def scrape(): # execute scrape funcions # stock_info = mongo.db.stock_info stock_data = scrape_stock.scrape_stock() # update mongo database # stock_info.update({}, stock_data, upsert=True) # redirect back to home page return render_template("index.html", stock_info=stock_data)
def scrape(): global stock_data # execute scrape funcions # stock_info = mongo.db.stock_info # stock scraping function and store in session stock_data = scrape_stock.scrape_stock() # retrieve the value of data from session # update mongo database # stock_info.update({}, stock_data, upsert=True) # redirect back to home page return render_template("1-dashboard.html", stock_info=stock_data, data=data)
def scrape(): # execute scrape funcions # stock_info = mongo.db.stock_info # stock scraping function stock_data = scrape_stock.scrape_stock() # twitter scraping function n = int(request.args.get('n')) search = request.args.get('search') data = hashtag.get_tweets(n, search) # update mongo database # stock_info.update({}, stock_data, upsert=True) # redirect back to home page return render_template("index.html", stock_info=stock_data, data=data)
def scrape(): global ml_data global data global stock_data global predictionImages # global final_prediction # execute scrape funcions # stock_info = mongo.db.stock_info # stock scraping function and store in session stock_data = scrape_stock.scrape_stock() # retrieve the value of data from session # update mongo database # stock_info.update({}, stock_data, upsert=True) # redirect back to home page return render_template("8-stockticker-tweeter.html", stock_info=stock_data, data=data, eco_scrape_dict=ml_data, final_prediction = predictionImages[final_prediction[0][0]])