def save_checkpoint(self, path): setup_directory(path) check_point_path = path_join(path, 'check_point', 'instance.ckpt') setup_file(check_point_path) saver = tf.train.Saver(self.main_graph_var_list + self.misc_ops_var_list) saver.save(self.sess, check_point_path)
def save_meta(self, path): setup_directory(path) self.metadata.save(path_join(path, 'meta.pkl')) self.metadata.save(path_join(path, 'meta.json')) self.params_path = path_join(path, 'params.pkl') self._save_params(self.params_path)
def __init__(self, logdir, name, device='/cpu:0', epoch=0, verbose=0): super().__init__(verbose) self.logdir = logdir setup_directory(self.logdir) self.name = name self.device = device self.writer = None self.epoch = epoch self.sess = None self.is_build = False self.x_shape = None
def __init__(self, path, max_best=True, name='BestSave', log=print): self.path = path self.max_best = max_best self.name = name self.log = log if self.max_best: self.best_metric = -np.Inf else: self.best_metric = np.Inf setup_directory(self.path)
def __init__(self, path, k=5, max_best=True, save_model=True, name='top_k_save', log=print): self.path = path self.k = k self.max_best = max_best self.save_model = save_model self.name = name self.log = log self.top_k_json_path = path_join(self.path, 'top_k.json') if os.path.exists(self.top_k_json_path): self.top_k = load_json(self.top_k_json_path) else: if self.max_best: self.top_k = [np.Inf] + [-np.Inf for _ in range(self.k)] else: self.top_k = [-np.Inf] + [np.Inf for _ in range(self.k)] if self.save_model: for i in range(1, self.k + 1): setup_directory(path_join(self.path, f'top_{i}'))