def generate_and_score_samples(self): sample_list = [] target_list = flex.double() for ii in range(self.sample_size): x = random_transform.t_variate(a=max(2, self.n - 1), N=self.n) x = x * self.sigma + self.mean t = self.compute_target(x) sample_list.append(x) target_list.append(t) order = flex.sort_permutation(flex.double(target_list)) return sample_list, t, order
def generate_and_score_samples(self): sample_list = [] target_list = flex.double() for ii in range(self.sample_size): x = random_transform.t_variate(a=max(2,self.n-1),N=self.n) x = x*self.sigma + self.mean t = self.compute_target(x ) sample_list.append( x ) target_list.append( t ) order = flex.sort_permutation( flex.double(target_list) ) return sample_list, t, order
def exercise_t_variate(): data = rt.t_variate(a=6, mu=0, sigma=1, N=1000000) mu1 = flex.mean(data) mu2 = flex.mean(data * data) assert approx_equal(mu1, 0, eps=0.02) assert approx_equal(mu2, 1.5, eps=0.04)
def exercise_t_variate(): data = rt.t_variate(a=6, mu=0,sigma=1,N=1000000) mu1 = flex.mean(data) mu2 = flex.mean(data*data) assert approx_equal(mu1,0,eps=0.02) assert approx_equal(mu2,1.5,eps=0.04)