def vgg16_bn(pretrained=True, **kwargs): kwargs['lconf'] = [2, 2, 3, 3, 3] return get_net(VGG, pretrained=pretrained, pretrain_url=urls.vgg16_bn, fname='vgg16_bn', kwargs_net=kwargs, attr='classifier', inn=25088)
def vgg19_bn(pretrained=False, **kwargs): if pretrained: raise Exception('No pretrained models avaialble!') kwargs['lconf'] = [2, 2, 4, 4, 4] return get_net(VGG, pretrained=pretrained, pretrain_url=None, fname='vgg19_bn', kwargs_net=kwargs, attr='classifier', inn=25088)
def vgg19(pretrained=True, **kwargs): kwargs['lconf'] = [2, 2, 4, 4, 4] kwargs['norm'] = False return get_net(VGG, pretrained=pretrained, pretrain_url=urls.vgg19, fname='vgg19', kwargs_net=kwargs, attr='classifier', inn=25088)
def googlenet_paper(pretrained=False, **kwargs): """ GoogLeNet Model as given in the official Paper. """ kwargs['aux'] = True if 'aux' not in kwargs else kwargs['aux'] kwargs['replace5x5with3x3'] = False if 'replace5x5with3x3' not in kwargs \ else kwargs['replace5x5with3x3'] return get_net(GoogLeNet, pretrained=pretrained, pretrain_url=None, fname='googlenet', kwargs_net=kwargs, attr='classifier', inn=1024)
def googlenet(pretrained=True, **kwargs): """ GoogLeNet Model with weights as given by the officials who trained it on TensorFlow. """ kwargs['aux'] = False if 'aux' not in kwargs else kwargs['aux'] kwargs['replace5x5with3x3'] = True if 'replace5x5with3x3' not in kwargs \ else kwargs['replace5x5with3x3'] return get_net(GoogLeNet, pretrained=pretrained, fname='googlenet', kwargs_net=kwargs, attr='classifier', inn=1024, pretrain_url=urls.googlenet_url)