shape = (2,6) print(a.shape) print(a) print(a*2) b = np.arange(12) print(b) print(b[0]) b[2] = 2.3 print(b[1:8:3]) b[6:2:-1] = -2.1 b.shape = [2,6] print(b + 2) print(2 + b) b += 2 print(b[1,3]) b[0,5] = -2.3 print(b[0,2:5]) b[:,1] = -7.1 print(b) try: c = np.add(a, b) print(c) except: print("Failed with an IAE as expected")
def testScisoft(self): a = np.ones([3,4]) print a.shape a.shape = [2,6] print a.shape a.shape = 12 print a.shape a.shape = (2,6) print a.shape print a print a*2 b = np.arange(12) print b print b[0] b[2] = 2.3 print b[1:8:3] b[6:2:-1] = -2.1 b.shape = [2,6] print b + 2 print 2 + b b += 2. print b[1,3] b[0,5] = -2.3 print b[0,2:5] b[:,1] = -7.1 print b try: c = np.add(a, b) print c except: print "Failed with an IAE as expected"
def testStack(self): print 'Stack testing' self.checkitems([1,1,1], np.hstack(np.ones(3))) self.checkitems([[1],[1],[1]], np.vstack(np.ones(3))) self.checkitems([[[1,1,1]]], np.dstack(np.ones(3))) a = np.array([1,2,3]) b = np.array([2,3,4]) self.checkitems([1,2,3,2,3,4], np.hstack((a, b))) self.checkitems([[1,2], [2,3], [3,4]], np.hstack((a.reshape(3,1), b.reshape(3,1)))) self.checkitems([[1,2,3],[2,3,4]], np.vstack((a, b))) self.checkitems([[1], [2], [3], [2], [3], [4]], np.vstack((a.reshape(3,1), b.reshape(3,1)))) self.checkitems([[[1,2], [2,3], [3,4]]], np.dstack((a, b))) self.checkitems([[[1,2]], [[2,3]], [[3,4]]], np.dstack((a.reshape(3,1), b.reshape(3,1))))
def testScisoft(self): a = np.ones([3, 4]) print a.shape a.shape = [2, 6] print a.shape a.shape = 12 print a.shape a.shape = (2, 6) print a.shape print a print a * 2 b = np.arange(12) print b print b[0] b[2] = 2.3 print b[1:8:3] b[6:2:-1] = -2.1 b.shape = [2, 6] print b + 2 print 2 + b b += 2. print b[1, 3] b[0, 5] = -2.3 print b[0, 2:5] b[:, 1] = -7.1 print b try: c = np.add(a, b) print c except: print "Failed with an IAE as expected"
def testScisoft(self): a = np.ones([3, 4]) print(a.shape) a.shape = [2, 6] print(a.shape) a.shape = 12 print(a.shape) a.shape = (2, 6) print(a.shape) print(a) print(a * 2) b = np.arange(12) print(b) print(b[0]) b[2] = 2.3 print(b[1:8:3]) b[6:2:-1] = -2.1 b.shape = [2, 6] print(b + 2) print(2 + b) b += 2 print(b[1, 3]) b[0, 5] = -2.3 print(b[0, 2:5]) b[:, 1] = -7.1 print(b) try: c = np.add(a, b) print(c) except: print("Failed with an IAE as expected")
def testSaveArgs(self): self.checkArgs(None) self.checkArgs(([None, None], [None,])) self.checkArgs(([None, 1, 1.5], [None,])) self.checkArgs(([None, 1, 1.5], (None,))) self.checkArgs(([None, 1, 1.5], dnp.arange(12))) self.checkArgs(([None, 1, 1.5], {'blah':dnp.arange(12), 'foo': dnp.ones((3,4)), 'boo': -2.345}))
def testStack(self): print('Stack testing') self.checkitems([1,1,1], np.hstack(np.ones(3))) self.checkitems([[1],[1],[1]], np.vstack(np.ones(3))) self.checkitems([[[1,1,1]]], np.dstack(np.ones(3))) a = np.array([1,2,3]) b = np.array([2,3,4]) self.checkitems([1,2,3,2,3,4], np.hstack((a, b))) self.checkitems([[1,2], [2,3], [3,4]], np.hstack((a.reshape(3,1), b.reshape(3,1)))) self.checkitems([[1,2,3],[2,3,4]], np.vstack((a, b))) self.checkitems([[1], [2], [3], [2], [3], [4]], np.vstack((a.reshape(3,1), b.reshape(3,1)))) self.checkitems([[[1,2], [2,3], [3,4]]], np.dstack((a, b))) self.checkitems([[[1,2]], [[2,3]], [[3,4]]], np.dstack((a.reshape(3,1), b.reshape(3,1)))) self.checkitems([[1,2], [2,3], [3,4]], np.column_stack((a, b))) self.checkitems([[1,2, 0, 1, 2], [2,3, 3, 4, 5], [3,4, 6, 7, 8]], np.column_stack((a, b, np.arange(9).reshape(3,3))))
def testStack(self): print('Stack testing') self.checkitems([1, 1, 1], np.hstack(np.ones(3))) self.checkitems([[1], [1], [1]], np.vstack(np.ones(3))) self.checkitems([[[1, 1, 1]]], np.dstack(np.ones(3))) a = np.array([1, 2, 3]) b = np.array([2, 3, 4]) self.checkitems([1, 2, 3, 2, 3, 4], np.hstack((a, b))) self.checkitems([[1, 2], [2, 3], [3, 4]], np.hstack((a.reshape(3, 1), b.reshape(3, 1)))) self.checkitems([[1, 2, 3], [2, 3, 4]], np.vstack((a, b))) self.checkitems([[1], [2], [3], [2], [3], [4]], np.vstack((a.reshape(3, 1), b.reshape(3, 1)))) self.checkitems([[[1, 2], [2, 3], [3, 4]]], np.dstack((a, b))) self.checkitems([[[1, 2]], [[2, 3]], [[3, 4]]], np.dstack((a.reshape(3, 1), b.reshape(3, 1)))) self.checkitems([[1, 2], [2, 3], [3, 4]], np.column_stack((a, b))) self.checkitems([[1, 2, 0, 1, 2], [2, 3, 3, 4, 5], [3, 4, 6, 7, 8]], np.column_stack((a, b, np.arange(9).reshape(3, 3))))
def testOnes(self): # make new datasets with ones print "test ones" dds = np.ones(3, dtype=np.float) if isjava: self.assertEquals(1, dds.dtype.elements) self.assertEquals(1, dds.ndim) self.assertEquals(3, dds.shape[0]) self.assertEquals(1, dds[0]) dds = np.ones((2, 3), np.float) if isjava: self.assertEquals(1, dds.dtype.elements) self.assertEquals(2, dds.ndim) self.assertEquals(2, dds.shape[0]) self.assertEquals(3, dds.shape[1]) self.assertEquals(1, dds[0, 0]) dds = np.ones_like(dds) if isjava: self.assertEquals(1, dds.dtype.elements) self.assertEquals(2, dds.ndim) self.assertEquals(2, dds.shape[0]) self.assertEquals(3, dds.shape[1]) self.assertEquals(1, dds[0, 0])
def baseline(self,xdataset, ydataset, smoothness): '''find the baseline y value for a peak in y dataset''' ymaxindex=ydataset.argMax() if smoothness > 1: wnd = dnp.ones(smoothness, dtype=dnp.float64)/smoothness ydataset = dnp.convolve(ydataset, wnd, 'same') result=dnp.gradient(ydataset, xdataset) leftresult=result[:ymaxindex] rightresult=result[ymaxindex+1:] leftminderivativeindex=dnp.abs(leftresult).argmin() rightminderivativeindex=dnp.abs(rightresult).argmin() leftbasey=ydataset.getElementDoubleAbs(leftminderivativeindex) rightbasey=ydataset.getElementDoubleAbs(rightminderivativeindex+1+leftresult.shape[0]) basey=(leftbasey+rightbasey)/2 return basey
def baseline(self, xdataset, ydataset, smoothness): '''find the baseline y value for a peak in y dataset''' ymaxindex = ydataset.argMax() if smoothness > 1: wnd = dnp.ones(smoothness, dtype=dnp.float64) / smoothness ydataset = dnp.convolve(ydataset, wnd, 'same') result = dnp.gradient(ydataset, xdataset) leftresult = result[:ymaxindex] rightresult = result[ymaxindex + 1:] leftminderivativeindex = dnp.abs(leftresult).argmin() rightminderivativeindex = dnp.abs(rightresult).argmin() leftbasey = ydataset.getElementDoubleAbs(leftminderivativeindex) rightbasey = ydataset.getElementDoubleAbs(rightminderivativeindex + 1 + leftresult.shape[0]) basey = (leftbasey + rightbasey) / 2 return basey
def findBases(self, xdataset, ydataset, delta, smoothness): bases=[] peaks=self.findPeaksAndTroughs(ydataset, delta)[0] yslices=[] xslices=[] startindex=0 for index,value in peaks: #@UnusedVariable yslices.append(ydataset[startindex:index]) xslices.append(xdataset[startindex:index]) startindex=index+1 if smoothness > 1: wnd = dnp.ones(smoothness, dtype=dnp.float64)/smoothness for xset, yset in xslices, yslices: if smoothness > 1: yset = dnp.convolve(yset, wnd, 'same') result=dnp.gradient(yset, xset) minimumderivativeindex=dnp.abs(result).argmin() bases.append((xset[minimumderivativeindex],yset[minimumderivativeindex])) return bases
def findBases(self, xdataset, ydataset, delta, smoothness): bases = [] peaks = self.findPeaksAndTroughs(ydataset, delta)[0] yslices = [] xslices = [] startindex = 0 for index, value in peaks: #@UnusedVariable yslices.append(ydataset[startindex:index]) xslices.append(xdataset[startindex:index]) startindex = index + 1 if smoothness > 1: wnd = dnp.ones(smoothness, dtype=dnp.float64) / smoothness for xset, yset in xslices, yslices: if smoothness > 1: yset = dnp.convolve(yset, wnd, 'same') result = dnp.gradient(yset, xset) minimumderivativeindex = dnp.abs(result).argmin() bases.append( (xset[minimumderivativeindex], yset[minimumderivativeindex])) return bases
def testRandom(self): import os if os.name == 'java': import jarray ja = jarray.array([1, 2], 'i') else: ja = np.array([1, 2]) print np.asIterable(ja) print rnd.rand() print rnd.rand(1) print rnd.rand(2, 4) print rnd.randn() print rnd.randn(1) print rnd.randn(2, 4) for i in range(10): print i, rnd.randint(1) print rnd.randint(2) print rnd.randint(5, size=[2, 4]) print rnd.random_integers(1) print rnd.random_integers(5, size=[2, 4]) print rnd.exponential(1.1) print rnd.exponential(1.1, [2, 4]) print rnd.poisson(1.1) print rnd.poisson(1.1, [2, 4]) a = np.ones([2, 3]) print rnd.poisson(1.2, a.shape) rnd.seed() print rnd.rand(2, 3) rnd.seed() print rnd.rand(2, 3) rnd.seed(12343) print rnd.rand(2, 3) rnd.seed(12343) print rnd.rand(2, 3) a = rnd.rand(200, 300) print a.mean(), a.std()
def testRandom(self): import os if os.name == 'java': import jarray ja = jarray.array([1,2], 'i') else: ja = np.array([1,2]) print np.asIterable(ja) print rnd.rand() print rnd.rand(1) print rnd.rand(2,4) print rnd.randn() print rnd.randn(1) print rnd.randn(2,4) for i in range(10): print i, rnd.randint(1) print rnd.randint(2) print rnd.randint(5, size=[2,4]) print rnd.random_integers(1) print rnd.random_integers(5, size=[2,4]) print rnd.exponential(1.1) print rnd.exponential(1.1, [2,4]) print rnd.poisson(1.1) print rnd.poisson(1.1, [2,4]) a = np.ones([2,3]) print rnd.poisson(1.2, a.shape) rnd.seed() print rnd.rand(2,3) rnd.seed() print rnd.rand(2,3) rnd.seed(12343) print rnd.rand(2,3) rnd.seed(12343) print rnd.rand(2,3) a = rnd.rand(200,300) print a.mean(), a.std()