if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='Assurance Monitoring for RL-based emergency braking system.')
    parser.add_argument("-g", "--gui", help="set gui mode.", action="store_true")
    parser.add_argument("-t", "--testing", help="set testing mode", action="store_true", default=False)
    parser.add_argument("-cp", "--collect_perception", help="collect the data for perception training")
    parser.add_argument("-ca", "--collect_detector", help="collect the data for detector training")
    parser.add_argument("-p", "--perception", help="set the path of perception neural network")
    parser.add_argument("-e", "--episode", help="set the number of episode", type=int, default=1)

    args = parser.parse_args()

    try:
        os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"
        os.environ["CUDA_VISIBLE_DEVICES"]="0"  # specify which GPU(s) to be used
        collect = args_assertions(args)
        env = SetupWorld(mass=1300, wheel_radius=0.04, dt=0.05, collect=collect)
        agent = ddpgAgent(Testing=args.testing)
        input_preprocessor = InputPreprocessor()
        avf=AVF_search()
        stopdist=6.0
        print('Number of episodes :',args.episode)
        for episode in range(args.episode):
         #while stopdist>5.0:
            agnt_number=2000;
            numberofsamples=2000
            initial_distance = np.random.normal(100, 1)
            initial_speed = np.random.normal(38,11)
            #initial_speed = avf.avf_predictor(numberofsamples,agnt_number)
            if initial_speed <1 : initial_speed=1
            friction=np.random.normal(0.7,0.15)
            if friction<=0 : friction=0 
Example #2
0
    parser = argparse.ArgumentParser(description='Assurance Monitoring for RL-based emergency braking system.')
    parser.add_argument("-g", "--gui", help="set gui mode.", action="store_true")
    parser.add_argument("-t", "--testing", help="set testing mode", action="store_true", default=False)
    parser.add_argument("-cp", "--collect_perception", help="collect the data for perception training")
    parser.add_argument("-ca", "--collect_detector", help="collect the data for detector training")
    parser.add_argument("-p", "--perception", help="set the path of perception neural network")
    parser.add_argument("-e", "--episode", help="set the number of episode", type=int, default=1)

    args = parser.parse_args()

    try:
        collect = args_assertions(args)
        carla_server = ServerManagerBinary({'CARLA_SERVER': os.environ["CARLA_SERVER"]})
        carla_server.reset(port=2002)
        carla_server.wait_until_ready()
        env = SetupWorld(town=1, gui=args.gui, collect=collect, perception=args.perception)
        agent = ddpgAgent(Testing=args.testing)
        input_preprocessor = InputPreprocessor()
        total_episode_count=[]
        avf_model = tf.keras.models.load_model('./DATA/saved_model/my_model')
        samples_per_iteration=100
        container = np.load('./DATA/stdmean.npz')

       
        for episode in range(args.episode):
            #Generating data stream 
            random_seed=np.random.randint(1,10000)
            np.random.seed(random_seed)
            candidate_initial_speed =5+40*(np.random.rand(samples_per_iteration,1).reshape(-1,1))
            random_seed=np.random.randint(1,10000)
            np.random.seed(random_seed)
Example #3
0
    parser.add_argument("-e",
                        "--episode",
                        help="set the number of episode",
                        type=int,
                        default=1)

    args = parser.parse_args()

    try:
        collect = args_assertions(args)
        carla_server = ServerManagerBinary(
            {'CARLA_SERVER': os.environ["CARLA_SERVER"]})
        carla_server.reset()
        carla_server.wait_until_ready()
        env = SetupWorld(town=1,
                         gui=args.gui,
                         collect=collect,
                         perception=args.perception)
        agent = ddpgAgent(Testing=args.testing)
        input_preprocessor = InputPreprocessor()
        for episode in range(args.episode):
            initial_distance = np.random.normal(100, 1)
            initial_speed = np.random.uniform(5, 45)
            #initial_speed =45
            s = env.reset(initial_distance, initial_speed)
            print(
                "Episode {} is started, target distance: {}, target speed: {}, initial distance: {}, initial speed: {}"
                .format(episode, initial_distance, initial_speed, s[0], s[1]))
            s = input_preprocessor(s)
            epsilon = 1.0 - (episode + 1) / (args.episode)
            while True:
                a = agent.getAction(s, epsilon)
Example #4
0
if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='Assurance Monitoring for RL-based emergency braking system.')
    parser.add_argument("-g", "--gui", help="set gui mode.", action="store_true")
    parser.add_argument("-t", "--testing", help="set testing mode", action="store_true", default=False)
    parser.add_argument("-cp", "--collect_perception", help="collect the data for perception training")
    parser.add_argument("-ca", "--collect_detector", help="collect the data for detector training")
    parser.add_argument("-p", "--perception", help="set the path of perception neural network")
    parser.add_argument("-e", "--episode", help="set the number of episode", type=int, default=1)

    args = parser.parse_args()

    try:
        os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"
        os.environ["CUDA_VISIBLE_DEVICES"]="0"  # specify which GPU(s) to be used
        collect = args_assertions(args)
        env = SetupWorld(mass=1300, wheel_radius=0.04, dt=0.05, collect=collect)
        agent = ddpgAgent(Testing=args.testing)
        input_preprocessor = InputPreprocessor()
        agnt_number=15000;                            # select agent
        pr_avf=PR_AVF(agnt_number)                   # Priority replay avf class declaration
        avf=AVF_search()  
        crashed = pd.read_csv('./DATA/crashed_for_train.csv')
        crashed=crashed[["Kick_Speed","friction_patch","loc_patch","size_patch"]].values
        print(crashed)
        gmm=gmm_trainer(crashed)
        number_of_retraining=0                           # avf search class declaration  
        with open('gmm_5D', 'rb') as f:
          model = pickle.load(f)
        
        failure_collection=[];
        
Example #5
0
                        help="set the path of perception neural network")
    parser.add_argument("-e",
                        "--episode",
                        help="set the number of episode",
                        type=int,
                        default=1)

    args = parser.parse_args()

    try:
        os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
        os.environ[
            "CUDA_VISIBLE_DEVICES"] = "0"  # specify which GPU(s) to be used
        collect = args_assertions(args)
        env = SetupWorld(mass=1300,
                         wheel_radius=0.04,
                         dt=0.05,
                         collect=collect)
        agent = ddpgAgent(Testing=args.testing)
        input_preprocessor = InputPreprocessor()
        rcf = rcf(100)
        print('Number of episodes :', args.episode)
        plot = Liveplot()
        cnt = 0
        coDisp = []
        #rcf.trainer()
        for episode in range(args.episode):
            #stopdist=1.0;
            #Comment below 3 lines while training , its only for running set of testing
            #print('***********************************************************************************************************')
            #print('******** Launching failure search test ID:',episode+1)
            #np.random.seed()