def test_build_empty():
    ## GIVEN a variant with no information
    variant = {}
    
    ## WHEN building a variant_obj
    ## THEN a Key Error should be raised since mandatory fields are missing
    with pytest.raises(KeyError):
        build_variant(variant, INSTITUTE_ID)
def test_build_with_gene_info(parsed_variant):
    ## GIVEN information about a variant
    
    ## WHEN adding gene and transcript information and building variant
    transcript_info = {
        'functional_annotations': ['transcript_ablation'],
        'transcript_id': 'ENST00000249504',
        'hgnc_id': 5134,
        'sift_prediction': 'deleterious'
    }
    gene_info = {
        'transcripts': [transcript_info],
        'most_severe_transcript': transcript_info,
        'most_severe_consequence': 'transcript_ablation',
        'most_severe_sift': 'deleterious',
        'most_severe_polyphen': None,
        'hgnc_id': 5134,
        'region_annotation': 'exonic',
    }
    
    parsed_variant['genes'].append(gene_info)

    variant_obj = build_variant(parsed_variant, INSTITUTE_ID)
    
    ## THEN assert the information is added
    assert variant_obj['institute'] == INSTITUTE_ID
    assert len(variant_obj['genes']) == 1
def test_build_cadd_score(parsed_variants, institute_obj):
    for index,variant in enumerate(parsed_variants):
        if variant.get('cadd_score'):
            variant_obj = build_variant(variant, institute_obj)
            
            assert variant_obj['cadd_score'] == variant['cadd_score']
            
    assert index > 0
def test_build_minimal(case_obj):
    ## GIVEN a variant with minimal information
    class Cyvcf2Variant(object):
        def __init__(self):
            self.CHROM = '1'
            self.REF = 'A'
            self.ALT = ['C']
            self.POS = 10
            self.end = 11
            self.FILTER = None
            self.ID = '.'
            self.QUAL = None
            self.var_type = 'snp'
            self.INFO = {}
    
    variant = Cyvcf2Variant()
    
    parsed_variant = parse_variant(variant, case_obj)
    assert 'ids' in parsed_variant
    variant_obj = build_variant(parsed_variant, INSTITUTE_ID)
    assert variant_obj['_id'] == parsed_variant['ids']['document_id']
def test_build_with_hgnc_info(parsed_variant):
    ## GIVEN information about a variant
    
    ## WHEN adding gene and transcript information and building variant
    transcript_info = {
        'functional_annotations': ['transcript_ablation'],
        'transcript_id': 'ENST00000249504',
        'hgnc_id': 5134,
        'sift_prediction': 'deleterious'
    }
    gene_info = {
        'transcripts': [transcript_info],
        'most_severe_transcript': transcript_info,
        'most_severe_consequence': 'transcript_ablation',
        'most_severe_sift': 'deleterious',
        'most_severe_polyphen': None,
        'hgnc_id': 5134,
        'region_annotation': 'exonic',
    }
    
    parsed_variant['genes'].append(gene_info)
    
    transcript_1 = {
            'ensembl_transcript_id': 'ENST00000498438',
            'is_primary': False,
            'start': 176968944,
            'end': 176974482
        }
    
    transcript_2 = {
            'ensembl_transcript_id': 'ENST00000249504',
            'is_primary': True,
            'refseq_id': 'NM_021192',
            'start': 176972014,
            'end': 176974722,
        }


    
    hgnc_transcripts = [
        transcript_1,
        transcript_2
    ]
    
    hgnc_gene = {
        'hgnc_id': 5134,
        'hgnc_symbol': 'HOXD11',
        'ensembl_id': 'ENSG00000128713',
        'chromosome': '2',
        'start': 176968944,
        'end': 176974722,
        'build': 37,
        'description': 'homeobox D11',
        'aliases': ['HOX4', 'HOXD11', 'HOX4F'],
        'entrez_id': 3237,
        'omim_ids': 142986,
        'pli_score': 0.0131898476206074,
        'primary_transcripts': ['NM_021192'],
        'ucsc_id': 'uc010fqx.4',
        'uniprot_ids': ['P31277'],
        'vega_id': 'OTTHUMG00000132510',
        'transcripts': hgnc_transcripts,
        'incomplete_penetrance': False,
        'ad': True,
        'ar': False,
        'xd': False,
        'xr': False,
        'x': False,
        'y': False,
        'transcripts_dict': {
            'ENST00000498438': transcript_1,
            'ENST00000249504': transcript_2,
            }
    }
    
    hgncid_to_gene = {5134: hgnc_gene}

    variant_obj = build_variant(parsed_variant, INSTITUTE_ID, hgncid_to_gene=hgncid_to_gene)
    
    ## THEN assert the information is added
    assert variant_obj['institute'] == INSTITUTE_ID
    assert variant_obj['genes'][0]['hgnc_id'] == 5134
    assert variant_obj['genes'][0]['hgnc_symbol'] == 'HOXD11'
    assert variant_obj['genes'][0]['inheritance'] == ['AD']
def test_build_sv_variants(parsed_sv_variants, institute_obj):
    for variant in parsed_sv_variants:
        variant_obj = build_variant(variant, institute_obj)

        assert variant_obj['chromosome'] == variant['chromosome']
        assert variant_obj['category'] == 'sv'
def test_build_sv_variant(parsed_sv_variant, institute_obj):
    variant_obj = build_variant(parsed_sv_variant, institute_obj)
        
    assert variant_obj['chromosome'] == parsed_sv_variant['chromosome']
    assert variant_obj['category'] == 'sv'
Example #8
0
    def _load_variants(self, variants, variant_type, case_obj, individual_positions, rank_threshold,
                       institute_id, build=None, rank_results_header=None, vep_header=None,
                       category='snv', sample_info = None):
        """Perform the loading of variants

        This is the function that loops over the variants, parse them and build the variant
        objects so they are ready to be inserted into the database.

        """
        build = build or '37'
        genes = [gene_obj for gene_obj in self.all_genes(build=build)]
        gene_to_panels = self.gene_to_panels(case_obj)
        hgncid_to_gene = self.hgncid_to_gene(genes=genes)
        genomic_intervals = self.get_coding_intervals(genes=genes)

        LOG.info("Start inserting variants into database")
        start_insertion = datetime.now()
        start_five_thousand = datetime.now()
        # These are the number of parsed varaints
        nr_variants = 0
        # These are the number of variants that meet the criteria and gets inserted
        nr_inserted = 0
        # This is to keep track of blocks of inserted variants
        inserted = 1

        nr_bulks = 0

        # We want to load batches of variants to reduce the number of network round trips
        bulk = {}
        current_region = None

        for nr_variants, variant in enumerate(variants):
            # All MT variants are loaded
            mt_variant = 'MT' in variant.CHROM
            rank_score = parse_rank_score(variant.INFO.get('RankScore'), case_obj['_id'])

            # Check if the variant should be loaded at all
            # if rank score is None means there are no rank scores annotated, all variants will be loaded
            # Otherwise we load all variants above a rank score treshold
            # Except for MT variants where we load all variants
            if (rank_score is None) or (rank_score > rank_threshold) or mt_variant:
                nr_inserted += 1
                # Parse the vcf variant
                parsed_variant = parse_variant(
                    variant=variant,
                    case=case_obj,
                    variant_type=variant_type,
                    rank_results_header=rank_results_header,
                    vep_header=vep_header,
                    individual_positions=individual_positions,
                    category=category,
                )

                # Build the variant object
                variant_obj = build_variant(
                    variant=parsed_variant,
                    institute_id=institute_id,
                    gene_to_panels=gene_to_panels,
                    hgncid_to_gene=hgncid_to_gene,
                    sample_info=sample_info
                )

                # Check if the variant is in a genomic region
                var_chrom = variant_obj['chromosome']
                var_start = variant_obj['position']
                # We need to make sure that the interval has a length > 0
                var_end = variant_obj['end'] + 1
                var_id = variant_obj['_id']
                # If the bulk should be loaded or not
                load = True
                new_region = None

                genomic_regions = genomic_intervals.get(var_chrom, IntervalTree()).search(var_start, var_end)

                # If the variant is in a coding region
                if genomic_regions:
                    # We know there is data here so get the interval id
                    new_region = genomic_regions.pop().data
                    # If the variant is in the same region as previous
                    # we add it to the same bulk
                    if new_region == current_region:
                        load = False

                # This is the case where the variant is intergenic
                else:
                    # If the previous variant was also intergenic we add the variant to the bulk
                    if not current_region:
                        load = False
                    # We need to have a max size of the bulk
                    if len(bulk) > 10000:
                        load = True
                # Load the variant object
                if load:
                    # If the variant bulk contains coding variants we want to update the compounds
                    if current_region:
                        self.update_compounds(bulk)
                    try:
                        # Load the variants
                        self.load_variant_bulk(list(bulk.values()))
                        nr_bulks += 1
                    except IntegrityError as error:
                        pass
                    bulk = {}

                current_region = new_region
                bulk[var_id] = variant_obj

                if (nr_variants != 0 and nr_variants % 5000 == 0):
                    LOG.info("%s variants parsed", str(nr_variants))
                    LOG.info("Time to parse variants: %s",
                                (datetime.now() - start_five_thousand))
                    start_five_thousand = datetime.now()

                if (nr_inserted != 0 and (nr_inserted * inserted) % (1000 * inserted) == 0):
                    LOG.info("%s variants inserted", nr_inserted)
                    inserted += 1
        # If the variants are in a coding region we update the compounds
        if current_region:
            self.update_compounds(bulk)

        # Load the final variant bulk
        self.load_variant_bulk(list(bulk.values()))
        nr_bulks += 1
        LOG.info("All variants inserted, time to insert variants: {0}".format(
            datetime.now() - start_insertion))

        if nr_variants:
            nr_variants += 1
        LOG.info("Nr variants parsed: %s", nr_variants)
        LOG.info("Nr variants inserted: %s", nr_inserted)
        LOG.debug("Nr bulks inserted: %s", nr_bulks)

        return nr_inserted
Example #9
0
def test_build_sv_variants(parsed_sv_variants, institute_obj):
    for variant in parsed_sv_variants:
        variant_obj = build_variant(variant, institute_obj)

        assert variant_obj["chromosome"] == variant["chromosome"]
        assert variant_obj["category"] == "sv"
Example #10
0
def test_build_sv_variant(parsed_sv_variant, institute_obj):
    variant_obj = build_variant(parsed_sv_variant, institute_obj)

    assert variant_obj["chromosome"] == parsed_sv_variant["chromosome"]
    assert variant_obj["category"] == "sv"
Example #11
0
def test_build_variant(parsed_variant):
    variant_obj = build_variant(parsed_variant, INSTITUTE_ID)

    assert variant_obj["chromosome"] == parsed_variant["chromosome"]
    assert variant_obj["category"] == "snv"
    assert variant_obj["institute"] == INSTITUTE_ID
Example #12
0
    def _load_variants(
        self,
        variants,
        variant_type,
        case_obj,
        individual_positions,
        rank_threshold,
        institute_id,
        build=None,
        rank_results_header=None,
        vep_header=None,
        category="snv",
        sample_info=None,
    ):
        """Perform the loading of variants

        This is the function that loops over the variants, parse them and build the variant
        objects so they are ready to be inserted into the database.

        Args:
            variants(iterable(cyvcf2.Variant))
            variant_type(str): ['clinical', 'research']
            case_obj(dict)
            individual_positions(dict): How individuals are positioned in vcf
            rank_treshold(int): Only load variants with a rank score > than this
            institute_id(str)
            build(str): Genome build
            rank_results_header(list): Rank score categories
            vep_header(list)
            category(str): ['snv','sv','cancer','str']
            sample_info(dict): A dictionary with info about samples.
                               Strictly for cancer to tell which is tumor

        Returns:
            nr_inserted(int)
        """
        build = build or "37"
        genes = [gene_obj for gene_obj in self.all_genes(build=build)]
        gene_to_panels = self.gene_to_panels(case_obj)
        hgncid_to_gene = self.hgncid_to_gene(genes=genes)
        genomic_intervals = self.get_coding_intervals(genes=genes)

        LOG.info(
            "Start inserting {0} {1} variants into database".format(
                variant_type, category
            )
        )
        start_insertion = datetime.now()
        start_five_thousand = datetime.now()
        # These are the number of parsed varaints
        nr_variants = 0
        # These are the number of variants that meet the criteria and gets inserted
        nr_inserted = 0
        # This is to keep track of blocks of inserted variants
        inserted = 1

        nr_bulks = 0

        # We want to load batches of variants to reduce the number of network round trips
        bulk = {}
        current_region = None

        for nr_variants, variant in enumerate(variants):
            # All MT variants are loaded
            mt_variant = "MT" in variant.CHROM
            rank_score = parse_rank_score(
                variant.INFO.get("RankScore"), case_obj["_id"]
            )
            pathogenic = is_pathogenic(variant)

            # Check if the variant should be loaded at all
            # if rank score is None means there are no rank scores annotated, all variants will be loaded
            # Otherwise we load all variants above a rank score treshold
            # Except for MT variants where we load all variants
            if (
                (rank_score is None)
                or (rank_score > rank_threshold)
                or mt_variant
                or pathogenic
            ):
                nr_inserted += 1
                # Parse the vcf variant
                parsed_variant = parse_variant(
                    variant=variant,
                    case=case_obj,
                    variant_type=variant_type,
                    rank_results_header=rank_results_header,
                    vep_header=vep_header,
                    individual_positions=individual_positions,
                    category=category,
                )

                # Build the variant object
                variant_obj = build_variant(
                    variant=parsed_variant,
                    institute_id=institute_id,
                    gene_to_panels=gene_to_panels,
                    hgncid_to_gene=hgncid_to_gene,
                    sample_info=sample_info,
                )

                # Check if the variant is in a genomic region
                var_chrom = variant_obj["chromosome"]
                var_start = variant_obj["position"]
                # We need to make sure that the interval has a length > 0
                var_end = variant_obj["end"] + 1
                var_id = variant_obj["_id"]
                # If the bulk should be loaded or not
                load = True
                new_region = None

                intervals = genomic_intervals.get(var_chrom, IntervalTree())
                genomic_regions = intervals.overlap(var_start, var_end)

                # If the variant is in a coding region
                if genomic_regions:
                    # We know there is data here so get the interval id
                    new_region = genomic_regions.pop().data
                    # If the variant is in the same region as previous
                    # we add it to the same bulk
                    if new_region == current_region:
                        load = False

                # This is the case where the variant is intergenic
                else:
                    # If the previous variant was also intergenic we add the variant to the bulk
                    if not current_region:
                        load = False
                    # We need to have a max size of the bulk
                    if len(bulk) > 10000:
                        load = True
                # Load the variant object
                if load:
                    # If the variant bulk contains coding variants we want to update the compounds
                    if current_region:
                        self.update_compounds(bulk)
                    try:
                        # Load the variants
                        self.load_variant_bulk(list(bulk.values()))
                        nr_bulks += 1
                    except IntegrityError as error:
                        pass
                    bulk = {}

                current_region = new_region
                bulk[var_id] = variant_obj

                if nr_variants != 0 and nr_variants % 5000 == 0:
                    LOG.info("%s variants parsed", str(nr_variants))
                    LOG.info(
                        "Time to parse variants: %s",
                        (datetime.now() - start_five_thousand),
                    )
                    start_five_thousand = datetime.now()

                if (
                    nr_inserted != 0
                    and (nr_inserted * inserted) % (1000 * inserted) == 0
                ):
                    LOG.info("%s variants inserted", nr_inserted)
                    inserted += 1
        # If the variants are in a coding region we update the compounds
        if current_region:
            self.update_compounds(bulk)

        # Load the final variant bulk
        self.load_variant_bulk(list(bulk.values()))
        nr_bulks += 1
        LOG.info(
            "All variants inserted, time to insert variants: {0}".format(
                datetime.now() - start_insertion
            )
        )

        if nr_variants:
            nr_variants += 1
        LOG.info("Nr variants parsed: %s", nr_variants)
        LOG.info("Nr variants inserted: %s", nr_inserted)
        LOG.debug("Nr bulks inserted: %s", nr_bulks)

        return nr_inserted
Example #13
0
def sv_variant_objs(request, parsed_sv_variants, institute_obj):
    """Get a generator with parsed variants"""
    print('')
    return (build_variant(variant, institute_obj)
            for variant in parsed_sv_variants)
def test_compounds_region(real_populated_database, case_obj, variant_clinical_file):
    """When loading the variants not all variants will be loaded, only the ones that
       have a rank score above a treshold.
       This implies that some compounds will have the status 'not_loaded'=True.
       When loading all variants for a region then all variants should 
       have status 'not_loaded'=False.
    """
    adapter = real_populated_database
    variant_type = 'clinical'
    category = 'snv'
    ## GIVEN a database without any variants
    assert adapter.variant_collection.find().count() == 0
    
    institute_obj = adapter.institute_collection.find_one()
    institute_id = institute_obj['_id']
    
    ## WHEN loading variants into the database without updating compound information
    
    vcf_obj = VCF(variant_clinical_file)
    rank_results_header = parse_rank_results_header(vcf_obj)
    vep_header = parse_vep_header(vcf_obj)
    
    individual_positions = {}
    for i, ind in enumerate(vcf_obj.samples):
        individual_positions[ind] = i

    variants = []
    for i,variant in enumerate(vcf_obj):
        parsed_variant = parse_variant(
            variant=variant,
            case=case_obj,
            variant_type='clinical',
            rank_results_header=rank_results_header,
            vep_header=vep_header,
            individual_positions=individual_positions,
            category='snv',
        )
        
        variant_obj = build_variant(
            variant=parsed_variant,
            institute_id=institute_id,
        )
        variants.append(variant_obj)
    
    # Load all variants
    adapter.variant_collection.insert_many(variants)

    print("Nr variants: {0}".format(len(variants)))

    ## THEN assert that the variants does not have updated compound information
    nr_compounds = 0
    for var in adapter.variant_collection.find():
        if not var.get('compounds'):
            continue
        for comp in var['compounds']:
            if 'genes' in comp:
                assert False
            if 'not_loaded' in comp:
                assert False
            nr_compounds += 1
    
    assert nr_compounds > 0
    
    ## WHEN updating all compounds for a case
    adapter.update_case_compounds(case_obj)
    hgnc_ids = set([gene['hgnc_id'] for gene in adapter.all_genes()])

    nr_compounds = 0
    ## THEN assert that all compounds  (within the gene defenition) are updated
    for var in adapter.variant_collection.find():
        cont = False
        for hgnc_id in var['hgnc_ids']:
            if hgnc_id not in hgnc_ids:
                cont = True
        if cont:
            continue
        if not var.get('compounds'):
            continue
        for comp in var['compounds']:
            nr_compounds += 1
            if not 'genes' in comp:
                # pp(var)
                assert False
            if not 'not_loaded' in comp:
                assert False
    assert nr_compounds > 0
def test_build_variant(parsed_variant):
    variant_obj = build_variant(parsed_variant, INSTITUTE_ID)
        
    assert variant_obj['chromosome'] == parsed_variant['chromosome']
    assert variant_obj['category'] == 'snv'
    assert variant_obj['institute'] == INSTITUTE_ID
Example #16
0
    def _load_variants(self, variants, variant_type, case_obj, individual_positions, rank_threshold,
                       institute_id, build=None, rank_results_header=None, vep_header=None,
                       category='snv', sample_info = None):
        """Perform the loading of variants

        This is the function that loops over the variants, parse them and build the variant
        objects so they are ready to be inserted into the database.

        """
        build = build or '37'
        genes = [gene_obj for gene_obj in self.all_genes(build=build)]
        gene_to_panels = self.gene_to_panels(case_obj)
        hgncid_to_gene = self.hgncid_to_gene(genes=genes)
        genomic_intervals = self.get_coding_intervals(genes=genes)

        LOG.info("Start inserting {0} {1} variants into database".format(variant_type, category))
        start_insertion = datetime.now()
        start_five_thousand = datetime.now()
        # These are the number of parsed varaints
        nr_variants = 0
        # These are the number of variants that meet the criteria and gets inserted
        nr_inserted = 0
        # This is to keep track of blocks of inserted variants
        inserted = 1

        nr_bulks = 0

        # We want to load batches of variants to reduce the number of network round trips
        bulk = {}
        current_region = None

        for nr_variants, variant in enumerate(variants):
            # All MT variants are loaded
            mt_variant = 'MT' in variant.CHROM
            rank_score = parse_rank_score(variant.INFO.get('RankScore'), case_obj['_id'])

            # Check if the variant should be loaded at all
            # if rank score is None means there are no rank scores annotated, all variants will be loaded
            # Otherwise we load all variants above a rank score treshold
            # Except for MT variants where we load all variants
            if (rank_score is None) or (rank_score > rank_threshold) or mt_variant:
                nr_inserted += 1
                # Parse the vcf variant
                parsed_variant = parse_variant(
                    variant=variant,
                    case=case_obj,
                    variant_type=variant_type,
                    rank_results_header=rank_results_header,
                    vep_header=vep_header,
                    individual_positions=individual_positions,
                    category=category,
                )

                # Build the variant object
                variant_obj = build_variant(
                    variant=parsed_variant,
                    institute_id=institute_id,
                    gene_to_panels=gene_to_panels,
                    hgncid_to_gene=hgncid_to_gene,
                    sample_info=sample_info
                )

                # Check if the variant is in a genomic region
                var_chrom = variant_obj['chromosome']
                var_start = variant_obj['position']
                # We need to make sure that the interval has a length > 0
                var_end = variant_obj['end'] + 1
                var_id = variant_obj['_id']
                # If the bulk should be loaded or not
                load = True
                new_region = None

                genomic_regions = genomic_intervals.get(var_chrom, IntervalTree()).search(var_start, var_end)

                # If the variant is in a coding region
                if genomic_regions:
                    # We know there is data here so get the interval id
                    new_region = genomic_regions.pop().data
                    # If the variant is in the same region as previous
                    # we add it to the same bulk
                    if new_region == current_region:
                        load = False

                # This is the case where the variant is intergenic
                else:
                    # If the previous variant was also intergenic we add the variant to the bulk
                    if not current_region:
                        load = False
                    # We need to have a max size of the bulk
                    if len(bulk) > 10000:
                        load = True
                # Load the variant object
                if load:
                    # If the variant bulk contains coding variants we want to update the compounds
                    if current_region:
                        self.update_compounds(bulk)
                    try:
                        # Load the variants
                        self.load_variant_bulk(list(bulk.values()))
                        nr_bulks += 1
                    except IntegrityError as error:
                        pass
                    bulk = {}

                current_region = new_region
                bulk[var_id] = variant_obj

                if (nr_variants != 0 and nr_variants % 5000 == 0):
                    LOG.info("%s variants parsed", str(nr_variants))
                    LOG.info("Time to parse variants: %s",
                                (datetime.now() - start_five_thousand))
                    start_five_thousand = datetime.now()

                if (nr_inserted != 0 and (nr_inserted * inserted) % (1000 * inserted) == 0):
                    LOG.info("%s variants inserted", nr_inserted)
                    inserted += 1
        # If the variants are in a coding region we update the compounds
        if current_region:
            self.update_compounds(bulk)

        # Load the final variant bulk
        self.load_variant_bulk(list(bulk.values()))
        nr_bulks += 1
        LOG.info("All variants inserted, time to insert variants: {0}".format(
            datetime.now() - start_insertion))

        if nr_variants:
            nr_variants += 1
        LOG.info("Nr variants parsed: %s", nr_variants)
        LOG.info("Nr variants inserted: %s", nr_inserted)
        LOG.debug("Nr bulks inserted: %s", nr_bulks)

        return nr_inserted
def test_compounds_region(real_populated_database, case_obj,
                          variant_clinical_file):
    """When loading the variants not all variants will be loaded, only the ones that
       have a rank score above a treshold.
       This implies that some compounds will have the status 'not_loaded'=True.
       When loading all variants for a region then all variants should 
       have status 'not_loaded'=False.
    """
    adapter = real_populated_database
    variant_type = 'clinical'
    category = 'snv'
    ## GIVEN a database without any variants
    assert adapter.variant_collection.find().count() == 0

    institute_obj = adapter.institute_collection.find_one()
    institute_id = institute_obj['_id']

    ## WHEN loading variants into the database without updating compound information

    vcf_obj = VCF(variant_clinical_file)
    rank_results_header = parse_rank_results_header(vcf_obj)
    vep_header = parse_vep_header(vcf_obj)

    individual_positions = {}
    for i, ind in enumerate(vcf_obj.samples):
        individual_positions[ind] = i

    variants = []
    for i, variant in enumerate(vcf_obj):
        parsed_variant = parse_variant(
            variant=variant,
            case=case_obj,
            variant_type='clinical',
            rank_results_header=rank_results_header,
            vep_header=vep_header,
            individual_positions=individual_positions,
            category='snv',
        )

        variant_obj = build_variant(
            variant=parsed_variant,
            institute_id=institute_id,
        )
        variants.append(variant_obj)

    # Load all variants
    adapter.variant_collection.insert_many(variants)

    print("Nr variants: {0}".format(len(variants)))

    ## THEN assert that the variants does not have updated compound information
    nr_compounds = 0
    for var in adapter.variant_collection.find():
        if not var.get('compounds'):
            continue
        for comp in var['compounds']:
            if 'genes' in comp:
                assert False
            if 'not_loaded' in comp:
                assert False
            nr_compounds += 1

    assert nr_compounds > 0

    ## WHEN updating all compounds for a case
    adapter.update_case_compounds(case_obj)
    hgnc_ids = set([gene['hgnc_id'] for gene in adapter.all_genes()])

    nr_compounds = 0
    ## THEN assert that all compounds  (within the gene defenition) are updated
    for var in adapter.variant_collection.find():
        cont = False
        for hgnc_id in var['hgnc_ids']:
            if hgnc_id not in hgnc_ids:
                cont = True
        if cont:
            continue
        if not var.get('compounds'):
            continue
        for comp in var['compounds']:
            nr_compounds += 1
            if not 'genes' in comp:
                # pp(var)
                assert False
            if not 'not_loaded' in comp:
                assert False
    assert nr_compounds > 0