def apply_transfo(im_src, im_dest, warp, interp='spline', rm_tmp=True): # create tmp dir and go in it tmp_dir = sct.tmp_create() # copy warping field to tmp dir sct.copy(warp, tmp_dir) warp = ''.join(extract_fname(warp)[1:]) # go to tmp dir curdir = os.getcwd() os.chdir(tmp_dir) # save image and seg fname_src = 'src.nii.gz' im_src.save(fname_src) fname_dest = 'dest.nii.gz' im_dest.save(fname_dest) # apply warping field fname_src_reg = add_suffix(fname_src, '_reg') sct_apply_transfo.main( args=['-i', fname_src, '-d', fname_dest, '-w', warp, '-x', interp]) im_src_reg = Image(fname_src_reg) # get out of tmp dir os.chdir(curdir) if rm_tmp: # remove tmp dir sct.rmtree(tmp_dir) # return res image return im_src_reg
def main(args=None): if args is None: args = sys.argv[1:] # Get parser parser = get_parser() arguments = parser.parse(args) # Set param arguments ad inputted by user fname_in = arguments["-i"] contrast = arguments["-c"] # Segmentation or Centerline line if '-s' in arguments: fname_seg = arguments['-s'] if not os.path.isfile(fname_seg): fname_seg = None sct.printv('WARNING: -s input file: "' + arguments['-s'] + '" does not exist.\nDetecting PMJ without using segmentation information', 1, 'warning') else: fname_seg = None # Output Folder if '-ofolder' in arguments: path_results = arguments["-ofolder"] if not os.path.isdir(path_results) and os.path.exists(path_results): sct.printv("ERROR output directory %s is not a valid directory" % path_results, 1, 'error') if not os.path.exists(path_results): os.makedirs(path_results) else: path_results = '.' path_qc = arguments.get("-qc", None) # Remove temp folder rm_tmp = bool(int(arguments.get("-r", 1))) verbose = int(arguments.get('-v')) sct.init_sct(log_level=verbose, update=True) # Update log level # Initialize DetectPMJ detector = DetectPMJ(fname_im=fname_in, contrast=contrast, fname_seg=fname_seg, path_out=path_results, verbose=verbose) # run the extraction fname_out, tmp_dir = detector.apply() # Remove tmp_dir if rm_tmp: sct.rmtree(tmp_dir) # View results if fname_out is not None: if path_qc is not None: generate_qc(fname_in, fname_seg=fname_out, args=args, path_qc=os.path.abspath(path_qc), process='sct_detect_pmj') sct.display_viewer_syntax([fname_in, fname_out], colormaps=['gray', 'red'])
def apply_transfo(im_src, im_dest, warp, interp='spline', rm_tmp=True): # create tmp dir and go in it tmp_dir = sct.tmp_create() # copy warping field to tmp dir sct.copy(warp, tmp_dir) warp = ''.join(extract_fname(warp)[1:]) # go to tmp dir curdir = os.getcwd() os.chdir(tmp_dir) # save image and seg fname_src = 'src.nii.gz' im_src.save(fname_src) fname_dest = 'dest.nii.gz' im_dest.save(fname_dest) # apply warping field fname_src_reg = add_suffix(fname_src, '_reg') sct_apply_transfo.main(args=['-i', fname_src, '-d', fname_dest, '-w', warp, '-x', interp]) im_src_reg = Image(fname_src_reg) # get out of tmp dir os.chdir(curdir) if rm_tmp: # remove tmp dir sct.rmtree(tmp_dir) # return res image return im_src_reg
def register_data(im_src, im_dest, param_reg, path_copy_warp=None, rm_tmp=True): ''' Parameters ---------- im_src: class Image: source image im_dest: class Image: destination image param_reg: str: registration parameter path_copy_warp: path: path to copy the warping fields Returns: im_src_reg: class Image: source image registered on destination image ------- ''' # im_src and im_dest are already preprocessed (in theory: im_dest = mean_image) # binarize images to get seg im_src_seg = binarize(im_src, thr_min=1, thr_max=1) im_dest_seg = binarize(im_dest) # create tmp dir and go in it tmp_dir = sct.tmp_create() curdir = os.getcwd() os.chdir(tmp_dir) # save image and seg fname_src = 'src.nii.gz' im_src.save(fname_src) fname_src_seg = 'src_seg.nii.gz' im_src_seg.save(fname_src_seg) fname_dest = 'dest.nii.gz' im_dest.save(fname_dest) fname_dest_seg = 'dest_seg.nii.gz' im_dest_seg.save(fname_dest_seg) # do registration using param_reg sct_register_multimodal.main(args=['-i', fname_src, '-d', fname_dest, '-iseg', fname_src_seg, '-dseg', fname_dest_seg, '-param', param_reg]) # get registration result fname_src_reg = add_suffix(fname_src, '_reg') im_src_reg = Image(fname_src_reg) # get out of tmp dir os.chdir(curdir) # copy warping fields if path_copy_warp is not None and os.path.isdir(os.path.abspath(path_copy_warp)): path_copy_warp = os.path.abspath(path_copy_warp) file_src = extract_fname(fname_src)[1] file_dest = extract_fname(fname_dest)[1] fname_src2dest = 'warp_' + file_src + '2' + file_dest + '.nii.gz' fname_dest2src = 'warp_' + file_dest + '2' + file_src + '.nii.gz' sct.copy(os.path.join(tmp_dir, fname_src2dest), path_copy_warp) sct.copy(os.path.join(tmp_dir, fname_dest2src), path_copy_warp) if rm_tmp: # remove tmp dir sct.rmtree(tmp_dir) # return res image return im_src_reg, fname_src2dest, fname_dest2src
def main(args=None): """ Main function :param args: :return: """ # get parser args if args is None: args = None if sys.argv[1:] else ['--help'] parser = get_parser() arguments = parser.parse_args(args=args) # create param object param = Param() param_glcm = ParamGLCM() # set param arguments ad inputted by user param.fname_im = arguments.i param.fname_seg = arguments.m if arguments.ofolder is not None: param.path_results = arguments.ofolder if not os.path.isdir(param.path_results) and os.path.exists( param.path_results): sct.printv( "ERROR output directory %s is not a valid directory" % param.path_results, 1, 'error') if not os.path.exists(param.path_results): os.makedirs(param.path_results) if arguments.feature is not None: param_glcm.feature = arguments.feature if arguments.distance is not None: param_glcm.distance = arguments.distance if arguments.angle is not None: param_glcm.angle = arguments.angle if arguments.dim is not None: param.dim = arguments.dim if arguments.r is not None: param.rm_tmp = bool(arguments.r) verbose = arguments.v sct.init_sct(log_level=verbose, update=True) # Update log level # create the GLCM constructor glcm = ExtractGLCM(param=param, param_glcm=param_glcm) # run the extraction fname_out_lst = glcm.extract() # remove tmp_dir if param.rm_tmp: sct.rmtree(glcm.tmp_dir) sct.printv('\nDone! To view results, type:', param.verbose) sct.printv( 'fsleyes ' + arguments.i + ' ' + ' -cm red-yellow -a 70.0 '.join(fname_out_lst) + ' -cm Red-Yellow -a 70.0 & \n', param.verbose, 'info')
def main(args=None): if args is None: args = sys.argv[1:] # create param object param = Param() param_glcm = ParamGLCM() # get parser parser = get_parser() arguments = parser.parse(args) # set param arguments ad inputted by user param.fname_im = arguments["-i"] param.fname_seg = arguments["-m"] if '-ofolder' in arguments: param.path_results = arguments["-ofolder"] if not os.path.isdir(param.path_results) and os.path.exists( param.path_results): sct.printv( "ERROR output directory %s is not a valid directory" % param.path_results, 1, 'error') if not os.path.exists(param.path_results): os.makedirs(param.path_results) if '-feature' in arguments: param_glcm.feature = arguments['-feature'] if '-distance' in arguments: param_glcm.distance = int(arguments['-distance']) if '-angle' in arguments: param_glcm.angle = arguments['-angle'] if '-dim' in arguments: param.dim = arguments['-dim'] if '-r' in arguments: param.rm_tmp = bool(int(arguments['-r'])) verbose = int(arguments.get('-v')) sct.init_sct(log_level=verbose, update=True) # Update log level # create the GLCM constructor glcm = ExtractGLCM(param=param, param_glcm=param_glcm) # run the extraction fname_out_lst = glcm.extract() # remove tmp_dir if param.rm_tmp: sct.rmtree(glcm.tmp_dir) sct.printv('\nDone! To view results, type:', param.verbose) sct.printv( 'fslview ' + arguments["-i"] + ' ' + ' -l Red-Yellow -t 0.7 '.join(fname_out_lst) + ' -l Red-Yellow -t 0.7 & \n', param.verbose, 'info')
def coregister_model_data(self): # get mean image im_mean = Image(param=self.mean_image) # register all slices WM on mean WM for dic_slice in self.slices: # create a directory to get the warping fields warp_dir = 'wf_slice' + str(dic_slice.id) if not os.path.exists(warp_dir): os.mkdir(warp_dir) # get slice mean WM image im_slice = Image(param=dic_slice.im) # register slice image on mean dic image im_slice_reg, fname_src2dest, fname_dest2src = register_data( im_src=im_slice, im_dest=im_mean, param_reg=self.param_data.register_param, path_copy_warp=warp_dir) shape = im_slice_reg.data.shape # use forward warping field to register all slice wm list_wmseg_reg = [] for wm_seg in dic_slice.wm_seg: im_wmseg = Image(param=wm_seg) im_wmseg_reg = apply_transfo(im_src=im_wmseg, im_dest=im_mean, warp=os.path.join( warp_dir, fname_src2dest), interp='nn') list_wmseg_reg.append(im_wmseg_reg.data.reshape(shape)) # use forward warping field to register gm seg list_gmseg_reg = [] for gm_seg in dic_slice.gm_seg: im_gmseg = Image(param=gm_seg) im_gmseg_reg = apply_transfo(im_src=im_gmseg, im_dest=im_mean, warp=os.path.join( warp_dir, fname_src2dest), interp='nn') list_gmseg_reg.append(im_gmseg_reg.data.reshape(shape)) # set slice attributes with data registered into the model space dic_slice.set(im_m=im_slice_reg.data) dic_slice.set(wm_seg_m=list_wmseg_reg) dic_slice.set(gm_seg_m=list_gmseg_reg) # remove warping fields directory if self.param.rm_tmp: sct.rmtree(warp_dir)
def register_slicewise(fname_src, fname_dest, fname_mask='', warp_forward_out='step0Warp.nii.gz', warp_inverse_out='step0InverseWarp.nii.gz', paramreg=None, ants_registration_params=None, path_qc='./', remove_temp_files=0, verbose=0): # create temporary folder path_tmp = sct.tmp_create(basename="register", verbose=verbose) # copy data to temp folder sct.printv('\nCopy input data to temp folder...', verbose) convert(fname_src, os.path.join(path_tmp, "src.nii")) convert(fname_dest, os.path.join(path_tmp, "dest.nii")) if fname_mask != '': convert(fname_mask, os.path.join(path_tmp, "mask.nii.gz")) # go to temporary folder curdir = os.getcwd() os.chdir(path_tmp) # Calculate displacement if paramreg.algo == 'centermass': # translation of center of mass between source and destination in voxel space register2d_centermassrot('src.nii', 'dest.nii', fname_warp=warp_forward_out, fname_warp_inv=warp_inverse_out, rot=0, poly=int(paramreg.poly), path_qc=path_qc, verbose=verbose) elif paramreg.algo == 'centermassrot': # translation of center of mass and rotation based on source and destination first eigenvectors from PCA. register2d_centermassrot('src.nii', 'dest.nii', fname_warp=warp_forward_out, fname_warp_inv=warp_inverse_out, rot=1, poly=int(paramreg.poly), path_qc=path_qc, verbose=verbose, pca_eigenratio_th=float(paramreg.pca_eigenratio_th)) elif paramreg.algo == 'columnwise': # scaling R-L, then column-wise center of mass alignment and scaling register2d_columnwise('src.nii', 'dest.nii', fname_warp=warp_forward_out, fname_warp_inv=warp_inverse_out, verbose=verbose, path_qc=path_qc, smoothWarpXY=int(paramreg.smoothWarpXY)) else: # convert SCT flags into ANTs-compatible flags algo_dic = {'translation': 'Translation', 'rigid': 'Rigid', 'affine': 'Affine', 'syn': 'SyN', 'bsplinesyn': 'BSplineSyN', 'centermass': 'centermass'} paramreg.algo = algo_dic[paramreg.algo] # run slicewise registration register2d('src.nii', 'dest.nii', fname_mask=fname_mask, fname_warp=warp_forward_out, fname_warp_inv=warp_inverse_out, paramreg=paramreg, ants_registration_params=ants_registration_params, verbose=verbose) sct.printv('\nMove warping fields...', verbose) sct.copy(warp_forward_out, curdir) sct.copy(warp_inverse_out, curdir) # go back os.chdir(curdir) if remove_temp_files: sct.rmtree(path_tmp, verbose=verbose)
def main(args=None): if args is None: args = sys.argv[1:] # create param object param = Param() param_glcm = ParamGLCM() # get parser parser = get_parser() arguments = parser.parse(args) # set param arguments ad inputted by user param.fname_im = arguments["-i"] param.fname_seg = arguments["-m"] if '-ofolder' in arguments: param.path_results = arguments["-ofolder"] if not os.path.isdir(param.path_results) and os.path.exists(param.path_results): sct.printv("ERROR output directory %s is not a valid directory" % param.path_results, 1, 'error') if not os.path.exists(param.path_results): os.makedirs(param.path_results) if '-feature' in arguments: param_glcm.feature = arguments['-feature'] if '-distance' in arguments: param_glcm.distance = int(arguments['-distance']) if '-angle' in arguments: param_glcm.angle = arguments['-angle'] if '-dim' in arguments: param.dim = arguments['-dim'] if '-r' in arguments: param.rm_tmp = bool(int(arguments['-r'])) verbose = int(arguments.get('-v')) sct.init_sct(log_level=verbose, update=True) # Update log level # create the GLCM constructor glcm = ExtractGLCM(param=param, param_glcm=param_glcm) # run the extraction fname_out_lst = glcm.extract() # remove tmp_dir if param.rm_tmp: sct.rmtree(glcm.tmp_dir) sct.printv('\nDone! To view results, type:', param.verbose) sct.printv('fslview ' + arguments["-i"] + ' ' + ' -l Red-Yellow -t 0.7 '.join(fname_out_lst) + ' -l Red-Yellow -t 0.7 & \n', param.verbose, 'info')
def visualize_warp(fname_warp, fname_grid=None, step=3, rm_tmp=True): if fname_grid is None: from numpy import zeros tmp_dir = sct.tmp_create() im_warp = Image(fname_warp) status, out = sct.run(['fslhd', fname_warp]) curdir = os.getcwd() os.chdir(tmp_dir) dim1 = 'dim1 ' dim2 = 'dim2 ' dim3 = 'dim3 ' nx = int( out[out.find(dim1):][len(dim1):out[out.find(dim1):].find('\n')]) ny = int( out[out.find(dim2):][len(dim2):out[out.find(dim2):].find('\n')]) nz = int( out[out.find(dim3):][len(dim3):out[out.find(dim3):].find('\n')]) sq = zeros((step, step)) sq[step - 1] = 1 sq[:, step - 1] = 1 dat = zeros((nx, ny, nz)) for i in range(0, dat.shape[0], step): for j in range(0, dat.shape[1], step): for k in range(dat.shape[2]): if dat[i:i + step, j:j + step, k].shape == (step, step): dat[i:i + step, j:j + step, k] = sq fname_grid = 'grid_' + str(step) + '.nii.gz' im_grid = Image(param=dat) grid_hdr = im_warp.hdr im_grid.hdr = grid_hdr im_grid.absolutepath = fname_grid im_grid.save() fname_grid_resample = sct.add_suffix(fname_grid, '_resample') sct.run([ 'sct_resample', '-i', fname_grid, '-f', '3x3x1', '-x', 'nn', '-o', fname_grid_resample ]) fname_grid = os.path.join(tmp_dir, fname_grid_resample) os.chdir(curdir) path_warp, file_warp, ext_warp = sct.extract_fname(fname_warp) grid_warped = os.path.join( path_warp, sct.extract_fname(fname_grid)[1] + '_' + file_warp + ext_warp) sct.run([ 'sct_apply_transfo', '-i', fname_grid, '-d', fname_grid, '-w', fname_warp, '-o', grid_warped ]) if rm_tmp: sct.rmtree(tmp_dir)
def visualize_warp(fname_warp, fname_grid=None, step=3, rm_tmp=True): if fname_grid is None: from numpy import zeros tmp_dir = sct.tmp_create() im_warp = Image(fname_warp) curdir = os.getcwd() os.chdir(tmp_dir) assert len(im_warp.data.shape ) == 5, 'ERROR: Warping field does bot have 5 dimensions...' nx, ny, nz, nt, ndimwarp = im_warp.data.shape # nx, ny, nz, nt, px, py, pz, pt = im_warp.dim # This does not work because dimensions of a warping field are not correctly read : it would be 1,1,1,1,1,1,1,1 sq = zeros((step, step)) sq[step - 1] = 1 sq[:, step - 1] = 1 dat = zeros((nx, ny, nz)) for i in range(0, dat.shape[0], step): for j in range(0, dat.shape[1], step): for k in range(dat.shape[2]): if dat[i:i + step, j:j + step, k].shape == (step, step): dat[i:i + step, j:j + step, k] = sq fname_grid = 'grid_' + str(step) + '.nii.gz' im_grid = Image(param=dat) grid_hdr = im_warp.hdr im_grid.hdr = grid_hdr im_grid.absolutepath = fname_grid im_grid.save() fname_grid_resample = sct.add_suffix(fname_grid, '_resample') sct.run([ 'sct_resample', '-i', fname_grid, '-f', '3x3x1', '-x', 'nn', '-o', fname_grid_resample ]) fname_grid = os.path.join(tmp_dir, fname_grid_resample) os.chdir(curdir) path_warp, file_warp, ext_warp = sct.extract_fname(fname_warp) grid_warped = os.path.join(path_warp, 'grid_warped_gm' + ext_warp) sct.run([ 'sct_apply_transfo', '-i', fname_grid, '-d', fname_grid, '-w', fname_warp, '-o', grid_warped ]) if rm_tmp: sct.rmtree(tmp_dir) return grid_warped
def coregister_model_data(self): # get mean image im_mean = Image(param=self.mean_image) # register all slices WM on mean WM for dic_slice in self.slices: # create a directory to get the warping fields warp_dir = 'wf_slice' + str(dic_slice.id) if not os.path.exists(warp_dir): os.mkdir(warp_dir) # get slice mean WM image im_slice = Image(param=dic_slice.im) # register slice image on mean dic image im_slice_reg, fname_src2dest, fname_dest2src = register_data(im_src=im_slice, im_dest=im_mean, param_reg=self.param_data.register_param, path_copy_warp=warp_dir) shape = im_slice_reg.data.shape # use forward warping field to register all slice wm list_wmseg_reg = [] for wm_seg in dic_slice.wm_seg: im_wmseg = Image(param=wm_seg) im_wmseg_reg = apply_transfo(im_src=im_wmseg, im_dest=im_mean, warp=os.path.join(warp_dir, fname_src2dest), interp='nn') list_wmseg_reg.append(im_wmseg_reg.data.reshape(shape)) # use forward warping field to register gm seg list_gmseg_reg = [] for gm_seg in dic_slice.gm_seg: im_gmseg = Image(param=gm_seg) im_gmseg_reg = apply_transfo(im_src=im_gmseg, im_dest=im_mean, warp=os.path.join(warp_dir, fname_src2dest), interp='nn') list_gmseg_reg.append(im_gmseg_reg.data.reshape(shape)) # set slice attributes with data registered into the model space dic_slice.set(im_m=im_slice_reg.data) dic_slice.set(wm_seg_m=list_wmseg_reg) dic_slice.set(gm_seg_m=list_gmseg_reg) # remove warping fields directory if self.param.rm_tmp: sct.rmtree(warp_dir)
def visualize_warp(fname_warp, fname_grid=None, step=3, rm_tmp=True): if fname_grid is None: from numpy import zeros tmp_dir = sct.tmp_create() im_warp = Image(fname_warp) status, out = sct.run(['fslhd', fname_warp]) curdir = os.getcwd() os.chdir(tmp_dir) dim1 = 'dim1 ' dim2 = 'dim2 ' dim3 = 'dim3 ' nx = int(out[out.find(dim1):][len(dim1):out[out.find(dim1):].find('\n')]) ny = int(out[out.find(dim2):][len(dim2):out[out.find(dim2):].find('\n')]) nz = int(out[out.find(dim3):][len(dim3):out[out.find(dim3):].find('\n')]) sq = zeros((step, step)) sq[step - 1] = 1 sq[:, step - 1] = 1 dat = zeros((nx, ny, nz)) for i in range(0, dat.shape[0], step): for j in range(0, dat.shape[1], step): for k in range(dat.shape[2]): if dat[i:i + step, j:j + step, k].shape == (step, step): dat[i:i + step, j:j + step, k] = sq fname_grid = 'grid_' + str(step) + '.nii.gz' im_grid = Image(param=dat) grid_hdr = im_warp.hdr im_grid.hdr = grid_hdr im_grid.absolutepath = fname_grid im_grid.save() fname_grid_resample = sct.add_suffix(fname_grid, '_resample') sct.run(['sct_resample', '-i', fname_grid, '-f', '3x3x1', '-x', 'nn', '-o', fname_grid_resample]) fname_grid = os.path.join(tmp_dir, fname_grid_resample) os.chdir(curdir) path_warp, file_warp, ext_warp = sct.extract_fname(fname_warp) grid_warped = os.path.join(path_warp, sct.extract_fname(fname_grid)[1] + '_' + file_warp + ext_warp) sct.run(['sct_apply_transfo', '-i', fname_grid, '-d', fname_grid, '-w', fname_warp, '-o', grid_warped]) if rm_tmp: sct.rmtree(tmp_dir)
def validation(self): tmp_dir_val = sct.tmp_create(basename="segment_graymatter_validation") # copy data into tmp dir val sct.copy(self.param_seg.fname_manual_gmseg, tmp_dir_val) sct.copy(self.param_seg.fname_seg, tmp_dir_val) curdir = os.getcwd() os.chdir(tmp_dir_val) fname_manual_gmseg = os.path.basename(self.param_seg.fname_manual_gmseg) fname_seg = os.path.basename(self.param_seg.fname_seg) im_gmseg = self.im_res_gmseg.copy() im_wmseg = self.im_res_wmseg.copy() if self.param_seg.type_seg == 'prob': im_gmseg = binarize(im_gmseg, thr_max=0.5, thr_min=0.5) im_wmseg = binarize(im_wmseg, thr_max=0.5, thr_min=0.5) fname_gmseg = 'res_gmseg.nii.gz' im_gmseg.save(fname_gmseg) fname_wmseg = 'res_wmseg.nii.gz' im_wmseg.save(fname_wmseg) # get manual WM seg: fname_manual_wmseg = 'manual_wmseg.nii.gz' sct_maths.main(args=['-i', fname_seg, '-sub', fname_manual_gmseg, '-o', fname_manual_wmseg]) # compute DC: try: status_gm, output_gm = run('sct_dice_coefficient -i ' + fname_manual_gmseg + ' -d ' + fname_gmseg + ' -2d-slices 2') status_wm, output_wm = run('sct_dice_coefficient -i ' + fname_manual_wmseg + ' -d ' + fname_wmseg + ' -2d-slices 2') except Exception: # put ref and res in the same space if needed fname_manual_gmseg_corrected = add_suffix(fname_manual_gmseg, '_reg') sct_register_multimodal.main(args=['-i', fname_manual_gmseg, '-d', fname_gmseg, '-identity', '1']) sct_maths.main(args=['-i', fname_manual_gmseg_corrected, '-bin', '0.1', '-o', fname_manual_gmseg_corrected]) # fname_manual_wmseg_corrected = add_suffix(fname_manual_wmseg, '_reg') sct_register_multimodal.main(args=['-i', fname_manual_wmseg, '-d', fname_wmseg, '-identity', '1']) sct_maths.main(args=['-i', fname_manual_wmseg_corrected, '-bin', '0.1', '-o', fname_manual_wmseg_corrected]) # recompute DC status_gm, output_gm = run('sct_dice_coefficient -i ' + fname_manual_gmseg_corrected + ' -d ' + fname_gmseg + ' -2d-slices 2') status_wm, output_wm = run('sct_dice_coefficient -i ' + fname_manual_wmseg_corrected + ' -d ' + fname_wmseg + ' -2d-slices 2') # save results to a text file fname_dc = 'dice_coefficient_' + extract_fname(self.param_seg.fname_im)[1] + '.txt' file_dc = open(fname_dc, 'w') if self.param_seg.type_seg == 'prob': file_dc.write('WARNING : the probabilistic segmentations were binarized with a threshold at 0.5 to compute the dice coefficient \n') file_dc.write('\n--------------------------------------------------------------\nDice coefficient on the Gray Matter segmentation:\n') file_dc.write(output_gm) file_dc.write('\n\n--------------------------------------------------------------\nDice coefficient on the White Matter segmentation:\n') file_dc.write(output_wm) file_dc.close() # compute HD and MD: fname_hd = 'hausdorff_dist_' + extract_fname(self.param_seg.fname_im)[1] + '.txt' run('sct_compute_hausdorff_distance -i ' + fname_gmseg + ' -d ' + fname_manual_gmseg + ' -thinning 1 -o ' + fname_hd + ' -v ' + str(self.param.verbose)) # get out of tmp dir to copy results to output folder os.chdir(curdir) sct.copy(os.path.join(self.tmp_dir, tmp_dir_val, fname_dc), self.param_seg.path_results) sct.copy(os.path.join(self.tmp_dir, tmp_dir_val, fname_hd), self.param_seg.path_results) if self.param.rm_tmp: sct.rmtree(tmp_dir_val)
def main(args=None): # initialization start_time = time.time() path_out = '.' param = Param() # check user arguments if not args: args = sys.argv[1:] # Get parser info parser = get_parser() arguments = parser.parse(sys.argv[1:]) param.fname_data = arguments['-i'] param.fname_bvecs = arguments['-bvec'] if '-bval' in arguments: param.fname_bvals = arguments['-bval'] if '-bvalmin' in arguments: param.bval_min = arguments['-bvalmin'] if '-g' in arguments: param.group_size = arguments['-g'] if '-m' in arguments: param.fname_mask = arguments['-m'] if '-param' in arguments: param.update(arguments['-param']) if '-thr' in arguments: param.otsu = arguments['-thr'] if '-x' in arguments: param.interp = arguments['-x'] if '-ofolder' in arguments: path_out = arguments['-ofolder'] if '-r' in arguments: param.remove_temp_files = int(arguments['-r']) param.verbose = int(arguments.get('-v')) sct.init_sct(log_level=param.verbose, update=True) # Update log level # Get full path param.fname_data = os.path.abspath(param.fname_data) param.fname_bvecs = os.path.abspath(param.fname_bvecs) if param.fname_bvals != '': param.fname_bvals = os.path.abspath(param.fname_bvals) if param.fname_mask != '': param.fname_mask = os.path.abspath(param.fname_mask) # Extract path, file and extension path_data, file_data, ext_data = sct.extract_fname(param.fname_data) path_mask, file_mask, ext_mask = sct.extract_fname(param.fname_mask) path_tmp = sct.tmp_create(basename="dmri_moco", verbose=param.verbose) # names of files in temporary folder mask_name = 'mask' bvecs_fname = 'bvecs.txt' # Copying input data to tmp folder sct.printv('\nCopying input data to tmp folder and convert to nii...', param.verbose) convert(param.fname_data, os.path.join(path_tmp, "dmri.nii")) sct.copy(param.fname_bvecs, os.path.join(path_tmp, bvecs_fname), verbose=param.verbose) if param.fname_mask != '': sct.copy(param.fname_mask, os.path.join(path_tmp, mask_name + ext_mask), verbose=param.verbose) # go to tmp folder curdir = os.getcwd() os.chdir(path_tmp) # update field in param (because used later). # TODO: make this cleaner... if param.fname_mask != '': param.fname_mask = mask_name + ext_mask # run moco fname_data_moco_tmp = dmri_moco(param) # generate b0_moco_mean and dwi_moco_mean args = [ '-i', fname_data_moco_tmp, '-bvec', 'bvecs.txt', '-a', '1', '-v', '0' ] if not param.fname_bvals == '': # if bvals file is provided args += ['-bval', param.fname_bvals] fname_b0, fname_b0_mean, fname_dwi, fname_dwi_mean = sct_dmri_separate_b0_and_dwi.main( args=args) # come back os.chdir(curdir) # Generate output files fname_dmri_moco = os.path.join(path_out, file_data + param.suffix + ext_data) fname_dmri_moco_b0_mean = sct.add_suffix(fname_dmri_moco, '_b0_mean') fname_dmri_moco_dwi_mean = sct.add_suffix(fname_dmri_moco, '_dwi_mean') sct.create_folder(path_out) sct.printv('\nGenerate output files...', param.verbose) sct.generate_output_file(fname_data_moco_tmp, fname_dmri_moco, param.verbose) sct.generate_output_file(fname_b0_mean, fname_dmri_moco_b0_mean, param.verbose) sct.generate_output_file(fname_dwi_mean, fname_dmri_moco_dwi_mean, param.verbose) # Delete temporary files if param.remove_temp_files == 1: sct.printv('\nDelete temporary files...', param.verbose) sct.rmtree(path_tmp, verbose=param.verbose) # display elapsed time elapsed_time = time.time() - start_time sct.printv( '\nFinished! Elapsed time: ' + str(int(np.round(elapsed_time))) + 's', param.verbose) sct.display_viewer_syntax([fname_dmri_moco, file_data], mode='ortho,ortho')
if arguments.bmax is not None and arguments.bmax == 1: cmd += ['-bmax'] if arguments.bzmax is not None and arguments.bzmax == 1: cmd += ['-bzmax'] if arguments.o is not None: path_output, fname_output, ext = sct.extract_fname(arguments.o) cmd += ['-o', fname_output + ext] rm_tmp = bool(arguments.r) # # Computation of Dice coefficient using Python implementation. # # commented for now as it does not cover all the feature of isct_dice_coefficient # #from spinalcordtoolbox.image import Image, compute_dice # #dice = compute_dice(Image(fname_input1), Image(fname_input2), mode='3d', zboundaries=False) # #sct.printv('Dice (python-based) = ' + str(dice), verbose) status, output = run_proc(cmd, verbose, is_sct_binary=True) os.chdir(curdir) # go back to original directory # copy output file into original directory if arguments.o is not None: sct.copy(os.path.join(tmp_dir, fname_output + ext), os.path.join(path_output, fname_output + ext)) # remove tmp_dir if rm_tmp: sct.rmtree(tmp_dir) sct.printv(output, verbose)
def apply(self): # Initialization fname_src = self.input_filename # source image (moving) list_warp = self.list_warp # list of warping fields fname_out = self.output_filename # output fname_dest = self.fname_dest # destination image (fix) verbose = self.verbose remove_temp_files = self.remove_temp_files crop_reference = self.crop # if = 1, put 0 everywhere around warping field, if = 2, real crop interp = sct.get_interpolation('isct_antsApplyTransforms', self.interp) # Parse list of warping fields sct.printv('\nParse list of warping fields...', verbose) use_inverse = [] fname_warp_list_invert = [] # list_warp = list_warp.replace(' ', '') # remove spaces # list_warp = list_warp.split(",") # parse with comma for idx_warp, path_warp in enumerate(self.list_warp): # Check if this transformation should be inverted if path_warp in self.list_warpinv: use_inverse.append('-i') # list_warp[idx_warp] = path_warp[1:] # remove '-' fname_warp_list_invert += [[ use_inverse[idx_warp], list_warp[idx_warp] ]] else: use_inverse.append('') fname_warp_list_invert += [[path_warp]] path_warp = list_warp[idx_warp] if path_warp.endswith((".nii", ".nii.gz")) \ and msct_image.Image(list_warp[idx_warp]).header.get_intent()[0] != 'vector': raise ValueError("Displacement field in {} is invalid: should be encoded" \ " in a 5D file with vector intent code" \ " (see https://nifti.nimh.nih.gov/pub/dist/src/niftilib/nifti1.h" \ .format(path_warp)) # need to check if last warping field is an affine transfo isLastAffine = False path_fname, file_fname, ext_fname = sct.extract_fname( fname_warp_list_invert[-1][-1]) if ext_fname in ['.txt', '.mat']: isLastAffine = True # check if destination file is 3d if not sct.check_if_3d(fname_dest): sct.printv('ERROR: Destination data must be 3d') # N.B. Here we take the inverse of the warp list, because sct_WarpImageMultiTransform concatenates in the reverse order fname_warp_list_invert.reverse() fname_warp_list_invert = functools.reduce(lambda x, y: x + y, fname_warp_list_invert) # Extract path, file and extension path_src, file_src, ext_src = sct.extract_fname(fname_src) path_dest, file_dest, ext_dest = sct.extract_fname(fname_dest) # Get output folder and file name if fname_out == '': path_out = '' # output in user's current directory file_out = file_src + '_reg' ext_out = ext_src fname_out = os.path.join(path_out, file_out + ext_out) # Get dimensions of data sct.printv('\nGet dimensions of data...', verbose) img_src = msct_image.Image(fname_src) nx, ny, nz, nt, px, py, pz, pt = img_src.dim # nx, ny, nz, nt, px, py, pz, pt = sct.get_dimension(fname_src) sct.printv( ' ' + str(nx) + ' x ' + str(ny) + ' x ' + str(nz) + ' x ' + str(nt), verbose) # if 3d if nt == 1: # Apply transformation sct.printv('\nApply transformation...', verbose) if nz in [0, 1]: dim = '2' else: dim = '3' sct.run([ 'isct_antsApplyTransforms', '-d', dim, '-i', fname_src, '-o', fname_out, '-t' ] + fname_warp_list_invert + ['-r', fname_dest] + interp, verbose=verbose, is_sct_binary=True) # if 4d, loop across the T dimension else: path_tmp = sct.tmp_create(basename="apply_transfo", verbose=verbose) # convert to nifti into temp folder sct.printv( '\nCopying input data to tmp folder and convert to nii...', verbose) img_src.save(os.path.join(path_tmp, "data.nii")) sct.copy(fname_dest, os.path.join(path_tmp, file_dest + ext_dest)) fname_warp_list_tmp = [] for fname_warp in list_warp: path_warp, file_warp, ext_warp = sct.extract_fname(fname_warp) sct.copy(fname_warp, os.path.join(path_tmp, file_warp + ext_warp)) fname_warp_list_tmp.append(file_warp + ext_warp) fname_warp_list_invert_tmp = fname_warp_list_tmp[::-1] curdir = os.getcwd() os.chdir(path_tmp) # split along T dimension sct.printv('\nSplit along T dimension...', verbose) im_dat = msct_image.Image('data.nii') im_header = im_dat.hdr data_split_list = sct_image.split_data(im_dat, 3) for im in data_split_list: im.save() # apply transfo sct.printv('\nApply transformation to each 3D volume...', verbose) for it in range(nt): file_data_split = 'data_T' + str(it).zfill(4) + '.nii' file_data_split_reg = 'data_reg_T' + str(it).zfill(4) + '.nii' status, output = sct.run([ 'isct_antsApplyTransforms', '-d', '3', '-i', file_data_split, '-o', file_data_split_reg, '-t', ] + fname_warp_list_invert_tmp + [ '-r', file_dest + ext_dest, ] + interp, verbose, is_sct_binary=True) # Merge files back sct.printv('\nMerge file back...', verbose) import glob path_out, name_out, ext_out = sct.extract_fname(fname_out) # im_list = [Image(file_name) for file_name in glob.glob('data_reg_T*.nii')] # concat_data use to take a list of image in input, now takes a list of file names to open the files one by one (see issue #715) fname_list = glob.glob('data_reg_T*.nii') fname_list.sort() im_out = sct_image.concat_data(fname_list, 3, im_header['pixdim']) im_out.save(name_out + ext_out) os.chdir(curdir) sct.generate_output_file( os.path.join(path_tmp, name_out + ext_out), fname_out) # Delete temporary folder if specified if int(remove_temp_files): sct.printv('\nRemove temporary files...', verbose) sct.rmtree(path_tmp, verbose=verbose) # 2. crop the resulting image using dimensions from the warping field warping_field = fname_warp_list_invert[-1] # if last warping field is an affine transfo, we need to compute the space of the concatenate warping field: if isLastAffine: sct.printv( 'WARNING: the resulting image could have wrong apparent results. You should use an affine transformation as last transformation...', verbose, 'warning') elif crop_reference == 1: ImageCropper(input_file=fname_out, output_file=fname_out, ref=warping_field, background=0).crop() # sct.run('sct_crop_image -i '+fname_out+' -o '+fname_out+' -ref '+warping_field+' -b 0') elif crop_reference == 2: ImageCropper(input_file=fname_out, output_file=fname_out, ref=warping_field).crop() # sct.run('sct_crop_image -i '+fname_out+' -o '+fname_out+' -ref '+warping_field) sct.display_viewer_syntax([fname_dest, fname_out], verbose=verbose)
def compute_properties_along_centerline(fname_seg_image, property_list, fname_disks_image=None, smooth_factor=5.0, interpolation_mode=0, remove_temp_files=1, verbose=1): # Check list of properties # If diameters is in the list, compute major and minor axis length and check orientation compute_diameters = False property_list_local = list(property_list) if 'diameters' in property_list_local: compute_diameters = True property_list_local.remove('diameters') property_list_local.append('major_axis_length') property_list_local.append('minor_axis_length') property_list_local.append('orientation') # TODO: make sure fname_segmentation and fname_disks are in the same space path_tmp = sct.tmp_create(basename="compute_properties_along_centerline", verbose=verbose) sct.copy(fname_seg_image, path_tmp) if fname_disks_image is not None: sct.copy(fname_disks_image, path_tmp) # go to tmp folder curdir = os.getcwd() os.chdir(path_tmp) fname_segmentation = os.path.abspath(fname_seg_image) path_data, file_data, ext_data = sct.extract_fname(fname_segmentation) # Change orientation of the input centerline into RPI sct.printv('\nOrient centerline to RPI orientation...', verbose) im_seg = Image(file_data + ext_data) fname_segmentation_orient = 'segmentation_rpi' + ext_data image = set_orientation(im_seg, 'RPI') image.setFileName(fname_segmentation_orient) image.save() # Initiating some variables nx, ny, nz, nt, px, py, pz, pt = image.dim resolution = 0.5 properties = {key: [] for key in property_list_local} properties['incremental_length'] = [] properties['distance_from_C1'] = [] properties['vertebral_level'] = [] properties['z_slice'] = [] # compute the spinal cord centerline based on the spinal cord segmentation number_of_points = 5 * nz x_centerline_fit, y_centerline_fit, z_centerline, x_centerline_deriv, y_centerline_deriv, z_centerline_deriv = smooth_centerline( fname_segmentation_orient, algo_fitting='nurbs', verbose=verbose, nurbs_pts_number=number_of_points, all_slices=False, phys_coordinates=True, remove_outliers=True) centerline = Centerline(x_centerline_fit, y_centerline_fit, z_centerline, x_centerline_deriv, y_centerline_deriv, z_centerline_deriv) # Compute vertebral distribution along centerline based on position of intervertebral disks if fname_disks_image is not None: fname_disks = os.path.abspath(fname_disks_image) path_data, file_data, ext_data = sct.extract_fname(fname_disks) im_disks = Image(file_data + ext_data) fname_disks_orient = 'disks_rpi' + ext_data image_disks = set_orientation(im_disks, 'RPI') image_disks.setFileName(fname_disks_orient) image_disks.save() image_disks = Image(fname_disks_orient) coord = image_disks.getNonZeroCoordinates(sorting='z', reverse_coord=True) coord_physical = [] for c in coord: c_p = image_disks.transfo_pix2phys([[c.x, c.y, c.z]])[0] c_p.append(c.value) coord_physical.append(c_p) centerline.compute_vertebral_distribution(coord_physical) sct.printv('Computing spinal cord shape along the spinal cord...') timer_properties = sct.Timer( number_of_iteration=centerline.number_of_points) timer_properties.start() # Extracting patches perpendicular to the spinal cord and computing spinal cord shape for index in range(centerline.number_of_points): # value_out = -5.0 value_out = 0.0 current_patch = centerline.extract_perpendicular_square( image, index, resolution=resolution, interpolation_mode=interpolation_mode, border='constant', cval=value_out) # check for pixels close to the spinal cord segmentation that are out of the image from skimage.morphology import dilation patch_zero = np.copy(current_patch) patch_zero[patch_zero == value_out] = 0.0 patch_borders = dilation(patch_zero) - patch_zero """ if np.count_nonzero(patch_borders + current_patch == value_out + 1.0) != 0: c = image.transfo_phys2pix([centerline.points[index]])[0] print('WARNING: no patch for slice', c[2]) timer_properties.add_iteration() continue """ sc_properties = properties2d(patch_zero, [resolution, resolution]) if sc_properties is not None: properties['incremental_length'].append( centerline.incremental_length[index]) if fname_disks_image is not None: properties['distance_from_C1'].append( centerline.dist_points[index]) properties['vertebral_level'].append( centerline.l_points[index]) properties['z_slice'].append( image.transfo_phys2pix([centerline.points[index]])[0][2]) for property_name in property_list_local: properties[property_name].append(sc_properties[property_name]) else: c = image.transfo_phys2pix([centerline.points[index]])[0] print('WARNING: no properties for slice', c[2]) timer_properties.add_iteration() timer_properties.stop() # Adding centerline to the properties for later use properties['centerline'] = centerline # We assume that the major axis is in the right-left direction # this script checks the orientation of the spinal cord and invert axis if necessary to make sure the major axis is right-left if compute_diameters: diameter_major = properties['major_axis_length'] diameter_minor = properties['minor_axis_length'] orientation = properties['orientation'] for i, orientation_item in enumerate(orientation): if -45.0 < orientation_item < 45.0: continue else: temp = diameter_minor[i] properties['minor_axis_length'][i] = diameter_major[i] properties['major_axis_length'][i] = temp properties['RL_diameter'] = properties['major_axis_length'] properties['AP_diameter'] = properties['minor_axis_length'] del properties['major_axis_length'] del properties['minor_axis_length'] # smooth the spinal cord shape with a gaussian kernel if required # TODO: not all properties can be smoothed if smooth_factor != 0.0: # smooth_factor is in mm import scipy window = scipy.signal.hann(smooth_factor / np.mean(centerline.progressive_length)) for property_name in property_list_local: properties[property_name] = scipy.signal.convolve( properties[property_name], window, mode='same') / np.sum(window) if compute_diameters: property_list_local.remove('major_axis_length') property_list_local.remove('minor_axis_length') property_list_local.append('RL_diameter') property_list_local.append('AP_diameter') property_list = property_list_local # Display properties on the referential space. Requires intervertebral disks if verbose == 2: x_increment = 'distance_from_C1' if fname_disks_image is None: x_increment = 'incremental_length' # Display the image and plot all contours found fig, axes = plt.subplots(len(property_list_local), sharex=True, sharey=False) for k, property_name in enumerate(property_list_local): axes[k].plot(properties[x_increment], properties[property_name]) axes[k].set_ylabel(property_name) if fname_disks_image is not None: properties[ 'distance_disk_from_C1'] = centerline.distance_from_C1label # distance between each disk and C1 (or first disk) xlabel_disks = [ centerline.convert_vertlabel2disklabel[label] for label in properties['distance_disk_from_C1'] ] xtick_disks = [ properties['distance_disk_from_C1'][label] for label in properties['distance_disk_from_C1'] ] plt.xticks(xtick_disks, xlabel_disks, rotation=30) else: axes[-1].set_xlabel('Position along the spinal cord (in mm)') plt.show() # Removing temporary folder os.chdir(curdir) if remove_temp_files: sct.rmtree(path_tmp) return property_list, properties
def pre_processing(fname_target, fname_sc_seg, fname_level=None, fname_manual_gmseg=None, new_res=0.3, square_size_size_mm=22.5, denoising=True, verbose=1, rm_tmp=True, for_model=False): printv('\nPre-process data...', verbose, 'normal') tmp_dir = sct.tmp_create() sct.copy(fname_target, tmp_dir) fname_target = ''.join(extract_fname(fname_target)[1:]) sct.copy(fname_sc_seg, tmp_dir) fname_sc_seg = ''.join(extract_fname(fname_sc_seg)[1:]) curdir = os.getcwd() os.chdir(tmp_dir) original_info = { 'orientation': None, 'im_sc_seg_rpi': None, 'interpolated_images': [] } im_target = Image(fname_target).copy() im_sc_seg = Image(fname_sc_seg).copy() # get original orientation printv(' Reorient...', verbose, 'normal') original_info['orientation'] = im_target.orientation # assert images are in the same orientation assert im_target.orientation == im_sc_seg.orientation, "ERROR: the image to segment and it's SC segmentation are not in the same orientation" im_target_rpi = im_target.copy().change_orientation( 'RPI', generate_path=True).save() im_sc_seg_rpi = im_sc_seg.copy().change_orientation( 'RPI', generate_path=True).save() original_info['im_sc_seg_rpi'] = im_sc_seg_rpi.copy( ) # target image in RPI will be used to post-process segmentations # denoise using P. Coupe non local means algorithm (see [Manjon et al. JMRI 2010]) implemented in dipy if denoising: printv(' Denoise...', verbose, 'normal') # crop image before denoising to fasten denoising nx, ny, nz, nt, px, py, pz, pt = im_target_rpi.dim size_x, size_y = (square_size_size_mm + 1) / px, (square_size_size_mm + 1) / py size = int(np.ceil(max(size_x, size_y))) # create mask fname_mask = 'mask_pre_crop.nii.gz' sct_create_mask.main([ '-i', im_target_rpi.absolutepath, '-p', 'centerline,' + im_sc_seg_rpi.absolutepath, '-f', 'box', '-size', str(size), '-o', fname_mask ]) # crop image cropper = ImageCropper(im_target_rpi) cropper.get_bbox_from_mask(Image(fname_mask)) im_target_rpi_crop = cropper.crop() # crop segmentation cropper = ImageCropper(im_sc_seg_rpi) cropper.get_bbox_from_mask(Image(fname_mask)) im_sc_seg_rpi_crop = cropper.crop() # denoising from sct_maths import denoise_nlmeans block_radius = 3 block_radius = int( im_target_rpi_crop.data.shape[2] / 2) if im_target_rpi_crop.data.shape[2] < (block_radius * 2) else block_radius patch_radius = block_radius - 1 data_denoised = denoise_nlmeans(im_target_rpi_crop.data, block_radius=block_radius, patch_radius=patch_radius) im_target_rpi_crop.data = data_denoised im_target_rpi = im_target_rpi_crop im_sc_seg_rpi = im_sc_seg_rpi_crop else: fname_mask = None # interpolate image to reference square image (resample and square crop centered on SC) printv(' Interpolate data to the model space...', verbose, 'normal') list_im_slices = interpolate_im_to_ref(im_target_rpi, im_sc_seg_rpi, new_res=new_res, sq_size_size_mm=square_size_size_mm) original_info[ 'interpolated_images'] = list_im_slices # list of images (not Slice() objects) printv(' Mask data using the spinal cord segmentation...', verbose, 'normal') list_sc_seg_slices = interpolate_im_to_ref( im_sc_seg_rpi, im_sc_seg_rpi, new_res=new_res, sq_size_size_mm=square_size_size_mm, interpolation_mode=1) for i in range(len(list_im_slices)): # list_im_slices[i].data[list_sc_seg_slices[i].data == 0] = 0 list_sc_seg_slices[i] = binarize(list_sc_seg_slices[i], thr_min=0.5, thr_max=1) list_im_slices[ i].data = list_im_slices[i].data * list_sc_seg_slices[i].data printv(' Split along rostro-caudal direction...', verbose, 'normal') list_slices_target = [ Slice(slice_id=i, im=im_slice.data, gm_seg=[], wm_seg=[]) for i, im_slice in enumerate(list_im_slices) ] # load vertebral levels if fname_level is not None: printv(' Load vertebral levels...', verbose, 'normal') # copy level file to tmp dir os.chdir(curdir) sct.copy(fname_level, tmp_dir) os.chdir(tmp_dir) # change fname level to only file name (path = tmp dir now) fname_level = ''.join(extract_fname(fname_level)[1:]) # load levels list_slices_target = load_level(list_slices_target, fname_level) os.chdir(curdir) # load manual gmseg if there is one (model data) if fname_manual_gmseg is not None: printv('\n\tLoad manual GM segmentation(s) ...', verbose, 'normal') list_slices_target = load_manual_gmseg(list_slices_target, fname_manual_gmseg, tmp_dir, im_sc_seg_rpi, new_res, square_size_size_mm, for_model=for_model, fname_mask=fname_mask) if rm_tmp: # remove tmp folder sct.rmtree(tmp_dir) return list_slices_target, original_info
def main(args=None): if args is None: args = sys.argv[1:] # initialize parameters param = Param() # Initialization fname_output = '' path_out = '' fname_src_seg = '' fname_dest_seg = '' fname_src_label = '' fname_dest_label = '' generate_warpinv = 1 start_time = time.time() # get default registration parameters # step1 = Paramreg(step='1', type='im', algo='syn', metric='MI', iter='5', shrink='1', smooth='0', gradStep='0.5') step0 = Paramreg(step='0', type='im', algo='syn', metric='MI', iter='0', shrink='1', smooth='0', gradStep='0.5', slicewise='0', dof='Tx_Ty_Tz_Rx_Ry_Rz') # only used to put src into dest space step1 = Paramreg(step='1', type='im') paramreg = ParamregMultiStep([step0, step1]) parser = get_parser(paramreg=paramreg) arguments = parser.parse(args) # get arguments fname_src = arguments['-i'] fname_dest = arguments['-d'] if '-iseg' in arguments: fname_src_seg = arguments['-iseg'] if '-dseg' in arguments: fname_dest_seg = arguments['-dseg'] if '-ilabel' in arguments: fname_src_label = arguments['-ilabel'] if '-dlabel' in arguments: fname_dest_label = arguments['-dlabel'] if '-o' in arguments: fname_output = arguments['-o'] if '-ofolder' in arguments: path_out = arguments['-ofolder'] if '-owarp' in arguments: fname_output_warp = arguments['-owarp'] else: fname_output_warp = '' if '-initwarp' in arguments: fname_initwarp = os.path.abspath(arguments['-initwarp']) else: fname_initwarp = '' if '-initwarpinv' in arguments: fname_initwarpinv = os.path.abspath(arguments['-initwarpinv']) else: fname_initwarpinv = '' if '-m' in arguments: fname_mask = arguments['-m'] else: fname_mask = '' padding = arguments['-z'] if "-param" in arguments: paramreg_user = arguments['-param'] # update registration parameters for paramStep in paramreg_user: paramreg.addStep(paramStep) path_qc = arguments.get("-qc", None) qc_dataset = arguments.get("-qc-dataset", None) qc_subject = arguments.get("-qc-subject", None) identity = int(arguments['-identity']) interp = arguments['-x'] remove_temp_files = int(arguments['-r']) verbose = int(arguments.get('-v')) sct.init_sct(log_level=verbose, update=True) # Update log level # sct.printv(arguments) sct.printv('\nInput parameters:') sct.printv(' Source .............. ' + fname_src) sct.printv(' Destination ......... ' + fname_dest) sct.printv(' Init transfo ........ ' + fname_initwarp) sct.printv(' Mask ................ ' + fname_mask) sct.printv(' Output name ......... ' + fname_output) # sct.printv(' Algorithm ........... '+paramreg.algo) # sct.printv(' Number of iterations '+paramreg.iter) # sct.printv(' Metric .............. '+paramreg.metric) sct.printv(' Remove temp files ... ' + str(remove_temp_files)) sct.printv(' Verbose ............. ' + str(verbose)) # update param param.verbose = verbose param.padding = padding param.fname_mask = fname_mask param.remove_temp_files = remove_temp_files # Get if input is 3D sct.printv('\nCheck if input data are 3D...', verbose) sct.check_if_3d(fname_src) sct.check_if_3d(fname_dest) # Check if user selected type=seg, but did not input segmentation data if 'paramreg_user' in locals(): if True in ['type=seg' in paramreg_user[i] for i in range(len(paramreg_user))]: if fname_src_seg == '' or fname_dest_seg == '': sct.printv('\nERROR: if you select type=seg you must specify -iseg and -dseg flags.\n', 1, 'error') # Extract path, file and extension path_src, file_src, ext_src = sct.extract_fname(fname_src) path_dest, file_dest, ext_dest = sct.extract_fname(fname_dest) # check if source and destination images have the same name (related to issue #373) # If so, change names to avoid conflict of result files and warns the user suffix_src, suffix_dest = '_reg', '_reg' if file_src == file_dest: suffix_src, suffix_dest = '_src_reg', '_dest_reg' # define output folder and file name if fname_output == '': path_out = '' if not path_out else path_out # output in user's current directory file_out = file_src + suffix_src file_out_inv = file_dest + suffix_dest ext_out = ext_src else: path, file_out, ext_out = sct.extract_fname(fname_output) path_out = path if not path_out else path_out file_out_inv = file_out + '_inv' # create temporary folder path_tmp = sct.tmp_create() sct.printv('\nCopying input data to tmp folder and convert to nii...', verbose) Image(fname_src).save(os.path.join(path_tmp, "src.nii")) Image(fname_dest).save(os.path.join(path_tmp, "dest.nii")) if fname_src_seg: Image(fname_src_seg).save(os.path.join(path_tmp, "src_seg.nii")) if fname_dest_seg: Image(fname_dest_seg).save(os.path.join(path_tmp, "dest_seg.nii")) if fname_src_label: Image(fname_src_label).save(os.path.join(path_tmp, "src_label.nii")) Image(fname_dest_label).save(os.path.join(path_tmp, "dest_label.nii")) if fname_mask != '': Image(fname_mask).save(os.path.join(path_tmp, "mask.nii.gz")) # go to tmp folder curdir = os.getcwd() os.chdir(path_tmp) # reorient destination to RPI Image('dest.nii').change_orientation("RPI").save('dest_RPI.nii') if fname_dest_seg: Image('dest_seg.nii').change_orientation("RPI").save('dest_seg_RPI.nii') if fname_dest_label: Image('dest_label.nii').change_orientation("RPI").save('dest_label_RPI.nii') if identity: # overwrite paramreg and only do one identity transformation step0 = Paramreg(step='0', type='im', algo='syn', metric='MI', iter='0', shrink='1', smooth='0', gradStep='0.5') paramreg = ParamregMultiStep([step0]) # Put source into destination space using header (no estimation -- purely based on header) # TODO: Check if necessary to do that # TODO: use that as step=0 # sct.printv('\nPut source into destination space using header...', verbose) # sct.run('isct_antsRegistration -d 3 -t Translation[0] -m MI[dest_pad.nii,src.nii,1,16] -c 0 -f 1 -s 0 -o # [regAffine,src_regAffine.nii] -n BSpline[3]', verbose) # if segmentation, also do it for seg # initialize list of warping fields warp_forward = [] warp_inverse = [] # initial warping is specified, update list of warping fields and skip step=0 if fname_initwarp: sct.printv('\nSkip step=0 and replace with initial transformations: ', param.verbose) sct.printv(' ' + fname_initwarp, param.verbose) # sct.copy(fname_initwarp, 'warp_forward_0.nii.gz') warp_forward = [fname_initwarp] start_step = 1 if fname_initwarpinv: warp_inverse = [fname_initwarpinv] else: sct.printv('\nWARNING: No initial inverse warping field was specified, therefore the inverse warping field ' 'will NOT be generated.', param.verbose, 'warning') generate_warpinv = 0 else: start_step = 0 # loop across registration steps for i_step in range(start_step, len(paramreg.steps)): sct.printv('\n--\nESTIMATE TRANSFORMATION FOR STEP #' + str(i_step), param.verbose) # identify which is the src and dest if paramreg.steps[str(i_step)].type == 'im': src = 'src.nii' dest = 'dest_RPI.nii' interp_step = 'spline' elif paramreg.steps[str(i_step)].type == 'seg': src = 'src_seg.nii' dest = 'dest_seg_RPI.nii' interp_step = 'nn' elif paramreg.steps[str(i_step)].type == 'label': src = 'src_label.nii' dest = 'dest_label_RPI.nii' interp_step = 'nn' else: # src = dest = interp_step = None sct.printv('ERROR: Wrong image type.', 1, 'error') # if step>0, apply warp_forward_concat to the src image to be used if i_step > 0: sct.printv('\nApply transformation from previous step', param.verbose) sct.run(['sct_apply_transfo', '-i', src, '-d', dest, '-w', ','.join(warp_forward), '-o', sct.add_suffix(src, '_reg'), '-x', interp_step], verbose) src = sct.add_suffix(src, '_reg') # register src --> dest warp_forward_out, warp_inverse_out = register(src, dest, paramreg, param, str(i_step)) warp_forward.append(warp_forward_out) warp_inverse.insert(0, warp_inverse_out) # Concatenate transformations sct.printv('\nConcatenate transformations...', verbose) sct.run(['sct_concat_transfo', '-w', ','.join(warp_forward), '-d', 'dest.nii', '-o', 'warp_src2dest.nii.gz'], verbose) sct.run(['sct_concat_transfo', '-w', ','.join(warp_inverse), '-d', 'src.nii', '-o', 'warp_dest2src.nii.gz'], verbose) # Apply warping field to src data sct.printv('\nApply transfo source --> dest...', verbose) sct.run(['sct_apply_transfo', '-i', 'src.nii', '-o', 'src_reg.nii', '-d', 'dest.nii', '-w', 'warp_src2dest.nii.gz', '-x', interp], verbose) sct.printv('\nApply transfo dest --> source...', verbose) sct.run(['sct_apply_transfo', '-i', 'dest.nii', '-o', 'dest_reg.nii', '-d', 'src.nii', '-w', 'warp_dest2src.nii.gz', '-x', interp], verbose) # come back os.chdir(curdir) # Generate output files sct.printv('\nGenerate output files...', verbose) # generate: src_reg fname_src2dest = sct.generate_output_file(os.path.join(path_tmp, "src_reg.nii"), os.path.join(path_out, file_out + ext_out), verbose) # generate: forward warping field if fname_output_warp == '': fname_output_warp = os.path.join(path_out, 'warp_' + file_src + '2' + file_dest + '.nii.gz') sct.generate_output_file(os.path.join(path_tmp, "warp_src2dest.nii.gz"), fname_output_warp, verbose) if generate_warpinv: # generate: dest_reg fname_dest2src = sct.generate_output_file(os.path.join(path_tmp, "dest_reg.nii"), os.path.join(path_out, file_out_inv + ext_dest), verbose) # generate: inverse warping field sct.generate_output_file(os.path.join(path_tmp, "warp_dest2src.nii.gz"), os.path.join(path_out, 'warp_' + file_dest + '2' + file_src + '.nii.gz'), verbose) # Delete temporary files if remove_temp_files: sct.printv('\nRemove temporary files...', verbose) sct.rmtree(path_tmp, verbose=verbose) # display elapsed time elapsed_time = time.time() - start_time sct.printv('\nFinished! Elapsed time: ' + str(int(np.round(elapsed_time))) + 's', verbose) if path_qc is not None: if fname_dest_seg: generate_qc(fname_src2dest, fname_in2=fname_dest, fname_seg=fname_dest_seg, args=args, path_qc=os.path.abspath(path_qc), dataset=qc_dataset, subject=qc_subject, process='sct_register_multimodal') else: sct.printv('WARNING: Cannot generate QC because it requires destination segmentation.', 1, 'warning') if generate_warpinv: sct.display_viewer_syntax([fname_src, fname_dest2src], verbose=verbose) sct.display_viewer_syntax([fname_dest, fname_src2dest], verbose=verbose)
def straighten(self): """ Straighten spinal cord. Steps: (everything is done in physical space) 1. open input image and centreline image 2. extract bspline fitting of the centreline, and its derivatives 3. compute length of centerline 4. compute and generate straight space 5. compute transformations for each voxel of one space: (done using matrices --> improves speed by a factor x300) a. determine which plane of spinal cord centreline it is included b. compute the position of the voxel in the plane (X and Y distance from centreline, along the plane) c. find the correspondant centreline point in the other space d. find the correspondance of the voxel in the corresponding plane 6. generate warping fields for each transformations 7. write warping fields and apply them step 5.b: how to find the corresponding plane? The centerline plane corresponding to a voxel correspond to the nearest point of the centerline. However, we need to compute the distance between the voxel position and the plane to be sure it is part of the plane and not too distant. If it is more far than a threshold, warping value should be 0. step 5.d: how to make the correspondance between centerline point in both images? Both centerline have the same lenght. Therefore, we can map centerline point via their position along the curve. If we use the same number of points uniformely along the spinal cord (1000 for example), the correspondance is straight-forward. :return: """ # Initialization fname_anat = self.input_filename fname_centerline = self.centerline_filename fname_output = self.output_filename remove_temp_files = self.remove_temp_files verbose = self.verbose interpolation_warp = self.interpolation_warp algo_fitting = self.algo_fitting # start timer start_time = time.time() # Extract path/file/extension path_anat, file_anat, ext_anat = sct.extract_fname(fname_anat) path_tmp = sct.tmp_create(basename="straighten_spinalcord", verbose=verbose) # Copying input data to tmp folder sct.printv('\nCopy files to tmp folder...', verbose) Image(fname_anat).save(os.path.join(path_tmp, "data.nii")) Image(fname_centerline).save(os.path.join(path_tmp, "centerline.nii.gz")) if self.use_straight_reference: Image(self.centerline_reference_filename).save(os.path.join(path_tmp, "centerline_ref.nii.gz")) if self.discs_input_filename != '': Image(self.discs_input_filename).save(os.path.join(path_tmp, "labels_input.nii.gz")) if self.discs_ref_filename != '': Image(self.discs_ref_filename).save(os.path.join(path_tmp, "labels_ref.nii.gz")) # go to tmp folder curdir = os.getcwd() os.chdir(path_tmp) # Change orientation of the input centerline into RPI image_centerline = Image("centerline.nii.gz").change_orientation("RPI").save("centerline_rpi.nii.gz", mutable=True) # Get dimension nx, ny, nz, nt, px, py, pz, pt = image_centerline.dim if self.speed_factor != 1.0: intermediate_resampling = True px_r, py_r, pz_r = px * self.speed_factor, py * self.speed_factor, pz * self.speed_factor else: intermediate_resampling = False if intermediate_resampling: sct.mv('centerline_rpi.nii.gz', 'centerline_rpi_native.nii.gz') pz_native = pz # TODO: remove system call sct.run(['sct_resample', '-i', 'centerline_rpi_native.nii.gz', '-mm', str(px_r) + 'x' + str(py_r) + 'x' + str(pz_r), '-o', 'centerline_rpi.nii.gz']) image_centerline = Image('centerline_rpi.nii.gz') nx, ny, nz, nt, px, py, pz, pt = image_centerline.dim if np.min(image_centerline.data) < 0 or np.max(image_centerline.data) > 1: image_centerline.data[image_centerline.data < 0] = 0 image_centerline.data[image_centerline.data > 1] = 1 image_centerline.save() # 2. extract bspline fitting of the centerline, and its derivatives img_ctl = Image('centerline_rpi.nii.gz') centerline = _get_centerline(img_ctl, algo_fitting, self.degree, verbose) number_of_points = centerline.number_of_points # ========================================================================================== logger.info('Create the straight space and the safe zone') # 3. compute length of centerline # compute the length of the spinal cord based on fitted centerline and size of centerline in z direction # Computation of the safe zone. # The safe zone is defined as the length of the spinal cord for which an axial segmentation will be complete # The safe length (to remove) is computed using the safe radius (given as parameter) and the angle of the # last centerline point with the inferior-superior direction. Formula: Ls = Rs * sin(angle) # Calculate Ls for both edges and remove appropriate number of centerline points radius_safe = 0.0 # mm # inferior edge u = centerline.derivatives[0] v = np.array([0, 0, -1]) angle_inferior = np.arctan2(np.linalg.norm(np.cross(u, v)), np.dot(u, v)) length_safe_inferior = radius_safe * np.sin(angle_inferior) # superior edge u = centerline.derivatives[-1] v = np.array([0, 0, 1]) angle_superior = np.arctan2(np.linalg.norm(np.cross(u, v)), np.dot(u, v)) length_safe_superior = radius_safe * np.sin(angle_superior) # remove points inferior_bound = bisect.bisect(centerline.progressive_length, length_safe_inferior) - 1 superior_bound = centerline.number_of_points - bisect.bisect(centerline.progressive_length_inverse, length_safe_superior) z_centerline = centerline.points[:, 2] length_centerline = centerline.length size_z_centerline = z_centerline[-1] - z_centerline[0] # compute the size factor between initial centerline and straight bended centerline factor_curved_straight = length_centerline / size_z_centerline middle_slice = (z_centerline[0] + z_centerline[-1]) / 2.0 bound_curved = [z_centerline[inferior_bound], z_centerline[superior_bound]] bound_straight = [(z_centerline[inferior_bound] - middle_slice) * factor_curved_straight + middle_slice, (z_centerline[superior_bound] - middle_slice) * factor_curved_straight + middle_slice] logger.info('Length of spinal cord: {}'.format(length_centerline)) logger.info('Size of spinal cord in z direction: {}'.format(size_z_centerline)) logger.info('Ratio length/size: {}'.format(factor_curved_straight)) logger.info('Safe zone boundaries (curved space): {}'.format(bound_curved)) logger.info('Safe zone boundaries (straight space): {}'.format(bound_straight)) # 4. compute and generate straight space # points along curved centerline are already regularly spaced. # calculate position of points along straight centerline # Create straight NIFTI volumes. # ========================================================================================== # TODO: maybe this if case is not needed? if self.use_straight_reference: image_centerline_pad = Image('centerline_rpi.nii.gz') nx, ny, nz, nt, px, py, pz, pt = image_centerline_pad.dim fname_ref = 'centerline_ref_rpi.nii.gz' image_centerline_straight = Image('centerline_ref.nii.gz') \ .change_orientation("RPI") \ .save(fname_ref, mutable=True) centerline_straight = _get_centerline(image_centerline_straight, algo_fitting, self.degree, verbose) nx_s, ny_s, nz_s, nt_s, px_s, py_s, pz_s, pt_s = image_centerline_straight.dim # Prepare warping fields headers hdr_warp = image_centerline_pad.hdr.copy() hdr_warp.set_data_dtype('float32') hdr_warp_s = image_centerline_straight.hdr.copy() hdr_warp_s.set_data_dtype('float32') if self.discs_input_filename != "" and self.discs_ref_filename != "": discs_input_image = Image('labels_input.nii.gz') coord = discs_input_image.getNonZeroCoordinates(sorting='z', reverse_coord=True) coord_physical = [] for c in coord: c_p = discs_input_image.transfo_pix2phys([[c.x, c.y, c.z]]).tolist()[0] c_p.append(c.value) coord_physical.append(c_p) centerline.compute_vertebral_distribution(coord_physical) centerline.save_centerline(image=discs_input_image, fname_output='discs_input_image.nii.gz') discs_ref_image = Image('labels_ref.nii.gz') coord = discs_ref_image.getNonZeroCoordinates(sorting='z', reverse_coord=True) coord_physical = [] for c in coord: c_p = discs_ref_image.transfo_pix2phys([[c.x, c.y, c.z]]).tolist()[0] c_p.append(c.value) coord_physical.append(c_p) centerline_straight.compute_vertebral_distribution(coord_physical) centerline_straight.save_centerline(image=discs_ref_image, fname_output='discs_ref_image.nii.gz') else: logger.info('Pad input volume to account for spinal cord length...') start_point, end_point = bound_straight[0], bound_straight[1] offset_z = 0 # if the destination image is resampled, we still create the straight reference space with the native # resolution. # TODO: Maybe this if case is not needed? if intermediate_resampling: padding_z = int(np.ceil(1.5 * ((length_centerline - size_z_centerline) / 2.0) / pz_native)) sct.run( ['sct_image', '-i', 'centerline_rpi_native.nii.gz', '-o', 'tmp.centerline_pad_native.nii.gz', '-pad', '0,0,' + str(padding_z)]) image_centerline_pad = Image('centerline_rpi_native.nii.gz') nx, ny, nz, nt, px, py, pz, pt = image_centerline_pad.dim start_point_coord_native = image_centerline_pad.transfo_phys2pix([[0, 0, start_point]])[0] end_point_coord_native = image_centerline_pad.transfo_phys2pix([[0, 0, end_point]])[0] straight_size_x = int(self.xy_size / px) straight_size_y = int(self.xy_size / py) warp_space_x = [int(np.round(nx / 2)) - straight_size_x, int(np.round(nx / 2)) + straight_size_x] warp_space_y = [int(np.round(ny / 2)) - straight_size_y, int(np.round(ny / 2)) + straight_size_y] if warp_space_x[0] < 0: warp_space_x[1] += warp_space_x[0] - 2 warp_space_x[0] = 0 if warp_space_y[0] < 0: warp_space_y[1] += warp_space_y[0] - 2 warp_space_y[0] = 0 spec = dict(( (0, warp_space_x), (1, warp_space_y), (2, (0, end_point_coord_native[2] - start_point_coord_native[2])), )) msct_image.spatial_crop(Image("tmp.centerline_pad_native.nii.gz"), spec).save( "tmp.centerline_pad_crop_native.nii.gz") fname_ref = 'tmp.centerline_pad_crop_native.nii.gz' offset_z = 4 else: fname_ref = 'tmp.centerline_pad_crop.nii.gz' nx, ny, nz, nt, px, py, pz, pt = image_centerline.dim padding_z = int(np.ceil(1.5 * ((length_centerline - size_z_centerline) / 2.0) / pz)) + offset_z image_centerline_pad = pad_image(image_centerline, pad_z_i=padding_z, pad_z_f=padding_z) nx, ny, nz = image_centerline_pad.data.shape hdr_warp = image_centerline_pad.hdr.copy() hdr_warp.set_data_dtype('float32') start_point_coord = image_centerline_pad.transfo_phys2pix([[0, 0, start_point]])[0] end_point_coord = image_centerline_pad.transfo_phys2pix([[0, 0, end_point]])[0] straight_size_x = int(self.xy_size / px) straight_size_y = int(self.xy_size / py) warp_space_x = [int(np.round(nx / 2)) - straight_size_x, int(np.round(nx / 2)) + straight_size_x] warp_space_y = [int(np.round(ny / 2)) - straight_size_y, int(np.round(ny / 2)) + straight_size_y] if warp_space_x[0] < 0: warp_space_x[1] += warp_space_x[0] - 2 warp_space_x[0] = 0 if warp_space_x[1] >= nx: warp_space_x[1] = nx - 1 if warp_space_y[0] < 0: warp_space_y[1] += warp_space_y[0] - 2 warp_space_y[0] = 0 if warp_space_y[1] >= ny: warp_space_y[1] = ny - 1 spec = dict(( (0, warp_space_x), (1, warp_space_y), (2, (0, end_point_coord[2] - start_point_coord[2] + offset_z)), )) image_centerline_straight = msct_image.spatial_crop(image_centerline_pad, spec) nx_s, ny_s, nz_s, nt_s, px_s, py_s, pz_s, pt_s = image_centerline_straight.dim hdr_warp_s = image_centerline_straight.hdr.copy() hdr_warp_s.set_data_dtype('float32') if self.template_orientation == 1: raise NotImplementedError() start_point_coord = image_centerline_pad.transfo_phys2pix([[0, 0, start_point]])[0] end_point_coord = image_centerline_pad.transfo_phys2pix([[0, 0, end_point]])[0] number_of_voxel = nx * ny * nz logger.debug('Number of voxels: {}'.format(number_of_voxel)) time_centerlines = time.time() coord_straight = np.empty((number_of_points, 3)) coord_straight[..., 0] = int(np.round(nx_s / 2)) coord_straight[..., 1] = int(np.round(ny_s / 2)) coord_straight[..., 2] = np.linspace(0, end_point_coord[2] - start_point_coord[2], number_of_points) coord_phys_straight = image_centerline_straight.transfo_pix2phys(coord_straight) derivs_straight = np.empty((number_of_points, 3)) derivs_straight[..., 0] = derivs_straight[..., 1] = 0 derivs_straight[..., 2] = 1 dx_straight, dy_straight, dz_straight = derivs_straight.T centerline_straight = Centerline(coord_phys_straight[:, 0], coord_phys_straight[:, 1], coord_phys_straight[:, 2], dx_straight, dy_straight, dz_straight) time_centerlines = time.time() - time_centerlines logger.info('Time to generate centerline: {} ms'.format(np.round(time_centerlines * 1000.0))) if verbose == 2: # TODO: use OO import matplotlib.pyplot as plt from datetime import datetime curved_points = centerline.progressive_length straight_points = centerline_straight.progressive_length range_points = np.linspace(0, 1, number_of_points) dist_curved = np.zeros(number_of_points) dist_straight = np.zeros(number_of_points) for i in range(1, number_of_points): dist_curved[i] = dist_curved[i - 1] + curved_points[i - 1] / centerline.length dist_straight[i] = dist_straight[i - 1] + straight_points[i - 1] / centerline_straight.length plt.plot(range_points, dist_curved) plt.plot(range_points, dist_straight) plt.grid(True) plt.savefig('fig_straighten_' + datetime.now().strftime("%y%m%d%H%M%S%f") + '.png') plt.close() # alignment_mode = 'length' alignment_mode = 'levels' lookup_curved2straight = list(range(centerline.number_of_points)) if self.discs_input_filename != "": # create look-up table curved to straight for index in range(centerline.number_of_points): disc_label = centerline.l_points[index] if alignment_mode == 'length': relative_position = centerline.dist_points[index] else: relative_position = centerline.dist_points_rel[index] idx_closest = centerline_straight.get_closest_to_absolute_position(disc_label, relative_position, backup_index=index, backup_centerline=centerline_straight, mode=alignment_mode) if idx_closest is not None: lookup_curved2straight[index] = idx_closest else: lookup_curved2straight[index] = 0 for p in range(0, len(lookup_curved2straight) // 2): if lookup_curved2straight[p] == lookup_curved2straight[p + 1]: lookup_curved2straight[p] = 0 else: break for p in range(len(lookup_curved2straight) - 1, len(lookup_curved2straight) // 2, -1): if lookup_curved2straight[p] == lookup_curved2straight[p - 1]: lookup_curved2straight[p] = 0 else: break lookup_curved2straight = np.array(lookup_curved2straight) lookup_straight2curved = list(range(centerline_straight.number_of_points)) if self.discs_input_filename != "": for index in range(centerline_straight.number_of_points): disc_label = centerline_straight.l_points[index] if alignment_mode == 'length': relative_position = centerline_straight.dist_points[index] else: relative_position = centerline_straight.dist_points_rel[index] idx_closest = centerline.get_closest_to_absolute_position(disc_label, relative_position, backup_index=index, backup_centerline=centerline_straight, mode=alignment_mode) if idx_closest is not None: lookup_straight2curved[index] = idx_closest for p in range(0, len(lookup_straight2curved) // 2): if lookup_straight2curved[p] == lookup_straight2curved[p + 1]: lookup_straight2curved[p] = 0 else: break for p in range(len(lookup_straight2curved) - 1, len(lookup_straight2curved) // 2, -1): if lookup_straight2curved[p] == lookup_straight2curved[p - 1]: lookup_straight2curved[p] = 0 else: break lookup_straight2curved = np.array(lookup_straight2curved) # Create volumes containing curved and straight warping fields data_warp_curved2straight = np.zeros((nx_s, ny_s, nz_s, 1, 3)) data_warp_straight2curved = np.zeros((nx, ny, nz, 1, 3)) # 5. compute transformations # Curved and straight images and the same dimensions, so we compute both warping fields at the same time. # b. determine which plane of spinal cord centreline it is included # sct.printv(nx * ny * nz, nx_s * ny_s * nz_s) if self.curved2straight: for u in tqdm(range(nz_s)): x_s, y_s, z_s = np.mgrid[0:nx_s, 0:ny_s, u:u + 1] indexes_straight = np.array(list(zip(x_s.ravel(), y_s.ravel(), z_s.ravel()))) physical_coordinates_straight = image_centerline_straight.transfo_pix2phys(indexes_straight) nearest_indexes_straight = centerline_straight.find_nearest_indexes(physical_coordinates_straight) distances_straight = centerline_straight.get_distances_from_planes(physical_coordinates_straight, nearest_indexes_straight) lookup = lookup_straight2curved[nearest_indexes_straight] indexes_out_distance_straight = np.logical_or( np.logical_or(distances_straight > self.threshold_distance, distances_straight < -self.threshold_distance), lookup == 0) projected_points_straight = centerline_straight.get_projected_coordinates_on_planes( physical_coordinates_straight, nearest_indexes_straight) coord_in_planes_straight = centerline_straight.get_in_plans_coordinates(projected_points_straight, nearest_indexes_straight) coord_straight2curved = centerline.get_inverse_plans_coordinates(coord_in_planes_straight, lookup) displacements_straight = coord_straight2curved - physical_coordinates_straight # Invert Z coordinate as ITK & ANTs physical coordinate system is LPS- (RAI+) # while ours is LPI- # Refs: https://sourceforge.net/p/advants/discussion/840261/thread/2a1e9307/#fb5a # https://www.slicer.org/wiki/Coordinate_systems displacements_straight[:, 2] = -displacements_straight[:, 2] displacements_straight[indexes_out_distance_straight] = [100000.0, 100000.0, 100000.0] data_warp_curved2straight[indexes_straight[:, 0], indexes_straight[:, 1], indexes_straight[:, 2], 0, :]\ = -displacements_straight if self.straight2curved: for u in tqdm(range(nz)): x, y, z = np.mgrid[0:nx, 0:ny, u:u + 1] indexes = np.array(list(zip(x.ravel(), y.ravel(), z.ravel()))) physical_coordinates = image_centerline_pad.transfo_pix2phys(indexes) nearest_indexes_curved = centerline.find_nearest_indexes(physical_coordinates) distances_curved = centerline.get_distances_from_planes(physical_coordinates, nearest_indexes_curved) lookup = lookup_curved2straight[nearest_indexes_curved] indexes_out_distance_curved = np.logical_or( np.logical_or(distances_curved > self.threshold_distance, distances_curved < -self.threshold_distance), lookup == 0) projected_points_curved = centerline.get_projected_coordinates_on_planes(physical_coordinates, nearest_indexes_curved) coord_in_planes_curved = centerline.get_in_plans_coordinates(projected_points_curved, nearest_indexes_curved) coord_curved2straight = centerline_straight.points[lookup] coord_curved2straight[:, 0:2] += coord_in_planes_curved[:, 0:2] coord_curved2straight[:, 2] += distances_curved displacements_curved = coord_curved2straight - physical_coordinates displacements_curved[:, 2] = -displacements_curved[:, 2] displacements_curved[indexes_out_distance_curved] = [100000.0, 100000.0, 100000.0] data_warp_straight2curved[indexes[:, 0], indexes[:, 1], indexes[:, 2], 0, :] = -displacements_curved # Creation of the safe zone based on pre-calculated safe boundaries coord_bound_curved_inf, coord_bound_curved_sup = image_centerline_pad.transfo_phys2pix( [[0, 0, bound_curved[0]]]), image_centerline_pad.transfo_phys2pix([[0, 0, bound_curved[1]]]) coord_bound_straight_inf, coord_bound_straight_sup = image_centerline_straight.transfo_phys2pix( [[0, 0, bound_straight[0]]]), image_centerline_straight.transfo_phys2pix([[0, 0, bound_straight[1]]]) if radius_safe > 0: data_warp_curved2straight[:, :, 0:coord_bound_straight_inf[0][2], 0, :] = 100000.0 data_warp_curved2straight[:, :, coord_bound_straight_sup[0][2]:, 0, :] = 100000.0 data_warp_straight2curved[:, :, 0:coord_bound_curved_inf[0][2], 0, :] = 100000.0 data_warp_straight2curved[:, :, coord_bound_curved_sup[0][2]:, 0, :] = 100000.0 # Generate warp files as a warping fields hdr_warp_s.set_intent('vector', (), '') hdr_warp_s.set_data_dtype('float32') hdr_warp.set_intent('vector', (), '') hdr_warp.set_data_dtype('float32') if self.curved2straight: img = Nifti1Image(data_warp_curved2straight, None, hdr_warp_s) save(img, 'tmp.curve2straight.nii.gz') logger.info('Warping field generated: tmp.curve2straight.nii.gz') if self.straight2curved: img = Nifti1Image(data_warp_straight2curved, None, hdr_warp) save(img, 'tmp.straight2curve.nii.gz') logger.info('Warping field generated: tmp.straight2curve.nii.gz') image_centerline_straight.save(fname_ref) if self.curved2straight: logger.info('Apply transformation to input image...') sct.run(['isct_antsApplyTransforms', '-d', '3', '-r', fname_ref, '-i', 'data.nii', '-o', 'tmp.anat_rigid_warp.nii.gz', '-t', 'tmp.curve2straight.nii.gz', '-n', 'BSpline[3]'], is_sct_binary=True, verbose=verbose) if self.accuracy_results: time_accuracy_results = time.time() # compute the error between the straightened centerline/segmentation and the central vertical line. # Ideally, the error should be zero. # Apply deformation to input image logger.info('Apply transformation to centerline image...') sct.run(['isct_antsApplyTransforms', '-d', '3', '-r', fname_ref, '-i', 'centerline.nii.gz', '-o', 'tmp.centerline_straight.nii.gz', '-t', 'tmp.curve2straight.nii.gz', '-n', 'NearestNeighbor'], is_sct_binary=True, verbose=verbose) file_centerline_straight = Image('tmp.centerline_straight.nii.gz', verbose=verbose) nx, ny, nz, nt, px, py, pz, pt = file_centerline_straight.dim coordinates_centerline = file_centerline_straight.getNonZeroCoordinates(sorting='z') mean_coord = [] for z in range(coordinates_centerline[0].z, coordinates_centerline[-1].z): temp_mean = [coord.value for coord in coordinates_centerline if coord.z == z] if temp_mean: mean_value = np.mean(temp_mean) mean_coord.append( np.mean([[coord.x * coord.value / mean_value, coord.y * coord.value / mean_value] for coord in coordinates_centerline if coord.z == z], axis=0)) # compute error between the straightened centerline and the straight line. x0 = file_centerline_straight.data.shape[0] / 2.0 y0 = file_centerline_straight.data.shape[1] / 2.0 count_mean = 0 if number_of_points >= 10: mean_c = mean_coord[2:-2] # we don't include the four extrema because there are usually messy. else: mean_c = mean_coord for coord_z in mean_c: if not np.isnan(np.sum(coord_z)): dist = ((x0 - coord_z[0]) * px) ** 2 + ((y0 - coord_z[1]) * py) ** 2 self.mse_straightening += dist dist = np.sqrt(dist) if dist > self.max_distance_straightening: self.max_distance_straightening = dist count_mean += 1 self.mse_straightening = np.sqrt(self.mse_straightening / float(count_mean)) self.elapsed_time_accuracy = time.time() - time_accuracy_results os.chdir(curdir) # Generate output file (in current folder) # TODO: do not uncompress the warping field, it is too time consuming! logger.info('Generate output files...') if self.curved2straight: sct.generate_output_file(os.path.join(path_tmp, "tmp.curve2straight.nii.gz"), os.path.join(self.path_output, "warp_curve2straight.nii.gz"), verbose) if self.straight2curved: sct.generate_output_file(os.path.join(path_tmp, "tmp.straight2curve.nii.gz"), os.path.join(self.path_output, "warp_straight2curve.nii.gz"), verbose) # create ref_straight.nii.gz file that can be used by other SCT functions that need a straight reference space if self.curved2straight: sct.copy(os.path.join(path_tmp, "tmp.anat_rigid_warp.nii.gz"), os.path.join(self.path_output, "straight_ref.nii.gz")) # move straightened input file if fname_output == '': fname_straight = sct.generate_output_file(os.path.join(path_tmp, "tmp.anat_rigid_warp.nii.gz"), os.path.join(self.path_output, file_anat + "_straight" + ext_anat), verbose) else: fname_straight = sct.generate_output_file(os.path.join(path_tmp, "tmp.anat_rigid_warp.nii.gz"), os.path.join(self.path_output, fname_output), verbose) # straightened anatomic # Remove temporary files if remove_temp_files: logger.info('Remove temporary files...') sct.rmtree(path_tmp) if self.accuracy_results: logger.info('Maximum x-y error: {} mm'.format(self.max_distance_straightening)) logger.info('Accuracy of straightening (MSE): {} mm'.format(self.mse_straightening)) # display elapsed time self.elapsed_time = int(np.round(time.time() - start_time)) return fname_straight
def main(args=None): if args is None: args = sys.argv[1:] # get parser parser = get_parser() arguments = parser.parse(args) # set param arguments ad inputted by user fname_mask = arguments["-m"] # SC segmentation if '-s' in arguments: fname_sc = arguments["-s"] if not os.path.isfile(fname_sc): fname_sc = None printv('WARNING: -s input file: "' + arguments['-s'] + '" does not exist.\n', 1, 'warning') else: fname_sc = None # Reference image if '-i' in arguments: fname_ref = arguments["-i"] if not os.path.isfile(fname_sc): fname_ref = None printv('WARNING: -i input file: "' + arguments['-i'] + '" does not exist.\n', 1, 'warning') else: fname_ref = None # Path to template if '-f' in arguments: path_template = arguments["-f"] if not os.path.isdir(path_template) and os.path.exists(path_template): path_template = None printv("ERROR output directory %s is not a valid directory" % path_template, 1, 'error') else: path_template = None # Output Folder if '-ofolder' in arguments: path_results = arguments["-ofolder"] if not os.path.isdir(path_results) and os.path.exists(path_results): printv("ERROR output directory %s is not a valid directory" % path_results, 1, 'error') if not os.path.exists(path_results): os.makedirs(path_results) else: path_results = './' # Remove temp folder if '-r' in arguments: rm_tmp = bool(int(arguments['-r'])) else: rm_tmp = True # Verbosity verbose = int(arguments.get('-v')) sct.init_sct(log_level=verbose, update=True) # Update log level # create the Lesion constructor lesion_obj = AnalyzeLeion(fname_mask=fname_mask, fname_sc=fname_sc, fname_ref=fname_ref, path_template=path_template, path_ofolder=path_results, verbose=verbose) # run the analyze lesion_obj.analyze() # remove tmp_dir if rm_tmp: sct.rmtree(lesion_obj.tmp_dir) printv('\nDone! To view the labeled lesion file (one value per lesion), type:', verbose) if fname_ref is not None: printv('fslview ' + fname_mask + ' ' + os.path.join(path_results, lesion_obj.fname_label) + ' -l Red-Yellow -t 0.7 & \n', verbose, 'info') else: printv('fslview ' + os.path.join(path_results, lesion_obj.fname_label) + ' -l Red-Yellow -t 0.7 & \n', verbose, 'info')
def main(args=None): # initializations param = Param() # check user arguments if not args: args = sys.argv[1:] # Get parser info parser = get_parser() arguments = parser.parse(args) fname_data = arguments['-i'] fname_seg = arguments['-s'] if '-l' in arguments: fname_landmarks = arguments['-l'] label_type = 'body' elif '-ldisc' in arguments: fname_landmarks = arguments['-ldisc'] label_type = 'disc' else: sct.printv('ERROR: Labels should be provided.', 1, 'error') if '-ofolder' in arguments: path_output = arguments['-ofolder'] else: path_output = '' param.path_qc = arguments.get("-qc", None) path_template = arguments['-t'] contrast_template = arguments['-c'] ref = arguments['-ref'] param.remove_temp_files = int(arguments.get('-r')) verbose = int(arguments.get('-v')) sct.init_sct(log_level=verbose, update=True) # Update log level param.verbose = verbose # TODO: not clean, unify verbose or param.verbose in code, but not both param.straighten_fitting = arguments['-straighten-fitting'] # if '-cpu-nb' in arguments: # arg_cpu = ' -cpu-nb '+str(arguments['-cpu-nb']) # else: # arg_cpu = '' # registration parameters if '-param' in arguments: # reset parameters but keep step=0 (might be overwritten if user specified step=0) paramreg = ParamregMultiStep([step0]) if ref == 'subject': paramreg.steps['0'].dof = 'Tx_Ty_Tz_Rx_Ry_Rz_Sz' # add user parameters for paramStep in arguments['-param']: paramreg.addStep(paramStep) else: paramreg = ParamregMultiStep([step0, step1, step2]) # if ref=subject, initialize registration using different affine parameters if ref == 'subject': paramreg.steps['0'].dof = 'Tx_Ty_Tz_Rx_Ry_Rz_Sz' # initialize other parameters zsubsample = param.zsubsample # retrieve template file names file_template_vertebral_labeling = get_file_label(os.path.join(path_template, 'template'), 'vertebral labeling') file_template = get_file_label(os.path.join(path_template, 'template'), contrast_template.upper() + '-weighted template') file_template_seg = get_file_label(os.path.join(path_template, 'template'), 'spinal cord') # start timer start_time = time.time() # get fname of the template + template objects fname_template = os.path.join(path_template, 'template', file_template) fname_template_vertebral_labeling = os.path.join(path_template, 'template', file_template_vertebral_labeling) fname_template_seg = os.path.join(path_template, 'template', file_template_seg) fname_template_disc_labeling = os.path.join(path_template, 'template', 'PAM50_label_disc.nii.gz') # check file existence # TODO: no need to do that! sct.printv('\nCheck template files...') sct.check_file_exist(fname_template, verbose) sct.check_file_exist(fname_template_vertebral_labeling, verbose) sct.check_file_exist(fname_template_seg, verbose) path_data, file_data, ext_data = sct.extract_fname(fname_data) # sct.printv(arguments) sct.printv('\nCheck parameters:', verbose) sct.printv(' Data: ' + fname_data, verbose) sct.printv(' Landmarks: ' + fname_landmarks, verbose) sct.printv(' Segmentation: ' + fname_seg, verbose) sct.printv(' Path template: ' + path_template, verbose) sct.printv(' Remove temp files: ' + str(param.remove_temp_files), verbose) # check input labels labels = check_labels(fname_landmarks, label_type=label_type) vertebral_alignment = False if len(labels) > 2 and label_type == 'disc': vertebral_alignment = True path_tmp = sct.tmp_create(basename="register_to_template", verbose=verbose) # set temporary file names ftmp_data = 'data.nii' ftmp_seg = 'seg.nii.gz' ftmp_label = 'label.nii.gz' ftmp_template = 'template.nii' ftmp_template_seg = 'template_seg.nii.gz' ftmp_template_label = 'template_label.nii.gz' # copy files to temporary folder sct.printv('\nCopying input data to tmp folder and convert to nii...', verbose) Image(fname_data).save(os.path.join(path_tmp, ftmp_data)) Image(fname_seg).save(os.path.join(path_tmp, ftmp_seg)) Image(fname_landmarks).save(os.path.join(path_tmp, ftmp_label)) Image(fname_template).save(os.path.join(path_tmp, ftmp_template)) Image(fname_template_seg).save(os.path.join(path_tmp, ftmp_template_seg)) Image(fname_template_vertebral_labeling).save(os.path.join(path_tmp, ftmp_template_label)) if label_type == 'disc': Image(fname_template_disc_labeling).save(os.path.join(path_tmp, ftmp_template_label)) # go to tmp folder curdir = os.getcwd() os.chdir(path_tmp) # Generate labels from template vertebral labeling if label_type == 'body': sct.printv('\nGenerate labels from template vertebral labeling', verbose) ftmp_template_label_, ftmp_template_label = ftmp_template_label, sct.add_suffix(ftmp_template_label, "_body") sct_label_utils.main(args=['-i', ftmp_template_label_, '-vert-body', '0', '-o', ftmp_template_label]) # check if provided labels are available in the template sct.printv('\nCheck if provided labels are available in the template', verbose) image_label_template = Image(ftmp_template_label) labels_template = image_label_template.getNonZeroCoordinates(sorting='value') if labels[-1].value > labels_template[-1].value: sct.printv('ERROR: Wrong landmarks input. Labels must have correspondence in template space. \nLabel max ' 'provided: ' + str(labels[-1].value) + '\nLabel max from template: ' + str(labels_template[-1].value), verbose, 'error') # if only one label is present, force affine transformation to be Tx,Ty,Tz only (no scaling) if len(labels) == 1: paramreg.steps['0'].dof = 'Tx_Ty_Tz' sct.printv('WARNING: Only one label is present. Forcing initial transformation to: ' + paramreg.steps['0'].dof, 1, 'warning') # Project labels onto the spinal cord centerline because later, an affine transformation is estimated between the # template's labels (centered in the cord) and the subject's labels (assumed to be centered in the cord). # If labels are not centered, mis-registration errors are observed (see issue #1826) ftmp_label = project_labels_on_spinalcord(ftmp_label, ftmp_seg) # binarize segmentation (in case it has values below 0 caused by manual editing) sct.printv('\nBinarize segmentation', verbose) ftmp_seg_, ftmp_seg = ftmp_seg, sct.add_suffix(ftmp_seg, "_bin") sct_maths.main(['-i', ftmp_seg_, '-bin', '0.5', '-o', ftmp_seg]) # Switch between modes: subject->template or template->subject if ref == 'template': # resample data to 1mm isotropic sct.printv('\nResample data to 1mm isotropic...', verbose) resample_file(ftmp_data, add_suffix(ftmp_data, '_1mm'), '1.0x1.0x1.0', 'mm', 'linear', verbose) ftmp_data = add_suffix(ftmp_data, '_1mm') resample_file(ftmp_seg, add_suffix(ftmp_seg, '_1mm'), '1.0x1.0x1.0', 'mm', 'linear', verbose) ftmp_seg = add_suffix(ftmp_seg, '_1mm') # N.B. resampling of labels is more complicated, because they are single-point labels, therefore resampling # with nearest neighbour can make them disappear. resample_labels(ftmp_label, ftmp_data, add_suffix(ftmp_label, '_1mm')) ftmp_label = add_suffix(ftmp_label, '_1mm') # Change orientation of input images to RPI sct.printv('\nChange orientation of input images to RPI...', verbose) ftmp_data = Image(ftmp_data).change_orientation("RPI", generate_path=True).save().absolutepath ftmp_seg = Image(ftmp_seg).change_orientation("RPI", generate_path=True).save().absolutepath ftmp_label = Image(ftmp_label).change_orientation("RPI", generate_path=True).save().absolutepath ftmp_seg_, ftmp_seg = ftmp_seg, add_suffix(ftmp_seg, '_crop') if vertebral_alignment: # cropping the segmentation based on the label coverage to ensure good registration with vertebral alignment # See https://github.com/neuropoly/spinalcordtoolbox/pull/1669 for details image_labels = Image(ftmp_label) coordinates_labels = image_labels.getNonZeroCoordinates(sorting='z') nx, ny, nz, nt, px, py, pz, pt = image_labels.dim offset_crop = 10.0 * pz # cropping the image 10 mm above and below the highest and lowest label cropping_slices = [coordinates_labels[0].z - offset_crop, coordinates_labels[-1].z + offset_crop] # make sure that the cropping slices do not extend outside of the slice range (issue #1811) if cropping_slices[0] < 0: cropping_slices[0] = 0 if cropping_slices[1] > nz: cropping_slices[1] = nz msct_image.spatial_crop(Image(ftmp_seg_), dict(((2, np.int32(np.round(cropping_slices))),))).save(ftmp_seg) else: # if we do not align the vertebral levels, we crop the segmentation from top to bottom im_seg_rpi = Image(ftmp_seg_) bottom = 0 for data in msct_image.SlicerOneAxis(im_seg_rpi, "IS"): if (data != 0).any(): break bottom += 1 top = im_seg_rpi.data.shape[2] for data in msct_image.SlicerOneAxis(im_seg_rpi, "SI"): if (data != 0).any(): break top -= 1 msct_image.spatial_crop(im_seg_rpi, dict(((2, (bottom, top)),))).save(ftmp_seg) # straighten segmentation sct.printv('\nStraighten the spinal cord using centerline/segmentation...', verbose) # check if warp_curve2straight and warp_straight2curve already exist (i.e. no need to do it another time) fn_warp_curve2straight = os.path.join(curdir, "warp_curve2straight.nii.gz") fn_warp_straight2curve = os.path.join(curdir, "warp_straight2curve.nii.gz") fn_straight_ref = os.path.join(curdir, "straight_ref.nii.gz") cache_input_files=[ftmp_seg] if vertebral_alignment: cache_input_files += [ ftmp_template_seg, ftmp_label, ftmp_template_label, ] cache_sig = sct.cache_signature( input_files=cache_input_files, ) cachefile = os.path.join(curdir, "straightening.cache") if sct.cache_valid(cachefile, cache_sig) and os.path.isfile(fn_warp_curve2straight) and os.path.isfile(fn_warp_straight2curve) and os.path.isfile(fn_straight_ref): sct.printv('Reusing existing warping field which seems to be valid', verbose, 'warning') sct.copy(fn_warp_curve2straight, 'warp_curve2straight.nii.gz') sct.copy(fn_warp_straight2curve, 'warp_straight2curve.nii.gz') sct.copy(fn_straight_ref, 'straight_ref.nii.gz') # apply straightening sct.run(['sct_apply_transfo', '-i', ftmp_seg, '-w', 'warp_curve2straight.nii.gz', '-d', 'straight_ref.nii.gz', '-o', add_suffix(ftmp_seg, '_straight')]) else: from spinalcordtoolbox.straightening import SpinalCordStraightener sc_straight = SpinalCordStraightener(ftmp_seg, ftmp_seg) sc_straight.algo_fitting = param.straighten_fitting sc_straight.output_filename = add_suffix(ftmp_seg, '_straight') sc_straight.path_output = './' sc_straight.qc = '0' sc_straight.remove_temp_files = param.remove_temp_files sc_straight.verbose = verbose if vertebral_alignment: sc_straight.centerline_reference_filename = ftmp_template_seg sc_straight.use_straight_reference = True sc_straight.discs_input_filename = ftmp_label sc_straight.discs_ref_filename = ftmp_template_label sc_straight.straighten() sct.cache_save(cachefile, cache_sig) # N.B. DO NOT UPDATE VARIABLE ftmp_seg BECAUSE TEMPORARY USED LATER # re-define warping field using non-cropped space (to avoid issue #367) s, o = sct.run(['sct_concat_transfo', '-w', 'warp_straight2curve.nii.gz', '-d', ftmp_data, '-o', 'warp_straight2curve.nii.gz']) if vertebral_alignment: sct.copy('warp_curve2straight.nii.gz', 'warp_curve2straightAffine.nii.gz') else: # Label preparation: # -------------------------------------------------------------------------------- # Remove unused label on template. Keep only label present in the input label image sct.printv('\nRemove unused label on template. Keep only label present in the input label image...', verbose) sct.run(['sct_label_utils', '-i', ftmp_template_label, '-o', ftmp_template_label, '-remove-reference', ftmp_label]) # Dilating the input label so they can be straighten without losing them sct.printv('\nDilating input labels using 3vox ball radius') sct_maths.main(['-i', ftmp_label, '-dilate', '3', '-o', add_suffix(ftmp_label, '_dilate')]) ftmp_label = add_suffix(ftmp_label, '_dilate') # Apply straightening to labels sct.printv('\nApply straightening to labels...', verbose) sct.run(['sct_apply_transfo', '-i', ftmp_label, '-o', add_suffix(ftmp_label, '_straight'), '-d', add_suffix(ftmp_seg, '_straight'), '-w', 'warp_curve2straight.nii.gz', '-x', 'nn']) ftmp_label = add_suffix(ftmp_label, '_straight') # Compute rigid transformation straight landmarks --> template landmarks sct.printv('\nEstimate transformation for step #0...', verbose) try: register_landmarks(ftmp_label, ftmp_template_label, paramreg.steps['0'].dof, fname_affine='straight2templateAffine.txt', verbose=verbose) except RuntimeError: raise('Input labels do not seem to be at the right place. Please check the position of the labels. ' 'See documentation for more details: https://www.slideshare.net/neuropoly/sct-course-20190121/42') # Concatenate transformations: curve --> straight --> affine sct.printv('\nConcatenate transformations: curve --> straight --> affine...', verbose) sct.run(['sct_concat_transfo', '-w', 'warp_curve2straight.nii.gz,straight2templateAffine.txt', '-d', 'template.nii', '-o', 'warp_curve2straightAffine.nii.gz']) # Apply transformation sct.printv('\nApply transformation...', verbose) sct.run(['sct_apply_transfo', '-i', ftmp_data, '-o', add_suffix(ftmp_data, '_straightAffine'), '-d', ftmp_template, '-w', 'warp_curve2straightAffine.nii.gz']) ftmp_data = add_suffix(ftmp_data, '_straightAffine') sct.run(['sct_apply_transfo', '-i', ftmp_seg, '-o', add_suffix(ftmp_seg, '_straightAffine'), '-d', ftmp_template, '-w', 'warp_curve2straightAffine.nii.gz', '-x', 'linear']) ftmp_seg = add_suffix(ftmp_seg, '_straightAffine') """ # Benjamin: Issue from Allan Martin, about the z=0 slice that is screwed up, caused by the affine transform. # Solution found: remove slices below and above landmarks to avoid rotation effects points_straight = [] for coord in landmark_template: points_straight.append(coord.z) min_point, max_point = int(np.round(np.min(points_straight))), int(np.round(np.max(points_straight))) ftmp_seg_, ftmp_seg = ftmp_seg, add_suffix(ftmp_seg, '_black') msct_image.spatial_crop(Image(ftmp_seg_), dict(((2, (min_point,max_point)),))).save(ftmp_seg) """ # open segmentation im = Image(ftmp_seg) im_new = msct_image.empty_like(im) # binarize im_new.data = im.data > 0.5 # find min-max of anat2template (for subsequent cropping) zmin_template, zmax_template = msct_image.find_zmin_zmax(im_new, threshold=0.5) # save binarized segmentation im_new.save(add_suffix(ftmp_seg, '_bin')) # unused? # crop template in z-direction (for faster processing) # TODO: refactor to use python module instead of doing i/o sct.printv('\nCrop data in template space (for faster processing)...', verbose) ftmp_template_, ftmp_template = ftmp_template, add_suffix(ftmp_template, '_crop') msct_image.spatial_crop(Image(ftmp_template_), dict(((2, (zmin_template,zmax_template)),))).save(ftmp_template) ftmp_template_seg_, ftmp_template_seg = ftmp_template_seg, add_suffix(ftmp_template_seg, '_crop') msct_image.spatial_crop(Image(ftmp_template_seg_), dict(((2, (zmin_template,zmax_template)),))).save(ftmp_template_seg) ftmp_data_, ftmp_data = ftmp_data, add_suffix(ftmp_data, '_crop') msct_image.spatial_crop(Image(ftmp_data_), dict(((2, (zmin_template,zmax_template)),))).save(ftmp_data) ftmp_seg_, ftmp_seg = ftmp_seg, add_suffix(ftmp_seg, '_crop') msct_image.spatial_crop(Image(ftmp_seg_), dict(((2, (zmin_template,zmax_template)),))).save(ftmp_seg) # sub-sample in z-direction # TODO: refactor to use python module instead of doing i/o sct.printv('\nSub-sample in z-direction (for faster processing)...', verbose) sct.run(['sct_resample', '-i', ftmp_template, '-o', add_suffix(ftmp_template, '_sub'), '-f', '1x1x' + zsubsample], verbose) ftmp_template = add_suffix(ftmp_template, '_sub') sct.run(['sct_resample', '-i', ftmp_template_seg, '-o', add_suffix(ftmp_template_seg, '_sub'), '-f', '1x1x' + zsubsample], verbose) ftmp_template_seg = add_suffix(ftmp_template_seg, '_sub') sct.run(['sct_resample', '-i', ftmp_data, '-o', add_suffix(ftmp_data, '_sub'), '-f', '1x1x' + zsubsample], verbose) ftmp_data = add_suffix(ftmp_data, '_sub') sct.run(['sct_resample', '-i', ftmp_seg, '-o', add_suffix(ftmp_seg, '_sub'), '-f', '1x1x' + zsubsample], verbose) ftmp_seg = add_suffix(ftmp_seg, '_sub') # Registration straight spinal cord to template sct.printv('\nRegister straight spinal cord to template...', verbose) # loop across registration steps warp_forward = [] warp_inverse = [] for i_step in range(1, len(paramreg.steps)): sct.printv('\nEstimate transformation for step #' + str(i_step) + '...', verbose) # identify which is the src and dest if paramreg.steps[str(i_step)].type == 'im': src = ftmp_data dest = ftmp_template interp_step = 'linear' elif paramreg.steps[str(i_step)].type == 'seg': src = ftmp_seg dest = ftmp_template_seg interp_step = 'nn' else: sct.printv('ERROR: Wrong image type.', 1, 'error') if paramreg.steps[str(i_step)].algo == 'centermassrot' and paramreg.steps[str(i_step)].rot_method == 'hog': src_seg = ftmp_seg dest_seg = ftmp_template_seg # if step>1, apply warp_forward_concat to the src image to be used if i_step > 1: # apply transformation from previous step, to use as new src for registration sct.run(['sct_apply_transfo', '-i', src, '-d', dest, '-w', ','.join(warp_forward), '-o', add_suffix(src, '_regStep' + str(i_step - 1)), '-x', interp_step], verbose) src = add_suffix(src, '_regStep' + str(i_step - 1)) if paramreg.steps[str(i_step)].algo == 'centermassrot' and paramreg.steps[str(i_step)].rot_method == 'hog': # also apply transformation to the seg sct.run(['sct_apply_transfo', '-i', src_seg, '-d', dest_seg, '-w', ','.join(warp_forward), '-o', add_suffix(src, '_regStep' + str(i_step - 1)), '-x', interp_step], verbose) src_seg = add_suffix(src_seg, '_regStep' + str(i_step - 1)) # register src --> dest # TODO: display param for debugging if paramreg.steps[str(i_step)].algo == 'centermassrot' and paramreg.steps[str(i_step)].rot_method == 'hog': # im_seg case warp_forward_out, warp_inverse_out = register([src, src_seg], [dest, dest_seg], paramreg, param, str(i_step)) else: warp_forward_out, warp_inverse_out = register(src, dest, paramreg, param, str(i_step)) warp_forward.append(warp_forward_out) warp_inverse.append(warp_inverse_out) # Concatenate transformations: sct.printv('\nConcatenate transformations: anat --> template...', verbose) sct.run(['sct_concat_transfo', '-w', 'warp_curve2straightAffine.nii.gz,' + ','.join(warp_forward), '-d', 'template.nii', '-o', 'warp_anat2template.nii.gz'], verbose) # sct.run('sct_concat_transfo -w warp_curve2straight.nii.gz,straight2templateAffine.txt,'+','.join(warp_forward)+' -d template.nii -o warp_anat2template.nii.gz', verbose) sct.printv('\nConcatenate transformations: template --> anat...', verbose) warp_inverse.reverse() if vertebral_alignment: sct.run(['sct_concat_transfo', '-w', ','.join(warp_inverse) + ',warp_straight2curve.nii.gz', '-d', 'data.nii', '-o', 'warp_template2anat.nii.gz'], verbose) else: sct.run(['sct_concat_transfo', '-w', ','.join(warp_inverse) + ',-straight2templateAffine.txt,warp_straight2curve.nii.gz', '-d', 'data.nii', '-o', 'warp_template2anat.nii.gz'], verbose) # register template->subject elif ref == 'subject': # Change orientation of input images to RPI sct.printv('\nChange orientation of input images to RPI...', verbose) ftmp_data = Image(ftmp_data).change_orientation("RPI", generate_path=True).save().absolutepath ftmp_seg = Image(ftmp_seg).change_orientation("RPI", generate_path=True).save().absolutepath ftmp_label = Image(ftmp_label).change_orientation("RPI", generate_path=True).save().absolutepath # Remove unused label on template. Keep only label present in the input label image sct.printv('\nRemove unused label on template. Keep only label present in the input label image...', verbose) sct.run(['sct_label_utils', '-i', ftmp_template_label, '-o', ftmp_template_label, '-remove-reference', ftmp_label]) # Add one label because at least 3 orthogonal labels are required to estimate an affine transformation. This # new label is added at the level of the upper most label (lowest value), at 1cm to the right. for i_file in [ftmp_label, ftmp_template_label]: im_label = Image(i_file) coord_label = im_label.getCoordinatesAveragedByValue() # N.B. landmarks are sorted by value # Create new label from copy import deepcopy new_label = deepcopy(coord_label[0]) # move it 5mm to the left (orientation is RAS) nx, ny, nz, nt, px, py, pz, pt = im_label.dim new_label.x = np.round(coord_label[0].x + 5.0 / px) # assign value 99 new_label.value = 99 # Add to existing image im_label.data[int(new_label.x), int(new_label.y), int(new_label.z)] = new_label.value # Overwrite label file # im_label.absolutepath = 'label_rpi_modif.nii.gz' im_label.save() # Bring template to subject space using landmark-based transformation sct.printv('\nEstimate transformation for step #0...', verbose) warp_forward = ['template2subjectAffine.txt'] warp_inverse = ['-template2subjectAffine.txt'] try: register_landmarks(ftmp_template_label, ftmp_label, paramreg.steps['0'].dof, fname_affine=warp_forward[0], verbose=verbose, path_qc="./") except Exception: sct.printv('ERROR: input labels do not seem to be at the right place. Please check the position of the labels. See documentation for more details: https://www.slideshare.net/neuropoly/sct-course-20190121/42', verbose=verbose, type='error') # loop across registration steps for i_step in range(1, len(paramreg.steps)): sct.printv('\nEstimate transformation for step #' + str(i_step) + '...', verbose) # identify which is the src and dest if paramreg.steps[str(i_step)].type == 'im': src = ftmp_template dest = ftmp_data interp_step = 'linear' elif paramreg.steps[str(i_step)].type == 'seg': src = ftmp_template_seg dest = ftmp_seg interp_step = 'nn' else: sct.printv('ERROR: Wrong image type.', 1, 'error') # apply transformation from previous step, to use as new src for registration sct.run(['sct_apply_transfo', '-i', src, '-d', dest, '-w', ','.join(warp_forward), '-o', add_suffix(src, '_regStep' + str(i_step - 1)), '-x', interp_step], verbose) src = add_suffix(src, '_regStep' + str(i_step - 1)) # register src --> dest # TODO: display param for debugging warp_forward_out, warp_inverse_out = register(src, dest, paramreg, param, str(i_step)) warp_forward.append(warp_forward_out) warp_inverse.insert(0, warp_inverse_out) # Concatenate transformations: sct.printv('\nConcatenate transformations: template --> subject...', verbose) sct.run(['sct_concat_transfo', '-w', ','.join(warp_forward), '-d', 'data.nii', '-o', 'warp_template2anat.nii.gz'], verbose) sct.printv('\nConcatenate transformations: subject --> template...', verbose) sct.run(['sct_concat_transfo', '-w', ','.join(warp_inverse), '-d', 'template.nii', '-o', 'warp_anat2template.nii.gz'], verbose) # Apply warping fields to anat and template sct.run(['sct_apply_transfo', '-i', 'template.nii', '-o', 'template2anat.nii.gz', '-d', 'data.nii', '-w', 'warp_template2anat.nii.gz', '-crop', '1'], verbose) sct.run(['sct_apply_transfo', '-i', 'data.nii', '-o', 'anat2template.nii.gz', '-d', 'template.nii', '-w', 'warp_anat2template.nii.gz', '-crop', '1'], verbose) # come back os.chdir(curdir) # Generate output files sct.printv('\nGenerate output files...', verbose) fname_template2anat = os.path.join(path_output, 'template2anat' + ext_data) fname_anat2template = os.path.join(path_output, 'anat2template' + ext_data) sct.generate_output_file(os.path.join(path_tmp, "warp_template2anat.nii.gz"), os.path.join(path_output, "warp_template2anat.nii.gz"), verbose) sct.generate_output_file(os.path.join(path_tmp, "warp_anat2template.nii.gz"), os.path.join(path_output, "warp_anat2template.nii.gz"), verbose) sct.generate_output_file(os.path.join(path_tmp, "template2anat.nii.gz"), fname_template2anat, verbose) sct.generate_output_file(os.path.join(path_tmp, "anat2template.nii.gz"), fname_anat2template, verbose) if ref == 'template': # copy straightening files in case subsequent SCT functions need them sct.generate_output_file(os.path.join(path_tmp, "warp_curve2straight.nii.gz"), os.path.join(path_output, "warp_curve2straight.nii.gz"), verbose) sct.generate_output_file(os.path.join(path_tmp, "warp_straight2curve.nii.gz"), os.path.join(path_output, "warp_straight2curve.nii.gz"), verbose) sct.generate_output_file(os.path.join(path_tmp, "straight_ref.nii.gz"), os.path.join(path_output, "straight_ref.nii.gz"), verbose) # Delete temporary files if param.remove_temp_files: sct.printv('\nDelete temporary files...', verbose) sct.rmtree(path_tmp, verbose=verbose) # display elapsed time elapsed_time = time.time() - start_time sct.printv('\nFinished! Elapsed time: ' + str(int(np.round(elapsed_time))) + 's', verbose) qc_dataset = arguments.get("-qc-dataset", None) qc_subject = arguments.get("-qc-subject", None) if param.path_qc is not None: generate_qc(fname_data, fname_in2=fname_template2anat, fname_seg=fname_seg, args=args, path_qc=os.path.abspath(param.path_qc), dataset=qc_dataset, subject=qc_subject, process='sct_register_to_template') sct.display_viewer_syntax([fname_data, fname_template2anat], verbose=verbose) sct.display_viewer_syntax([fname_template, fname_anat2template], verbose=verbose)
def main(args=None): # initializations param = Param() # check user arguments if args is None: args = sys.argv[1:] # get parser info parser = get_parser() arguments = parser.parse_args(args) param.download = int(arguments.download) param.path_data = arguments.path functions_to_test = arguments.function param.remove_tmp_file = int(arguments.remove_temps) jobs = arguments.jobs param.verbose = arguments.verbose sct.init_sct(log_level=param.verbose, update=True) # Update log level start_time = time.time() # get absolute path and add slash at the end param.path_data = os.path.abspath(param.path_data) # check existence of testing data folder if not os.path.isdir(param.path_data) or param.download: downloaddata(param) # display path to data sct.printv('\nPath to testing data: ' + param.path_data, param.verbose) # create temp folder that will have all results and go in it path_tmp = os.path.abspath(arguments.execution_folder or sct.tmp_create(verbose=param.verbose)) curdir = os.getcwd() os.chdir(path_tmp) functions_parallel = list() functions_serial = list() if functions_to_test: for f in functions_to_test: if f in get_functions_parallelizable(): functions_parallel.append(f) elif f in get_functions_nonparallelizable(): functions_serial.append(f) else: sct.printv('Command-line usage error: Function "%s" is not part of the list of testing functions' % f, type='error') jobs = min(jobs, len(functions_parallel)) else: functions_parallel = get_functions_parallelizable() functions_serial = get_functions_nonparallelizable() if arguments.continue_from: first_func = arguments.continue_from if first_func in functions_parallel: functions_serial = [] functions_parallel = functions_parallel[functions_parallel.index(first_func):] elif first_func in functions_serial: functions_serial = functions_serial[functions_serial.index(first_func):] if arguments.check_filesystem and jobs != 1: print("Check filesystem used -> jobs forced to 1") jobs = 1 print("Will run through the following tests:") if functions_serial: print("- sequentially: {}".format(" ".join(functions_serial))) if functions_parallel: print("- in parallel with {} jobs: {}".format(jobs, " ".join(functions_parallel))) list_status = [] for name, functions in ( ("serial", functions_serial), ("parallel", functions_parallel), ): if not functions: continue if any([s for (f, s) in list_status]) and arguments.abort_on_failure: break try: if functions == functions_parallel and jobs != 1: pool = multiprocessing.Pool(processes=jobs) results = list() # loop across functions and run tests for f in functions: func_param = copy.deepcopy(param) func_param.path_output = f res = pool.apply_async(process_function_multiproc, (f, func_param,)) results.append(res) else: pool = None for idx_function, f in enumerate(functions): print_line('Checking ' + f) if functions == functions_serial or jobs == 1: if arguments.check_filesystem: if os.path.exists(os.path.join(path_tmp, f)): shutil.rmtree(os.path.join(path_tmp, f)) sig_0 = fs_signature(path_tmp) func_param = copy.deepcopy(param) func_param.path_output = f res = process_function(f, func_param) if arguments.check_filesystem: sig_1 = fs_signature(path_tmp) fs_ok(sig_0, sig_1, exclude=(f,)) else: res = results[idx_function].get() list_output, list_status_function = res # manage status if any(list_status_function): if 1 in list_status_function: print_fail() status = (f, 1) else: print_warning() status = (f, 99) for output in list_output: for line in output.splitlines(): print(" %s" % line) else: print_ok() if param.verbose: for output in list_output: for line in output.splitlines(): print(" %s" % line) status = (f, 0) # append status function to global list of status list_status.append(status) if any([s for (f, s) in list_status]) and arguments.abort_on_failure: break except KeyboardInterrupt: raise finally: if pool: pool.terminate() pool.join() print('status: ' + str([s for (f, s) in list_status])) if any([s for (f, s) in list_status]): print("Failures: {}".format(" ".join([f for (f, s) in list_status if s]))) # display elapsed time elapsed_time = time.time() - start_time sct.printv('Finished! Elapsed time: ' + str(int(np.round(elapsed_time))) + 's\n') # come back os.chdir(curdir) # remove temp files if param.remove_tmp_file and arguments.execution_folder is None: sct.printv('\nRemove temporary files...', 0) sct.rmtree(path_tmp) e = 0 if any([s for (f, s) in list_status]): e = 1 # print(e) sys.exit(e)
def create_mask(param): # parse argument for method method_type = param.process[0] # check method val if not method_type == 'center': method_val = param.process[1] # check existence of input files if method_type == 'centerline': sct.check_file_exist(method_val, param.verbose) # Extract path/file/extension path_data, file_data, ext_data = sct.extract_fname(param.fname_data) # Get output folder and file name if param.fname_out == '': param.fname_out = os.path.abspath(param.file_prefix + file_data + ext_data) path_tmp = sct.tmp_create(basename="create_mask", verbose=param.verbose) sct.printv('\nOrientation:', param.verbose) orientation_input = Image(param.fname_data).orientation sct.printv(' ' + orientation_input, param.verbose) # copy input data to tmp folder and re-orient to RPI Image(param.fname_data).change_orientation("RPI").save(os.path.join(path_tmp, "data_RPI.nii")) if method_type == 'centerline': Image(method_val).change_orientation("RPI").save(os.path.join(path_tmp, "centerline_RPI.nii")) if method_type == 'point': Image(method_val).change_orientation("RPI").save(os.path.join(path_tmp, "point_RPI.nii")) # go to tmp folder curdir = os.getcwd() os.chdir(path_tmp) # Get dimensions of data im_data = Image('data_RPI.nii') nx, ny, nz, nt, px, py, pz, pt = im_data.dim sct.printv('\nDimensions:', param.verbose) sct.printv(im_data.dim, param.verbose) # in case user input 4d data if nt != 1: sct.printv('WARNING in ' + os.path.basename(__file__) + ': Input image is 4d but output mask will be 3D from first time slice.', param.verbose, 'warning') # extract first volume to have 3d reference nii = msct_image.empty_like(Image('data_RPI.nii')) data3d = nii.data[:, :, :, 0] nii.data = data3d nii.save('data_RPI.nii') if method_type == 'coord': # parse to get coordinate coord = [x for x in map(int, method_val.split('x'))] if method_type == 'point': # get file name # extract coordinate of point sct.printv('\nExtract coordinate of point...', param.verbose) # TODO: change this way to remove dependence to sct.run. ProcessLabels.display_voxel returns list of coordinates status, output = sct.run(['sct_label_utils', '-i', 'point_RPI.nii', '-display'], verbose=param.verbose) # parse to get coordinate # TODO fixup... this is quite magic coord = output[output.find('Position=') + 10:-17].split(',') if method_type == 'center': # set coordinate at center of FOV coord = np.round(float(nx) / 2), np.round(float(ny) / 2) if method_type == 'centerline': # get name of centerline from user argument fname_centerline = 'centerline_RPI.nii' else: # generate volume with line along Z at coordinates 'coord' sct.printv('\nCreate line...', param.verbose) fname_centerline = create_line(param, 'data_RPI.nii', coord, nz) # create mask sct.printv('\nCreate mask...', param.verbose) centerline = nibabel.load(fname_centerline) # open centerline hdr = centerline.get_header() # get header hdr.set_data_dtype('uint8') # set imagetype to uint8 spacing = hdr.structarr['pixdim'] data_centerline = centerline.get_data() # get centerline # if data is 2D, reshape with empty third dimension if len(data_centerline.shape) == 2: data_centerline_shape = list(data_centerline.shape) data_centerline_shape.append(1) data_centerline = data_centerline.reshape(data_centerline_shape) z_centerline_not_null = [iz for iz in range(0, nz, 1) if data_centerline[:, :, iz].any()] # get center of mass of the centerline cx = [0] * nz cy = [0] * nz for iz in range(0, nz, 1): if iz in z_centerline_not_null: cx[iz], cy[iz] = ndimage.measurements.center_of_mass(np.array(data_centerline[:, :, iz])) # create 2d masks file_mask = 'data_mask' for iz in range(nz): if iz not in z_centerline_not_null: # write an empty nifty volume img = nibabel.Nifti1Image(data_centerline[:, :, iz], None, hdr) nibabel.save(img, (file_mask + str(iz) + '.nii')) else: center = np.array([cx[iz], cy[iz]]) mask2d = create_mask2d(param, center, param.shape, param.size, im_data=im_data) # Write NIFTI volumes img = nibabel.Nifti1Image(mask2d, None, hdr) nibabel.save(img, (file_mask + str(iz) + '.nii')) fname_list = [file_mask + str(iz) + '.nii' for iz in range(nz)] im_out = concat_data(fname_list, dim=2).save('mask_RPI.nii.gz') im_out.change_orientation(orientation_input) im_out.header = Image(param.fname_data).header im_out.save(param.fname_out) # come back os.chdir(curdir) # Remove temporary files if param.remove_temp_files == 1: sct.printv('\nRemove temporary files...', param.verbose) sct.rmtree(path_tmp) sct.display_viewer_syntax([param.fname_data, param.fname_out], colormaps=['gray', 'red'], opacities=['', '0.5'])
def check_and_correct_segmentation(fname_segmentation, fname_centerline, folder_output='', threshold_distance=5.0, remove_temp_files=1, verbose=0): """ This function takes the outputs of isct_propseg (centerline and segmentation) and check if the centerline of the segmentation is coherent with the centerline provided by the isct_propseg, especially on the edges (related to issue #1074). Args: fname_segmentation: filename of binary segmentation fname_centerline: filename of binary centerline threshold_distance: threshold, in mm, beyond which centerlines are not coherent verbose: Returns: None """ sct.printv('\nCheck consistency of segmentation...', verbose) # creating a temporary folder in which all temporary files will be placed and deleted afterwards path_tmp = sct.tmp_create(basename="propseg", verbose=verbose) from sct_convert import convert convert(fname_segmentation, os.path.join(path_tmp, "tmp.segmentation.nii.gz"), verbose=0) convert(fname_centerline, os.path.join(path_tmp, "tmp.centerline.nii.gz"), verbose=0) fname_seg_absolute = os.path.abspath(fname_segmentation) # go to tmp folder curdir = os.getcwd() os.chdir(path_tmp) # convert segmentation image to RPI im_input = Image('tmp.segmentation.nii.gz') image_input_orientation = im_input.orientation sct_image.main("-i tmp.segmentation.nii.gz -setorient RPI -o tmp.segmentation_RPI.nii.gz -v 0".split()) sct_image.main("-i tmp.centerline.nii.gz -setorient RPI -o tmp.centerline_RPI.nii.gz -v 0".split()) # go through segmentation image, and compare with centerline from propseg im_seg = Image('tmp.segmentation_RPI.nii.gz') im_centerline = Image('tmp.centerline_RPI.nii.gz') # Get size of data sct.printv('\nGet data dimensions...', verbose) nx, ny, nz, nt, px, py, pz, pt = im_seg.dim # extraction of centerline provided by isct_propseg and computation of center of mass for each slice # the centerline is defined as the center of the tubular mesh outputed by propseg. centerline, key_centerline = {}, [] for i in range(nz): slice = im_centerline.data[:, :, i] if np.any(slice): x_centerline, y_centerline = ndi.measurements.center_of_mass(slice) centerline[str(i)] = [x_centerline, y_centerline] key_centerline.append(i) minz_centerline = np.min(key_centerline) maxz_centerline = np.max(key_centerline) mid_slice = int((maxz_centerline - minz_centerline) / 2) # for each slice of the segmentation, check if only one object is present. If not, remove the slice from segmentation. # If only one object (the spinal cord) is present in the slice, check if its center of mass is close to the centerline of isct_propseg. slices_to_remove = [False] * nz # flag that decides if the slice must be removed for i in range(minz_centerline, maxz_centerline + 1): # extraction of slice slice = im_seg.data[:, :, i] distance = -1 label_objects, nb_labels = ndi.label(slice) # count binary objects in the slice if nb_labels > 1: # if there is more that one object in the slice, the slice is removed from the segmentation slices_to_remove[i] = True elif nb_labels == 1: # check if the centerline is coherent with the one from isct_propseg x_centerline, y_centerline = ndi.measurements.center_of_mass(slice) slice_nearest_coord = min(key_centerline, key=lambda x: abs(x - i)) coord_nearest_coord = centerline[str(slice_nearest_coord)] distance = np.sqrt(((x_centerline - coord_nearest_coord[0]) * px) ** 2 + ((y_centerline - coord_nearest_coord[1]) * py) ** 2 + ((i - slice_nearest_coord) * pz) ** 2) if distance >= threshold_distance: # threshold must be adjusted, default is 5 mm slices_to_remove[i] = True # Check list of removal and keep one continuous centerline (improve this comment) # Method: # starting from mid-centerline (in both directions), the first True encountered is applied to all following slices slice_to_change = False for i in range(mid_slice, nz): if slice_to_change: slices_to_remove[i] = True elif slices_to_remove[i]: slice_to_change = True slice_to_change = False for i in range(mid_slice, 0, -1): if slice_to_change: slices_to_remove[i] = True elif slices_to_remove[i]: slice_to_change = True for i in range(0, nz): # remove the slice if slices_to_remove[i]: im_seg.data[:, :, i] *= 0 # saving the image im_seg.save('tmp.segmentation_RPI_c.nii.gz') # replacing old segmentation with the corrected one sct_image.main('-i tmp.segmentation_RPI_c.nii.gz -setorient {} -o {} -v 0'. format(image_input_orientation, fname_seg_absolute).split()) os.chdir(curdir) # display information about how much of the segmentation has been corrected # remove temporary files if remove_temp_files: # sct.printv("\nRemove temporary files...", verbose) sct.rmtree(path_tmp)
def main(args=None): if args is None: args = sys.argv[1:] # create param objects param_seg = ParamSeg() param_data = ParamData() param_model = ParamModel() param = Param() # get parser parser = get_parser() arguments = parser.parse(args) # set param arguments ad inputted by user param_seg.fname_im = arguments["-i"] param_seg.fname_im_original = arguments["-i"] param_seg.fname_seg = arguments["-s"] if '-vertfile' in arguments: if extract_fname(arguments['-vertfile'])[1].lower() == "none": param_seg.fname_level = None elif os.path.isfile(arguments['-vertfile']): param_seg.fname_level = arguments['-vertfile'] else: param_seg.fname_level = None printv('WARNING: -vertfile input file: "' + arguments['-vertfile'] + '" does not exist.\nSegmenting GM without using vertebral information', 1, 'warning') if '-denoising' in arguments: param_data.denoising = bool(int(arguments['-denoising'])) if '-normalization' in arguments: param_data.normalization = bool(int(arguments['-normalization'])) if '-p' in arguments: param_data.register_param = arguments['-p'] if '-w-levels' in arguments: param_seg.weight_level = arguments['-w-levels'] if '-w-coordi' in arguments: param_seg.weight_coord = arguments['-w-coordi'] if '-thr-sim' in arguments: param_seg.thr_similarity = arguments['-thr-sim'] if '-model' in arguments: param_model.path_model_to_load = os.path.abspath(arguments['-model']) if '-res-type' in arguments: param_seg.type_seg = arguments['-res-type'] if '-ref' in arguments: param_seg.fname_manual_gmseg = arguments['-ref'] if '-ofolder' in arguments: param_seg.path_results = os.path.abspath(arguments['-ofolder']) param_seg.qc = arguments.get("-qc", None) if '-r' in arguments: param.rm_tmp = bool(int(arguments['-r'])) param.verbose = int(arguments.get('-v')) sct.init_sct(log_level=param.verbose, update=True) # Update log level start_time = time.time() seg_gm = SegmentGM(param_seg=param_seg, param_data=param_data, param_model=param_model, param=param) seg_gm.segment() elapsed_time = time.time() - start_time printv('\nFinished! Elapsed time: ' + str(int(np.round(elapsed_time))) + 's', param.verbose) # save quality control and sct.printv(info) if param_seg.type_seg == 'bin': wm_col = 'red' gm_col = 'blue' b = '0,1' else: wm_col = 'blue-lightblue' gm_col = 'red-yellow' b = '0.4,1' if param_seg.qc is not None: generate_qc(param_seg.fname_im_original, seg_gm.fname_res_gmseg, seg_gm.fname_res_wmseg, param_seg, args, os.path.abspath(param_seg.qc)) if param.rm_tmp: # remove tmp_dir sct.rmtree(seg_gm.tmp_dir) sct.display_viewer_syntax([param_seg.fname_im_original, seg_gm.fname_res_gmseg, seg_gm.fname_res_wmseg], colormaps=['gray', gm_col, wm_col], minmax=['', b, b], opacities=['1', '0.7', '0.7'], verbose=param.verbose)
if '-bmax' in arguments and arguments['-bmax'] == '1': cmd += ['-bmax'] if '-bzmax' in arguments and arguments['-bzmax'] == '1': cmd += ['-bzmax'] if '-o' in arguments: path_output, fname_output, ext = sct.extract_fname(arguments['-o']) cmd += ['-o', fname_output + ext] if '-r' in arguments: rm_tmp = bool(int(arguments['-r'])) # # Computation of Dice coefficient using Python implementation. # # commented for now as it does not cover all the feature of isct_dice_coefficient # #from spinalcordtoolbox.image import Image, compute_dice # #dice = compute_dice(Image(fname_input1), Image(fname_input2), mode='3d', zboundaries=False) # #sct.printv('Dice (python-based) = ' + str(dice), verbose) status, output = sct.run(cmd, verbose, is_sct_binary=True) os.chdir(curdir) # go back to original directory # copy output file into original directory if '-o' in arguments: sct.copy(os.path.join(tmp_dir, fname_output+ext), os.path.join(path_output, fname_output+ext)) # remove tmp_dir if rm_tmp: sct.rmtree(tmp_dir) sct.printv(output, verbose)
def main(args=None): # initialization start_time = time.time() path_out = '.' param = Param() # check user arguments if not args: args = sys.argv[1:] # Get parser info parser = get_parser() arguments = parser.parse(sys.argv[1:]) param.fname_data = arguments['-i'] param.fname_bvecs = arguments['-bvec'] if '-bval' in arguments: param.fname_bvals = arguments['-bval'] if '-bvalmin' in arguments: param.bval_min = arguments['-bvalmin'] if '-g' in arguments: param.group_size = arguments['-g'] if '-m' in arguments: param.fname_mask = arguments['-m'] if '-param' in arguments: param.update(arguments['-param']) if '-thr' in arguments: param.otsu = arguments['-thr'] if '-x' in arguments: param.interp = arguments['-x'] if '-ofolder' in arguments: path_out = arguments['-ofolder'] if '-r' in arguments: param.remove_temp_files = int(arguments['-r']) param.verbose = int(arguments.get('-v')) sct.init_sct(log_level=param.verbose, update=True) # Update log level # Get full path param.fname_data = os.path.abspath(param.fname_data) param.fname_bvecs = os.path.abspath(param.fname_bvecs) if param.fname_bvals != '': param.fname_bvals = os.path.abspath(param.fname_bvals) if param.fname_mask != '': param.fname_mask = os.path.abspath(param.fname_mask) # Extract path, file and extension path_data, file_data, ext_data = sct.extract_fname(param.fname_data) path_mask, file_mask, ext_mask = sct.extract_fname(param.fname_mask) path_tmp = sct.tmp_create(basename="dmri_moco", verbose=param.verbose) # names of files in temporary folder mask_name = 'mask' bvecs_fname = 'bvecs.txt' # Copying input data to tmp folder sct.printv('\nCopying input data to tmp folder and convert to nii...', param.verbose) convert(param.fname_data, os.path.join(path_tmp, "dmri.nii")) sct.copy(param.fname_bvecs, os.path.join(path_tmp, bvecs_fname), verbose=param.verbose) if param.fname_mask != '': sct.copy(param.fname_mask, os.path.join(path_tmp, mask_name + ext_mask), verbose=param.verbose) # go to tmp folder curdir = os.getcwd() os.chdir(path_tmp) # update field in param (because used later). # TODO: make this cleaner... if param.fname_mask != '': param.fname_mask = mask_name + ext_mask # run moco fname_data_moco_tmp = dmri_moco(param) # generate b0_moco_mean and dwi_moco_mean args = ['-i', fname_data_moco_tmp, '-bvec', 'bvecs.txt', '-a', '1', '-v', '0'] if not param.fname_bvals == '': # if bvals file is provided args += ['-bval', param.fname_bvals] fname_b0, fname_b0_mean, fname_dwi, fname_dwi_mean = sct_dmri_separate_b0_and_dwi.main(args=args) # come back os.chdir(curdir) # Generate output files fname_dmri_moco = os.path.join(path_out, file_data + param.suffix + ext_data) fname_dmri_moco_b0_mean = sct.add_suffix(fname_dmri_moco, '_b0_mean') fname_dmri_moco_dwi_mean = sct.add_suffix(fname_dmri_moco, '_dwi_mean') sct.create_folder(path_out) sct.printv('\nGenerate output files...', param.verbose) sct.generate_output_file(fname_data_moco_tmp, fname_dmri_moco, param.verbose) sct.generate_output_file(fname_b0_mean, fname_dmri_moco_b0_mean, param.verbose) sct.generate_output_file(fname_dwi_mean, fname_dmri_moco_dwi_mean, param.verbose) # Delete temporary files if param.remove_temp_files == 1: sct.printv('\nDelete temporary files...', param.verbose) sct.rmtree(path_tmp, verbose=param.verbose) # display elapsed time elapsed_time = time.time() - start_time sct.printv('\nFinished! Elapsed time: ' + str(int(np.round(elapsed_time))) + 's', param.verbose) sct.display_viewer_syntax([fname_dmri_moco, file_data], mode='ortho,ortho')
def main(args=None): # initializations param = Param() # check user arguments if not args: args = sys.argv[1:] # Get parser info parser = get_parser() arguments = parser.parse(args) fname_data = arguments['-i'] fname_seg = arguments['-s'] if '-l' in arguments: fname_landmarks = arguments['-l'] label_type = 'body' elif '-ldisc' in arguments: fname_landmarks = arguments['-ldisc'] label_type = 'disc' else: sct.printv('ERROR: Labels should be provided.', 1, 'error') if '-ofolder' in arguments: path_output = arguments['-ofolder'] else: path_output = '' param.path_qc = arguments.get("-qc", None) path_template = arguments['-t'] contrast_template = arguments['-c'] ref = arguments['-ref'] param.remove_temp_files = int(arguments.get('-r')) verbose = int(arguments.get('-v')) sct.init_sct(log_level=verbose, update=True) # Update log level param.verbose = verbose # TODO: not clean, unify verbose or param.verbose in code, but not both param_centerline = ParamCenterline( algo_fitting=arguments['-centerline-algo'], smooth=arguments['-centerline-smooth']) # registration parameters if '-param' in arguments: # reset parameters but keep step=0 (might be overwritten if user specified step=0) paramreg = ParamregMultiStep([step0]) if ref == 'subject': paramreg.steps['0'].dof = 'Tx_Ty_Tz_Rx_Ry_Rz_Sz' # add user parameters for paramStep in arguments['-param']: paramreg.addStep(paramStep) else: paramreg = ParamregMultiStep([step0, step1, step2]) # if ref=subject, initialize registration using different affine parameters if ref == 'subject': paramreg.steps['0'].dof = 'Tx_Ty_Tz_Rx_Ry_Rz_Sz' # initialize other parameters zsubsample = param.zsubsample # retrieve template file names file_template_vertebral_labeling = get_file_label(os.path.join(path_template, 'template'), 'vertebral labeling') file_template = get_file_label(os.path.join(path_template, 'template'), contrast_template.upper() + '-weighted template') file_template_seg = get_file_label(os.path.join(path_template, 'template'), 'spinal cord') # start timer start_time = time.time() # get fname of the template + template objects fname_template = os.path.join(path_template, 'template', file_template) fname_template_vertebral_labeling = os.path.join(path_template, 'template', file_template_vertebral_labeling) fname_template_seg = os.path.join(path_template, 'template', file_template_seg) fname_template_disc_labeling = os.path.join(path_template, 'template', 'PAM50_label_disc.nii.gz') # check file existence # TODO: no need to do that! sct.printv('\nCheck template files...') sct.check_file_exist(fname_template, verbose) sct.check_file_exist(fname_template_vertebral_labeling, verbose) sct.check_file_exist(fname_template_seg, verbose) path_data, file_data, ext_data = sct.extract_fname(fname_data) # sct.printv(arguments) sct.printv('\nCheck parameters:', verbose) sct.printv(' Data: ' + fname_data, verbose) sct.printv(' Landmarks: ' + fname_landmarks, verbose) sct.printv(' Segmentation: ' + fname_seg, verbose) sct.printv(' Path template: ' + path_template, verbose) sct.printv(' Remove temp files: ' + str(param.remove_temp_files), verbose) # check input labels labels = check_labels(fname_landmarks, label_type=label_type) vertebral_alignment = False if len(labels) > 2 and label_type == 'disc': vertebral_alignment = True path_tmp = sct.tmp_create(basename="register_to_template", verbose=verbose) # set temporary file names ftmp_data = 'data.nii' ftmp_seg = 'seg.nii.gz' ftmp_label = 'label.nii.gz' ftmp_template = 'template.nii' ftmp_template_seg = 'template_seg.nii.gz' ftmp_template_label = 'template_label.nii.gz' # copy files to temporary folder sct.printv('\nCopying input data to tmp folder and convert to nii...', verbose) Image(fname_data).save(os.path.join(path_tmp, ftmp_data)) Image(fname_seg).save(os.path.join(path_tmp, ftmp_seg)) Image(fname_landmarks).save(os.path.join(path_tmp, ftmp_label)) Image(fname_template).save(os.path.join(path_tmp, ftmp_template)) Image(fname_template_seg).save(os.path.join(path_tmp, ftmp_template_seg)) Image(fname_template_vertebral_labeling).save(os.path.join(path_tmp, ftmp_template_label)) if label_type == 'disc': Image(fname_template_disc_labeling).save(os.path.join(path_tmp, ftmp_template_label)) # go to tmp folder curdir = os.getcwd() os.chdir(path_tmp) # Generate labels from template vertebral labeling if label_type == 'body': sct.printv('\nGenerate labels from template vertebral labeling', verbose) ftmp_template_label_, ftmp_template_label = ftmp_template_label, sct.add_suffix(ftmp_template_label, "_body") sct_label_utils.main(args=['-i', ftmp_template_label_, '-vert-body', '0', '-o', ftmp_template_label]) # check if provided labels are available in the template sct.printv('\nCheck if provided labels are available in the template', verbose) image_label_template = Image(ftmp_template_label) labels_template = image_label_template.getNonZeroCoordinates(sorting='value') if labels[-1].value > labels_template[-1].value: sct.printv('ERROR: Wrong landmarks input. Labels must have correspondence in template space. \nLabel max ' 'provided: ' + str(labels[-1].value) + '\nLabel max from template: ' + str(labels_template[-1].value), verbose, 'error') # if only one label is present, force affine transformation to be Tx,Ty,Tz only (no scaling) if len(labels) == 1: paramreg.steps['0'].dof = 'Tx_Ty_Tz' sct.printv('WARNING: Only one label is present. Forcing initial transformation to: ' + paramreg.steps['0'].dof, 1, 'warning') # Project labels onto the spinal cord centerline because later, an affine transformation is estimated between the # template's labels (centered in the cord) and the subject's labels (assumed to be centered in the cord). # If labels are not centered, mis-registration errors are observed (see issue #1826) ftmp_label = project_labels_on_spinalcord(ftmp_label, ftmp_seg, param_centerline) # binarize segmentation (in case it has values below 0 caused by manual editing) sct.printv('\nBinarize segmentation', verbose) ftmp_seg_, ftmp_seg = ftmp_seg, sct.add_suffix(ftmp_seg, "_bin") sct_maths.main(['-i', ftmp_seg_, '-bin', '0.5', '-o', ftmp_seg]) # Switch between modes: subject->template or template->subject if ref == 'template': # resample data to 1mm isotropic sct.printv('\nResample data to 1mm isotropic...', verbose) resample_file(ftmp_data, add_suffix(ftmp_data, '_1mm'), '1.0x1.0x1.0', 'mm', 'linear', verbose) ftmp_data = add_suffix(ftmp_data, '_1mm') resample_file(ftmp_seg, add_suffix(ftmp_seg, '_1mm'), '1.0x1.0x1.0', 'mm', 'linear', verbose) ftmp_seg = add_suffix(ftmp_seg, '_1mm') # N.B. resampling of labels is more complicated, because they are single-point labels, therefore resampling # with nearest neighbour can make them disappear. resample_labels(ftmp_label, ftmp_data, add_suffix(ftmp_label, '_1mm')) ftmp_label = add_suffix(ftmp_label, '_1mm') # Change orientation of input images to RPI sct.printv('\nChange orientation of input images to RPI...', verbose) ftmp_data = Image(ftmp_data).change_orientation("RPI", generate_path=True).save().absolutepath ftmp_seg = Image(ftmp_seg).change_orientation("RPI", generate_path=True).save().absolutepath ftmp_label = Image(ftmp_label).change_orientation("RPI", generate_path=True).save().absolutepath ftmp_seg_, ftmp_seg = ftmp_seg, add_suffix(ftmp_seg, '_crop') if vertebral_alignment: # cropping the segmentation based on the label coverage to ensure good registration with vertebral alignment # See https://github.com/neuropoly/spinalcordtoolbox/pull/1669 for details image_labels = Image(ftmp_label) coordinates_labels = image_labels.getNonZeroCoordinates(sorting='z') nx, ny, nz, nt, px, py, pz, pt = image_labels.dim offset_crop = 10.0 * pz # cropping the image 10 mm above and below the highest and lowest label cropping_slices = [coordinates_labels[0].z - offset_crop, coordinates_labels[-1].z + offset_crop] # make sure that the cropping slices do not extend outside of the slice range (issue #1811) if cropping_slices[0] < 0: cropping_slices[0] = 0 if cropping_slices[1] > nz: cropping_slices[1] = nz msct_image.spatial_crop(Image(ftmp_seg_), dict(((2, np.int32(np.round(cropping_slices))),))).save(ftmp_seg) else: # if we do not align the vertebral levels, we crop the segmentation from top to bottom im_seg_rpi = Image(ftmp_seg_) bottom = 0 for data in msct_image.SlicerOneAxis(im_seg_rpi, "IS"): if (data != 0).any(): break bottom += 1 top = im_seg_rpi.data.shape[2] for data in msct_image.SlicerOneAxis(im_seg_rpi, "SI"): if (data != 0).any(): break top -= 1 msct_image.spatial_crop(im_seg_rpi, dict(((2, (bottom, top)),))).save(ftmp_seg) # straighten segmentation sct.printv('\nStraighten the spinal cord using centerline/segmentation...', verbose) # check if warp_curve2straight and warp_straight2curve already exist (i.e. no need to do it another time) fn_warp_curve2straight = os.path.join(curdir, "warp_curve2straight.nii.gz") fn_warp_straight2curve = os.path.join(curdir, "warp_straight2curve.nii.gz") fn_straight_ref = os.path.join(curdir, "straight_ref.nii.gz") cache_input_files=[ftmp_seg] if vertebral_alignment: cache_input_files += [ ftmp_template_seg, ftmp_label, ftmp_template_label, ] cache_sig = sct.cache_signature( input_files=cache_input_files, ) cachefile = os.path.join(curdir, "straightening.cache") if sct.cache_valid(cachefile, cache_sig) and os.path.isfile(fn_warp_curve2straight) and os.path.isfile(fn_warp_straight2curve) and os.path.isfile(fn_straight_ref): sct.printv('Reusing existing warping field which seems to be valid', verbose, 'warning') sct.copy(fn_warp_curve2straight, 'warp_curve2straight.nii.gz') sct.copy(fn_warp_straight2curve, 'warp_straight2curve.nii.gz') sct.copy(fn_straight_ref, 'straight_ref.nii.gz') # apply straightening sct_apply_transfo.main(args=[ '-i', ftmp_seg, '-w', 'warp_curve2straight.nii.gz', '-d', 'straight_ref.nii.gz', '-o', add_suffix(ftmp_seg, '_straight')]) else: from spinalcordtoolbox.straightening import SpinalCordStraightener sc_straight = SpinalCordStraightener(ftmp_seg, ftmp_seg) sc_straight.param_centerline = param_centerline sc_straight.output_filename = add_suffix(ftmp_seg, '_straight') sc_straight.path_output = './' sc_straight.qc = '0' sc_straight.remove_temp_files = param.remove_temp_files sc_straight.verbose = verbose if vertebral_alignment: sc_straight.centerline_reference_filename = ftmp_template_seg sc_straight.use_straight_reference = True sc_straight.discs_input_filename = ftmp_label sc_straight.discs_ref_filename = ftmp_template_label sc_straight.straighten() sct.cache_save(cachefile, cache_sig) # N.B. DO NOT UPDATE VARIABLE ftmp_seg BECAUSE TEMPORARY USED LATER # re-define warping field using non-cropped space (to avoid issue #367) sct_concat_transfo.main(args=[ '-w', 'warp_straight2curve.nii.gz', '-d', ftmp_data, '-o', 'warp_straight2curve.nii.gz']) if vertebral_alignment: sct.copy('warp_curve2straight.nii.gz', 'warp_curve2straightAffine.nii.gz') else: # Label preparation: # -------------------------------------------------------------------------------- # Remove unused label on template. Keep only label present in the input label image sct.printv('\nRemove unused label on template. Keep only label present in the input label image...', verbose) sct.run(['sct_label_utils', '-i', ftmp_template_label, '-o', ftmp_template_label, '-remove-reference', ftmp_label]) # Dilating the input label so they can be straighten without losing them sct.printv('\nDilating input labels using 3vox ball radius') sct_maths.main(['-i', ftmp_label, '-dilate', '3', '-o', add_suffix(ftmp_label, '_dilate')]) ftmp_label = add_suffix(ftmp_label, '_dilate') # Apply straightening to labels sct.printv('\nApply straightening to labels...', verbose) sct_apply_transfo.main(args=[ '-i', ftmp_label, '-o', add_suffix(ftmp_label, '_straight'), '-d', add_suffix(ftmp_seg, '_straight'), '-w', 'warp_curve2straight.nii.gz', '-x', 'nn']) ftmp_label = add_suffix(ftmp_label, '_straight') # Compute rigid transformation straight landmarks --> template landmarks sct.printv('\nEstimate transformation for step #0...', verbose) try: register_landmarks(ftmp_label, ftmp_template_label, paramreg.steps['0'].dof, fname_affine='straight2templateAffine.txt', verbose=verbose) except RuntimeError: raise('Input labels do not seem to be at the right place. Please check the position of the labels. ' 'See documentation for more details: https://www.slideshare.net/neuropoly/sct-course-20190121/42') # Concatenate transformations: curve --> straight --> affine sct.printv('\nConcatenate transformations: curve --> straight --> affine...', verbose) sct_concat_transfo.main(args=[ '-w', ['warp_curve2straight.nii.gz', 'straight2templateAffine.txt'], '-d', 'template.nii', '-o', 'warp_curve2straightAffine.nii.gz']) # Apply transformation sct.printv('\nApply transformation...', verbose) sct_apply_transfo.main(args=[ '-i', ftmp_data, '-o', add_suffix(ftmp_data, '_straightAffine'), '-d', ftmp_template, '-w', 'warp_curve2straightAffine.nii.gz']) ftmp_data = add_suffix(ftmp_data, '_straightAffine') sct_apply_transfo.main(args=[ '-i', ftmp_seg, '-o', add_suffix(ftmp_seg, '_straightAffine'), '-d', ftmp_template, '-w', 'warp_curve2straightAffine.nii.gz', '-x', 'linear']) ftmp_seg = add_suffix(ftmp_seg, '_straightAffine') """ # Benjamin: Issue from Allan Martin, about the z=0 slice that is screwed up, caused by the affine transform. # Solution found: remove slices below and above landmarks to avoid rotation effects points_straight = [] for coord in landmark_template: points_straight.append(coord.z) min_point, max_point = int(np.round(np.min(points_straight))), int(np.round(np.max(points_straight))) ftmp_seg_, ftmp_seg = ftmp_seg, add_suffix(ftmp_seg, '_black') msct_image.spatial_crop(Image(ftmp_seg_), dict(((2, (min_point,max_point)),))).save(ftmp_seg) """ # open segmentation im = Image(ftmp_seg) im_new = msct_image.empty_like(im) # binarize im_new.data = im.data > 0.5 # find min-max of anat2template (for subsequent cropping) zmin_template, zmax_template = msct_image.find_zmin_zmax(im_new, threshold=0.5) # save binarized segmentation im_new.save(add_suffix(ftmp_seg, '_bin')) # unused? # crop template in z-direction (for faster processing) # TODO: refactor to use python module instead of doing i/o sct.printv('\nCrop data in template space (for faster processing)...', verbose) ftmp_template_, ftmp_template = ftmp_template, add_suffix(ftmp_template, '_crop') msct_image.spatial_crop(Image(ftmp_template_), dict(((2, (zmin_template,zmax_template)),))).save(ftmp_template) ftmp_template_seg_, ftmp_template_seg = ftmp_template_seg, add_suffix(ftmp_template_seg, '_crop') msct_image.spatial_crop(Image(ftmp_template_seg_), dict(((2, (zmin_template,zmax_template)),))).save(ftmp_template_seg) ftmp_data_, ftmp_data = ftmp_data, add_suffix(ftmp_data, '_crop') msct_image.spatial_crop(Image(ftmp_data_), dict(((2, (zmin_template,zmax_template)),))).save(ftmp_data) ftmp_seg_, ftmp_seg = ftmp_seg, add_suffix(ftmp_seg, '_crop') msct_image.spatial_crop(Image(ftmp_seg_), dict(((2, (zmin_template,zmax_template)),))).save(ftmp_seg) # sub-sample in z-direction # TODO: refactor to use python module instead of doing i/o sct.printv('\nSub-sample in z-direction (for faster processing)...', verbose) sct.run(['sct_resample', '-i', ftmp_template, '-o', add_suffix(ftmp_template, '_sub'), '-f', '1x1x' + zsubsample], verbose) ftmp_template = add_suffix(ftmp_template, '_sub') sct.run(['sct_resample', '-i', ftmp_template_seg, '-o', add_suffix(ftmp_template_seg, '_sub'), '-f', '1x1x' + zsubsample], verbose) ftmp_template_seg = add_suffix(ftmp_template_seg, '_sub') sct.run(['sct_resample', '-i', ftmp_data, '-o', add_suffix(ftmp_data, '_sub'), '-f', '1x1x' + zsubsample], verbose) ftmp_data = add_suffix(ftmp_data, '_sub') sct.run(['sct_resample', '-i', ftmp_seg, '-o', add_suffix(ftmp_seg, '_sub'), '-f', '1x1x' + zsubsample], verbose) ftmp_seg = add_suffix(ftmp_seg, '_sub') # Registration straight spinal cord to template sct.printv('\nRegister straight spinal cord to template...', verbose) # loop across registration steps warp_forward = [] warp_inverse = [] for i_step in range(1, len(paramreg.steps)): sct.printv('\nEstimate transformation for step #' + str(i_step) + '...', verbose) # identify which is the src and dest if paramreg.steps[str(i_step)].type == 'im': src = ftmp_data dest = ftmp_template interp_step = 'linear' elif paramreg.steps[str(i_step)].type == 'seg': src = ftmp_seg dest = ftmp_template_seg interp_step = 'nn' else: sct.printv('ERROR: Wrong image type.', 1, 'error') if paramreg.steps[str(i_step)].algo == 'centermassrot' and paramreg.steps[str(i_step)].rot_method == 'hog': src_seg = ftmp_seg dest_seg = ftmp_template_seg # if step>1, apply warp_forward_concat to the src image to be used if i_step > 1: # apply transformation from previous step, to use as new src for registration sct_apply_transfo.main(args=[ '-i', src, '-d', dest, '-w', warp_forward, '-o', add_suffix(src, '_regStep' + str(i_step - 1)), '-x', interp_step]) src = add_suffix(src, '_regStep' + str(i_step - 1)) if paramreg.steps[str(i_step)].algo == 'centermassrot' and paramreg.steps[str(i_step)].rot_method == 'hog': # also apply transformation to the seg sct_apply_transfo.main(args=[ '-i', src_seg, '-d', dest_seg, '-w', warp_forward, '-o', add_suffix(src, '_regStep' + str(i_step - 1)), '-x', interp_step]) src_seg = add_suffix(src_seg, '_regStep' + str(i_step - 1)) # register src --> dest # TODO: display param for debugging if paramreg.steps[str(i_step)].algo == 'centermassrot' and paramreg.steps[str(i_step)].rot_method == 'hog': # im_seg case warp_forward_out, warp_inverse_out = register([src, src_seg], [dest, dest_seg], paramreg, param, str(i_step)) else: warp_forward_out, warp_inverse_out = register(src, dest, paramreg, param, str(i_step)) warp_forward.append(warp_forward_out) warp_inverse.append(warp_inverse_out) # Concatenate transformations: anat --> template sct.printv('\nConcatenate transformations: anat --> template...', verbose) warp_forward.insert(0, 'warp_curve2straightAffine.nii.gz') sct_concat_transfo.main(args=[ '-w', warp_forward, '-d', 'template.nii', '-o', 'warp_anat2template.nii.gz']) # Concatenate transformations: template --> anat sct.printv('\nConcatenate transformations: template --> anat...', verbose) warp_inverse.reverse() if vertebral_alignment: warp_inverse.append('warp_straight2curve.nii.gz') sct_concat_transfo.main(args=[ '-w', warp_inverse, '-d', 'data.nii', '-o', 'warp_template2anat.nii.gz']) else: warp_inverse.append('straight2templateAffine.txt') warp_inverse.append('warp_straight2curve.nii.gz') sct_concat_transfo.main(args=[ '-w', warp_inverse, '-winv', ['straight2templateAffine.txt'], '-d', 'data.nii', '-o', 'warp_template2anat.nii.gz']) # register template->subject elif ref == 'subject': # Change orientation of input images to RPI sct.printv('\nChange orientation of input images to RPI...', verbose) ftmp_data = Image(ftmp_data).change_orientation("RPI", generate_path=True).save().absolutepath ftmp_seg = Image(ftmp_seg).change_orientation("RPI", generate_path=True).save().absolutepath ftmp_label = Image(ftmp_label).change_orientation("RPI", generate_path=True).save().absolutepath # Remove unused label on template. Keep only label present in the input label image sct.printv('\nRemove unused label on template. Keep only label present in the input label image...', verbose) sct.run(['sct_label_utils', '-i', ftmp_template_label, '-o', ftmp_template_label, '-remove-reference', ftmp_label]) # Add one label because at least 3 orthogonal labels are required to estimate an affine transformation. This # new label is added at the level of the upper most label (lowest value), at 1cm to the right. for i_file in [ftmp_label, ftmp_template_label]: im_label = Image(i_file) coord_label = im_label.getCoordinatesAveragedByValue() # N.B. landmarks are sorted by value # Create new label from copy import deepcopy new_label = deepcopy(coord_label[0]) # move it 5mm to the left (orientation is RAS) nx, ny, nz, nt, px, py, pz, pt = im_label.dim new_label.x = np.round(coord_label[0].x + 5.0 / px) # assign value 99 new_label.value = 99 # Add to existing image im_label.data[int(new_label.x), int(new_label.y), int(new_label.z)] = new_label.value # Overwrite label file # im_label.absolutepath = 'label_rpi_modif.nii.gz' im_label.save() # Bring template to subject space using landmark-based transformation sct.printv('\nEstimate transformation for step #0...', verbose) warp_forward = ['template2subjectAffine.txt'] warp_inverse = ['template2subjectAffine.txt'] try: register_landmarks(ftmp_template_label, ftmp_label, paramreg.steps['0'].dof, fname_affine=warp_forward[0], verbose=verbose, path_qc="./") except Exception: sct.printv('ERROR: input labels do not seem to be at the right place. Please check the position of the labels. See documentation for more details: https://www.slideshare.net/neuropoly/sct-course-20190121/42', verbose=verbose, type='error') # loop across registration steps for i_step in range(1, len(paramreg.steps)): sct.printv('\nEstimate transformation for step #' + str(i_step) + '...', verbose) # identify which is the src and dest if paramreg.steps[str(i_step)].type == 'im': src = ftmp_template dest = ftmp_data interp_step = 'linear' elif paramreg.steps[str(i_step)].type == 'seg': src = ftmp_template_seg dest = ftmp_seg interp_step = 'nn' else: sct.printv('ERROR: Wrong image type.', 1, 'error') # apply transformation from previous step, to use as new src for registration sct_apply_transfo.main(args=[ '-i', src, '-d', dest, '-w', warp_forward, '-o', add_suffix(src, '_regStep' + str(i_step - 1)), '-x', interp_step]) src = add_suffix(src, '_regStep' + str(i_step - 1)) # register src --> dest # TODO: display param for debugging warp_forward_out, warp_inverse_out = register(src, dest, paramreg, param, str(i_step)) warp_forward.append(warp_forward_out) warp_inverse.insert(0, warp_inverse_out) # Concatenate transformations: sct.printv('\nConcatenate transformations: template --> subject...', verbose) sct_concat_transfo.main(args=[ '-w', warp_forward, '-d', 'data.nii', '-o', 'warp_template2anat.nii.gz']) sct.printv('\nConcatenate transformations: subject --> template...', verbose) sct_concat_transfo.main(args=[ '-w', warp_inverse, '-winv', ['template2subjectAffine.txt'], '-d', 'template.nii', '-o', 'warp_anat2template.nii.gz']) # Apply warping fields to anat and template sct.run(['sct_apply_transfo', '-i', 'template.nii', '-o', 'template2anat.nii.gz', '-d', 'data.nii', '-w', 'warp_template2anat.nii.gz', '-crop', '1'], verbose) sct.run(['sct_apply_transfo', '-i', 'data.nii', '-o', 'anat2template.nii.gz', '-d', 'template.nii', '-w', 'warp_anat2template.nii.gz', '-crop', '1'], verbose) # come back os.chdir(curdir) # Generate output files sct.printv('\nGenerate output files...', verbose) fname_template2anat = os.path.join(path_output, 'template2anat' + ext_data) fname_anat2template = os.path.join(path_output, 'anat2template' + ext_data) sct.generate_output_file(os.path.join(path_tmp, "warp_template2anat.nii.gz"), os.path.join(path_output, "warp_template2anat.nii.gz"), verbose) sct.generate_output_file(os.path.join(path_tmp, "warp_anat2template.nii.gz"), os.path.join(path_output, "warp_anat2template.nii.gz"), verbose) sct.generate_output_file(os.path.join(path_tmp, "template2anat.nii.gz"), fname_template2anat, verbose) sct.generate_output_file(os.path.join(path_tmp, "anat2template.nii.gz"), fname_anat2template, verbose) if ref == 'template': # copy straightening files in case subsequent SCT functions need them sct.generate_output_file(os.path.join(path_tmp, "warp_curve2straight.nii.gz"), os.path.join(path_output, "warp_curve2straight.nii.gz"), verbose) sct.generate_output_file(os.path.join(path_tmp, "warp_straight2curve.nii.gz"), os.path.join(path_output, "warp_straight2curve.nii.gz"), verbose) sct.generate_output_file(os.path.join(path_tmp, "straight_ref.nii.gz"), os.path.join(path_output, "straight_ref.nii.gz"), verbose) # Delete temporary files if param.remove_temp_files: sct.printv('\nDelete temporary files...', verbose) sct.rmtree(path_tmp, verbose=verbose) # display elapsed time elapsed_time = time.time() - start_time sct.printv('\nFinished! Elapsed time: ' + str(int(np.round(elapsed_time))) + 's', verbose) qc_dataset = arguments.get("-qc-dataset", None) qc_subject = arguments.get("-qc-subject", None) if param.path_qc is not None: generate_qc(fname_data, fname_in2=fname_template2anat, fname_seg=fname_seg, args=args, path_qc=os.path.abspath(param.path_qc), dataset=qc_dataset, subject=qc_subject, process='sct_register_to_template') sct.display_viewer_syntax([fname_data, fname_template2anat], verbose=verbose) sct.display_viewer_syntax([fname_template, fname_anat2template], verbose=verbose)
def main(): # Initialization size_data = 61 size_label = 1 # put zero for labels that are single points. dice_acceptable = 0.39 # computed DICE should be 0.931034 test_passed = 0 remove_temp_files = 1 verbose = 1 # Check input parameters try: opts, args = getopt.getopt(sys.argv[1:], 'hvr:') except getopt.GetoptError: usage() for opt, arg in opts: if opt == '-h': usage() elif opt in ('-v'): verbose = int(arg) elif opt in ('-r'): remove_temp_files = int(arg) path_tmp = sct.tmp_create(basename="test_ants", verbose=verbose) # go to tmp folder curdir = os.getcwd() os.chdir(path_tmp) # Initialise numpy volumes data_src = np.zeros((size_data, size_data, size_data), dtype=np.int16) data_dest = np.zeros((size_data, size_data, size_data), dtype=np.int16) # add labels for src image (curved). # Labels can be big (more than single point), because when applying NN interpolation, single points might disappear data_src[20 - size_label:20 + size_label + 1, 20 - size_label:20 + size_label + 1, 10 - size_label:10 + size_label + 1] = 1 data_src[30 - size_label:30 + size_label + 1, 30 - size_label:30 + size_label + 1, 30 - size_label:30 + size_label + 1] = 2 data_src[20 - size_label:20 + size_label + 1, 20 - size_label:20 + size_label + 1, 50 - size_label:50 + size_label + 1] = 3 # add labels for dest image (straight). # Here, no need for big labels (bigger than single point) because these labels will not be re-interpolated. data_dest[30 - size_label:30 + size_label + 1, 30 - size_label:30 + size_label + 1, 10 - size_label:10 + size_label + 1] = 1 data_dest[30 - size_label:30 + size_label + 1, 30 - size_label:30 + size_label + 1, 30 - size_label:30 + size_label + 1] = 2 data_dest[30 - size_label:30 + size_label + 1, 30 - size_label:30 + size_label + 1, 50 - size_label:50 + size_label + 1] = 3 # save as nifti img_src = nib.Nifti1Image(data_src, np.eye(4)) nib.save(img_src, 'data_src.nii.gz') img_dest = nib.Nifti1Image(data_dest, np.eye(4)) nib.save(img_dest, 'data_dest.nii.gz') # Estimate rigid transformation sct.printv('\nEstimate rigid transformation between paired landmarks...', verbose) # TODO fixup isct_ants* parsers sct.run(['isct_antsRegistration', '-d', '3', '-t', 'syn[1,3,1]', '-m', 'MeanSquares[data_dest.nii.gz,data_src.nii.gz,1,3]', '-f', '2', '-s', '0', '-o', '[src2reg,data_src_reg.nii.gz]', '-c', '5', '-v', '1', '-n', 'NearestNeighbor'], verbose, is_sct_binary=True) # # Apply rigid transformation # sct.printv('\nApply rigid transformation to curved landmarks...', verbose) # sct.run('sct_apply_transfo -i data_src.nii.gz -o data_src_rigid.nii.gz -d data_dest.nii.gz -w curve2straight_rigid.txt -p nn', verbose) # # # Estimate b-spline transformation curve --> straight # sct.printv('\nEstimate b-spline transformation: curve --> straight...', verbose) # sct.run('isct_ANTSLandmarksBSplineTransform data_dest.nii.gz data_src_rigid.nii.gz warp_curve2straight_intermediate.nii.gz 5x5x5 3 2 0', verbose) # # # Concatenate rigid and non-linear transformations... # sct.printv('\nConcatenate rigid and non-linear transformations...', verbose) # cmd = 'isct_ComposeMultiTransform 3 warp_curve2straight.nii.gz -R data_dest.nii.gz warp_curve2straight_intermediate.nii.gz curve2straight_rigid.txt' # sct.printv('>> '+cmd, verbose) # sct.run(cmd) # # # Apply deformation to input image # sct.printv('\nApply transformation to input image...', verbose) # sct.run('sct_apply_transfo -i data_src.nii.gz -o data_src_warp.nii.gz -d data_dest.nii.gz -w warp_curve2straight.nii.gz -p nn', verbose) # # Compute DICE coefficient between src and dest sct.printv('\nCompute DICE coefficient...', verbose) sct.run(["sct_dice_coefficient", "-i", "data_dest.nii.gz", "-d", "data_src_reg.nii.gz", "-o", "dice.txt"], verbose) with open("dice.txt", "r") as file_dice: dice = float(file_dice.read().replace('3D Dice coefficient = ', '')) sct.printv('Dice coeff = ' + str(dice) + ' (should be above ' + str(dice_acceptable) + ')', verbose) # Check if DICE coefficient is above acceptable value if dice > dice_acceptable: test_passed = 1 # come back os.chdir(curdir) # Delete temporary files if remove_temp_files == 1: sct.printv('\nDelete temporary files...', verbose) sct.rmtree(path_tmp) # output result for parent function if test_passed: sct.printv('\nTest passed!\n', verbose) sys.exit(0) else: sct.printv('\nTest failed!\n', verbose) sys.exit(1)
def register_data(im_src, im_dest, param_reg, path_copy_warp=None, rm_tmp=True): ''' Parameters ---------- im_src: class Image: source image im_dest: class Image: destination image param_reg: str: registration parameter path_copy_warp: path: path to copy the warping fields Returns: im_src_reg: class Image: source image registered on destination image ------- ''' # im_src and im_dest are already preprocessed (in theory: im_dest = mean_image) # binarize images to get seg im_src_seg = binarize(im_src, thr_min=1, thr_max=1) im_dest_seg = binarize(im_dest) # create tmp dir and go in it tmp_dir = sct.tmp_create() curdir = os.getcwd() os.chdir(tmp_dir) # save image and seg fname_src = 'src.nii.gz' im_src.save(fname_src) fname_src_seg = 'src_seg.nii.gz' im_src_seg.save(fname_src_seg) fname_dest = 'dest.nii.gz' im_dest.save(fname_dest) fname_dest_seg = 'dest_seg.nii.gz' im_dest_seg.save(fname_dest_seg) # do registration using param_reg sct_register_multimodal.main(args=[ '-i', fname_src, '-d', fname_dest, '-iseg', fname_src_seg, '-dseg', fname_dest_seg, '-param', param_reg ]) # get registration result fname_src_reg = add_suffix(fname_src, '_reg') im_src_reg = Image(fname_src_reg) # get out of tmp dir os.chdir(curdir) # copy warping fields if path_copy_warp is not None and os.path.isdir( os.path.abspath(path_copy_warp)): path_copy_warp = os.path.abspath(path_copy_warp) file_src = extract_fname(fname_src)[1] file_dest = extract_fname(fname_dest)[1] fname_src2dest = 'warp_' + file_src + '2' + file_dest + '.nii.gz' fname_dest2src = 'warp_' + file_dest + '2' + file_src + '.nii.gz' sct.copy(os.path.join(tmp_dir, fname_src2dest), path_copy_warp) sct.copy(os.path.join(tmp_dir, fname_dest2src), path_copy_warp) if rm_tmp: # remove tmp dir sct.rmtree(tmp_dir) # return res image return im_src_reg, fname_src2dest, fname_dest2src
def crop_with_gui(self): import matplotlib.pyplot as plt import matplotlib.image as mpimg # Initialization fname_data = self.input_filename suffix_out = '_crop' remove_temp_files = self.rm_tmp_files verbose = self.verbose # Check file existence sct.printv('\nCheck file existence...', verbose) sct.check_file_exist(fname_data, verbose) # Get dimensions of data sct.printv('\nGet dimensions of data...', verbose) nx, ny, nz, nt, px, py, pz, pt = Image(fname_data).dim sct.printv('.. ' + str(nx) + ' x ' + str(ny) + ' x ' + str(nz), verbose) # check if 4D data if not nt == 1: sct.printv( '\nERROR in ' + os.path.basename(__file__) + ': Data should be 3D.\n', 1, 'error') sys.exit(2) # sct.printv(arguments) sct.printv('\nCheck parameters:') sct.printv(' data ................... ' + fname_data) # Extract path/file/extension path_data, file_data, ext_data = sct.extract_fname(fname_data) path_out, file_out, ext_out = '', file_data + suffix_out, ext_data path_tmp = sct.tmp_create() + "/" # copy files into tmp folder from sct_convert import convert sct.printv('\nCopying input data to tmp folder and convert to nii...', verbose) convert(fname_data, os.path.join(path_tmp, "data.nii")) # go to tmp folder curdir = os.getcwd() os.chdir(path_tmp) # change orientation sct.printv('\nChange orientation to RPI...', verbose) Image('data.nii').change_orientation("RPI").save('data_rpi.nii') # get image of medial slab sct.printv('\nGet image of medial slab...', verbose) image_array = nibabel.load('data_rpi.nii').get_data() nx, ny, nz = image_array.shape scipy.misc.imsave('image.jpg', image_array[math.floor(nx / 2), :, :]) # Display the image sct.printv('\nDisplay image and get cropping region...', verbose) fig = plt.figure() # fig = plt.gcf() # ax = plt.gca() ax = fig.add_subplot(111) img = mpimg.imread("image.jpg") implot = ax.imshow(img.T) implot.set_cmap('gray') plt.gca().invert_yaxis() # mouse callback ax.set_title( 'Left click on the top and bottom of your cropping field.\n Right click to remove last point.\n Close window when your done.' ) line, = ax.plot([], [], 'ro') # empty line cropping_coordinates = LineBuilder(line) plt.show() # disconnect callback # fig.canvas.mpl_disconnect(line) # check if user clicked two times if len(cropping_coordinates.xs) != 2: sct.printv( '\nERROR: You have to select two points. Exit program.\n', 1, 'error') sys.exit(2) # convert coordinates to integer zcrop = [int(i) for i in cropping_coordinates.ys] # sort coordinates zcrop.sort() # crop image sct.printv('\nCrop image...', verbose) nii = Image('data_rpi.nii') data_crop = nii.data[:, :, zcrop[0]:zcrop[1]] nii.data = data_crop nii.absolutepath = 'data_rpi_crop.nii' nii.save() # come back os.chdir(curdir) sct.printv('\nGenerate output files...', verbose) sct.generate_output_file(os.path.join(path_tmp, "data_rpi_crop.nii"), os.path.join(path_out, file_out + ext_out)) # Remove temporary files if remove_temp_files == 1: sct.printv('\nRemove temporary files...') sct.rmtree(path_tmp) sct.display_viewer_syntax( files=[os.path.join(path_out, file_out + ext_out)])
def main(): # Initialization fname_data = '' interp_factor = param.interp_factor remove_temp_files = param.remove_temp_files verbose = param.verbose suffix = param.suffix smoothing_sigma = param.smoothing_sigma # start timer start_time = time.time() # get path of the toolbox path_sct = os.environ.get("SCT_DIR", os.path.dirname(os.path.dirname(__file__))) # Parameters for debug mode if param.debug: fname_data = os.path.join(path_sct, 'testing', 'data', 'errsm_23', 't2', 't2_manual_segmentation.nii.gz') remove_temp_files = 0 param.mask_size = 10 else: # Check input parameters try: opts, args = getopt.getopt(sys.argv[1:], 'hi:v:r:s:') except getopt.GetoptError: usage() if not opts: usage() for opt, arg in opts: if opt == '-h': usage() elif opt in ('-i'): fname_data = arg elif opt in ('-r'): remove_temp_files = int(arg) elif opt in ('-s'): smoothing_sigma = arg elif opt in ('-v'): verbose = int(arg) # display usage if a mandatory argument is not provided if fname_data == '': usage() # sct.printv(arguments) sct.printv('\nCheck parameters:') sct.printv(' segmentation ........... ' + fname_data) sct.printv(' interp factor .......... ' + str(interp_factor)) sct.printv(' smoothing sigma ........ ' + str(smoothing_sigma)) # check existence of input files sct.printv('\nCheck existence of input files...') sct.check_file_exist(fname_data, verbose) # Extract path, file and extension path_data, file_data, ext_data = sct.extract_fname(fname_data) path_tmp = sct.tmp_create(basename="binary_to_trilinear", verbose=verbose) from sct_convert import convert sct.printv('\nCopying input data to tmp folder and convert to nii...', param.verbose) convert(fname_data, os.path.join(path_tmp, "data.nii")) # go to tmp folder curdir = os.getcwd() os.chdir(path_tmp) # Get dimensions of data sct.printv('\nGet dimensions of data...', verbose) nx, ny, nz, nt, px, py, pz, pt = Image('data.nii').dim sct.printv('.. ' + str(nx) + ' x ' + str(ny) + ' x ' + str(nz), verbose) # upsample data sct.printv('\nUpsample data...', verbose) sct.run([ "sct_resample", "-i", "data.nii", "-x", "linear", "-vox", str(nx * interp_factor) + 'x' + str(ny * interp_factor) + 'x' + str(nz * interp_factor), "-o", "data_up.nii" ], verbose) # Smooth along centerline sct.printv('\nSmooth along centerline...', verbose) sct.run([ "sct_smooth_spinalcord", "-i", "data_up.nii", "-s", "data_up.nii", "-smooth", str(smoothing_sigma), "-r", str(remove_temp_files), "-v", str(verbose) ], verbose) # downsample data sct.printv('\nDownsample data...', verbose) sct.run([ "sct_resample", "-i", "data_up_smooth.nii", "-x", "linear", "-vox", str(nx) + 'x' + str(ny) + 'x' + str(nz), "-o", "data_up_smooth_down.nii" ], verbose) # come back os.chdir(curdir) # Generate output files sct.printv('\nGenerate output files...') fname_out = sct.generate_output_file( os.path.join(path_tmp, "data_up_smooth_down.nii"), '' + file_data + suffix + ext_data) # Delete temporary files if remove_temp_files == 1: sct.printv('\nRemove temporary files...') sct.rmtree(path_tmp) # display elapsed time elapsed_time = time.time() - start_time sct.printv('\nFinished! Elapsed time: ' + str(int(round(elapsed_time))) + 's') # to view results sct.printv('\nTo view results, type:') sct.printv('fslview ' + file_data + ' ' + file_data + suffix + ' &\n')
def main(args=None): if args is None: args = sys.argv[1:] # Get parser parser = get_parser() arguments = parser.parse(args) # Set param arguments ad inputted by user fname_in = arguments["-i"] contrast = arguments["-c"] # Segmentation or Centerline line if '-s' in arguments: fname_seg = arguments['-s'] if not os.path.isfile(fname_seg): fname_seg = None sct.printv( 'WARNING: -s input file: "' + arguments['-s'] + '" does not exist.\nDetecting PMJ without using segmentation information', 1, 'warning') else: fname_seg = None # Output Folder if '-ofolder' in arguments: path_results = arguments["-ofolder"] if not os.path.isdir(path_results) and os.path.exists(path_results): sct.printv( "ERROR output directory %s is not a valid directory" % path_results, 1, 'error') if not os.path.exists(path_results): os.makedirs(path_results) else: path_results = '.' path_qc = arguments.get("-qc", None) # Remove temp folder rm_tmp = bool(int(arguments.get("-r", 1))) # Verbosity verbose = int(arguments.get("-v", 1)) # Initialize DetectPMJ detector = DetectPMJ(fname_im=fname_in, contrast=contrast, fname_seg=fname_seg, path_out=path_results, verbose=verbose) # run the extraction fname_out, tmp_dir = detector.apply() # Remove tmp_dir if rm_tmp: sct.rmtree(tmp_dir) # View results if fname_out is not None: if path_qc is not None: generate_qc(fname_in, fname_seg=fname_out, args=args, path_qc=os.path.abspath(path_qc), process='sct_detect_pmj') sct.display_viewer_syntax([fname_in, fname_out], colormaps=['gray', 'red'])
def main(args=None): if args is None: args = sys.argv[1:] # initialization # note: mirror servers are listed in order of priority dict_url = { 'sct_example_data': ['https://osf.io/kjcgs/?action=download', 'https://www.neuro.polymtl.ca/_media/downloads/sct/20180525_sct_example_data.zip'], 'sct_testing_data': ['https://osf.io/z8gaj/?action=download', 'https://www.neuro.polymtl.ca/_media/downloads/sct/20180125_sct_testing_data.zip'], 'PAM50': ['https://osf.io/xz7jk/?action=download', 'https://www.neuro.polymtl.ca/_media/downloads/sct/20180410_PAM50.zip'], 'MNI-Poly-AMU': ['https://osf.io/sh6h4/?action=download', 'https://www.neuro.polymtl.ca/_media/downloads/sct/20170310_MNI-Poly-AMU.zip'], 'gm_model': ['https://osf.io/ugscu/?action=download', 'https://www.neuro.polymtl.ca/_media/downloads/sct/20160922_gm_model.zip'], 'optic_models': ['https://osf.io/g4fwn/?action=download', 'https://www.neuro.polymtl.ca/_media/downloads/sct/20170413_optic_models.zip'], 'pmj_models': ['https://osf.io/4gufr/?action=download', 'https://www.neuro.polymtl.ca/_media/downloads/sct/20170922_pmj_models.zip'], 'binaries_debian': ['https://osf.io/2egh5/?action=download', 'https://www.neuro.polymtl.ca/_media/downloads/sct/20170915_sct_binaries_linux.tar.gz'], 'binaries_centos': ['https://osf.io/qngj2/?action=download', 'https://www.neuro.polymtl.ca/_media/downloads/sct/20170915_sct_binaries_linux_centos6.tar.gz'], 'binaries_osx': ['https://osf.io/hsa5r/?action=download', 'https://www.neuro.polymtl.ca/_media/downloads/sct/20170915_sct_binaries_osx.tar.gz'], 'course_hawaii17': 'https://osf.io/6exht/?action=download', 'course_paris18': ['https://osf.io/9bmn5/?action=download', 'https://www.neuro.polymtl.ca/_media/downloads/sct/20180612_sct_course-paris18.zip'], 'deepseg_gm_models': ['https://osf.io/b9y4x/?action=download', 'https://www.neuro.polymtl.ca/_media/downloads/sct/20180205_deepseg_gm_models.zip'], 'deepseg_sc_models': ['https://osf.io/avf97/?action=download', 'https://www.neuro.polymtl.ca/_media/downloads/sct/20180610_deepseg_sc_models.zip'] } # Get parser info parser = get_parser() arguments = parser.parse(args) data_name = arguments['-d'] verbose = int(arguments['-v']) dest_folder = arguments.get('-o', os.path.abspath(os.curdir)) # Download data url = dict_url[data_name] tmp_file = download_data(url, verbose) # Check if folder already exists sct.printv('\nCheck if folder already exists...', verbose) if os.path.isdir(data_name): sct.printv('WARNING: Folder ' + data_name + ' already exists. Removing it...', 1, 'warning') sct.rmtree(data_name) # unzip unzip(tmp_file, dest_folder, verbose) sct.printv('\nRemove temporary file...', verbose) os.remove(tmp_file) sct.printv('Done!\n', verbose)
def main(args=None): # initialization start_time = time.time() param = Param() # reducing the number of CPU used for moco (see issue #201) os.environ["ITK_GLOBAL_DEFAULT_NUMBER_OF_THREADS"] = "1" # check user arguments if not args: args = sys.argv[1:] # Get parser info parser = get_parser() arguments = parser.parse(sys.argv[1:]) param.fname_data = arguments['-i'] if '-g' in arguments: param.group_size = arguments['-g'] if '-m' in arguments: param.fname_mask = arguments['-m'] if '-param' in arguments: param.update(arguments['-param']) if '-x' in arguments: param.interp = arguments['-x'] if '-ofolder' in arguments: path_out = arguments['-ofolder'] if '-r' in arguments: param.remove_temp_files = int(arguments['-r']) if '-v' in arguments: param.verbose = int(arguments['-v']) sct.printv('\nInput parameters:', param.verbose) sct.printv(' input file ............' + param.fname_data, param.verbose) # Get full path param.fname_data = os.path.abspath(param.fname_data) if param.fname_mask != '': param.fname_mask = os.path.abspath(param.fname_mask) # Extract path, file and extension path_data, file_data, ext_data = sct.extract_fname(param.fname_data) path_tmp = sct.tmp_create(basename="fmri_moco", verbose=param.verbose) # Copying input data to tmp folder and convert to nii # TODO: no need to do that (takes time for nothing) sct.printv('\nCopying input data to tmp folder and convert to nii...', param.verbose) convert(param.fname_data, os.path.join(path_tmp, "fmri.nii"), squeeze_data=False) # go to tmp folder curdir = os.getcwd() os.chdir(path_tmp) # run moco fmri_moco(param) # come back os.chdir(curdir) # Generate output files fname_fmri_moco = os.path.join(path_out, file_data + param.suffix + ext_data) sct.create_folder(path_out) sct.printv('\nGenerate output files...', param.verbose) if os.path.isfile(os.path.join(path_tmp, "fmri" + param.suffix + '.nii')): sct.printv(os.path.join(path_tmp, "fmri" + param.suffix + '.nii')) sct.printv(os.path.join(path_out, file_data + param.suffix + ext_data)) sct.generate_output_file(os.path.join(path_tmp, "fmri" + param.suffix + '.nii'), os.path.join(path_out, file_data + param.suffix + ext_data), param.verbose) sct.generate_output_file(os.path.join(path_tmp, "fmri" + param.suffix + '_mean.nii'), os.path.join(path_out, file_data + param.suffix + '_mean' + ext_data), param.verbose) # Delete temporary files if param.remove_temp_files == 1: sct.printv('\nDelete temporary files...', param.verbose) sct.rmtree(path_tmp, verbose=param.verbose) # display elapsed time elapsed_time = time.time() - start_time sct.printv('\nFinished! Elapsed time: ' + str(int(np.round(elapsed_time))) + 's', param.verbose) sct.display_viewer_syntax([fname_fmri_moco, file_data], mode='ortho,ortho')
def check_and_correct_segmentation(fname_segmentation, fname_centerline, folder_output='', threshold_distance=5.0, remove_temp_files=1, verbose=0): """ This function takes the outputs of isct_propseg (centerline and segmentation) and check if the centerline of the segmentation is coherent with the centerline provided by the isct_propseg, especially on the edges (related to issue #1074). Args: fname_segmentation: filename of binary segmentation fname_centerline: filename of binary centerline threshold_distance: threshold, in mm, beyond which centerlines are not coherent verbose: Returns: None """ sct.printv('\nCheck consistency of segmentation...', verbose) # creating a temporary folder in which all temporary files will be placed and deleted afterwards path_tmp = sct.tmp_create(basename="propseg", verbose=verbose) from sct_convert import convert convert(fname_segmentation, os.path.join(path_tmp, "tmp.segmentation.nii.gz"), squeeze_data=False, verbose=0) convert(fname_centerline, os.path.join(path_tmp, "tmp.centerline.nii.gz"), squeeze_data=False, verbose=0) fname_seg_absolute = os.path.abspath(fname_segmentation) # go to tmp folder curdir = os.getcwd() os.chdir(path_tmp) # convert segmentation image to RPI im_input = Image('tmp.segmentation.nii.gz') image_input_orientation = orientation(im_input, get=True, verbose=False) sct_image.main( "-i tmp.segmentation.nii.gz -setorient RPI -o tmp.segmentation_RPI.nii.gz -v 0" .split()) sct_image.main( "-i tmp.centerline.nii.gz -setorient RPI -o tmp.centerline_RPI.nii.gz -v 0" .split()) # go through segmentation image, and compare with centerline from propseg im_seg = Image('tmp.segmentation_RPI.nii.gz') im_centerline = Image('tmp.centerline_RPI.nii.gz') # Get size of data sct.printv('\nGet data dimensions...', verbose) nx, ny, nz, nt, px, py, pz, pt = im_seg.dim # extraction of centerline provided by isct_propseg and computation of center of mass for each slice # the centerline is defined as the center of the tubular mesh outputed by propseg. centerline, key_centerline = {}, [] for i in range(nz): slice = im_centerline.data[:, :, i] if np.any(slice): x_centerline, y_centerline = ndi.measurements.center_of_mass(slice) centerline[str(i)] = [x_centerline, y_centerline] key_centerline.append(i) minz_centerline = np.min(key_centerline) maxz_centerline = np.max(key_centerline) mid_slice = int((maxz_centerline - minz_centerline) / 2) # for each slice of the segmentation, check if only one object is present. If not, remove the slice from segmentation. # If only one object (the spinal cord) is present in the slice, check if its center of mass is close to the centerline of isct_propseg. slices_to_remove = [ False ] * nz # flag that decides if the slice must be removed for i in range(minz_centerline, maxz_centerline + 1): # extraction of slice slice = im_seg.data[:, :, i] distance = -1 label_objects, nb_labels = ndi.label( slice) # count binary objects in the slice if nb_labels > 1: # if there is more that one object in the slice, the slice is removed from the segmentation slices_to_remove[i] = True elif nb_labels == 1: # check if the centerline is coherent with the one from isct_propseg x_centerline, y_centerline = ndi.measurements.center_of_mass(slice) slice_nearest_coord = min(key_centerline, key=lambda x: abs(x - i)) coord_nearest_coord = centerline[str(slice_nearest_coord)] distance = np.sqrt(( (x_centerline - coord_nearest_coord[0]) * px)**2 + ( (y_centerline - coord_nearest_coord[1]) * py)**2 + ((i - slice_nearest_coord) * pz)**2) if distance >= threshold_distance: # threshold must be adjusted, default is 5 mm slices_to_remove[i] = True # Check list of removal and keep one continuous centerline (improve this comment) # Method: # starting from mid-centerline (in both directions), the first True encountered is applied to all following slices slice_to_change = False for i in range(mid_slice, nz): if slice_to_change: slices_to_remove[i] = True elif slices_to_remove[i]: slice_to_change = True slice_to_change = False for i in range(mid_slice, 0, -1): if slice_to_change: slices_to_remove[i] = True elif slices_to_remove[i]: slice_to_change = True for i in range(0, nz): # remove the slice if slices_to_remove[i]: im_seg.data[:, :, i] *= 0 # saving the image im_seg.setFileName('tmp.segmentation_RPI_c.nii.gz') im_seg.save() # replacing old segmentation with the corrected one sct_image.main( '-i tmp.segmentation_RPI_c.nii.gz -setorient {} -o {} -v 0'.format( image_input_orientation, fname_seg_absolute).split()) os.chdir(curdir) # display information about how much of the segmentation has been corrected # remove temporary files if remove_temp_files: # sct.printv("\nRemove temporary files...", verbose) sct.rmtree(path_tmp)
def validation(self): tmp_dir_val = sct.tmp_create(basename="segment_graymatter_validation") # copy data into tmp dir val sct.copy(self.param_seg.fname_manual_gmseg, tmp_dir_val) sct.copy(self.param_seg.fname_seg, tmp_dir_val) curdir = os.getcwd() os.chdir(tmp_dir_val) fname_manual_gmseg = os.path.basename( self.param_seg.fname_manual_gmseg) fname_seg = os.path.basename(self.param_seg.fname_seg) im_gmseg = self.im_res_gmseg.copy() im_wmseg = self.im_res_wmseg.copy() if self.param_seg.type_seg == 'prob': im_gmseg = binarize(im_gmseg, thr_max=0.5, thr_min=0.5) im_wmseg = binarize(im_wmseg, thr_max=0.5, thr_min=0.5) fname_gmseg = 'res_gmseg.nii.gz' im_gmseg.save(fname_gmseg) fname_wmseg = 'res_wmseg.nii.gz' im_wmseg.save(fname_wmseg) # get manual WM seg: fname_manual_wmseg = 'manual_wmseg.nii.gz' sct_maths.main(args=[ '-i', fname_seg, '-sub', fname_manual_gmseg, '-o', fname_manual_wmseg ]) # compute DC: try: status_gm, output_gm = run('sct_dice_coefficient -i ' + fname_manual_gmseg + ' -d ' + fname_gmseg + ' -2d-slices 2') status_wm, output_wm = run('sct_dice_coefficient -i ' + fname_manual_wmseg + ' -d ' + fname_wmseg + ' -2d-slices 2') except Exception: # put ref and res in the same space if needed fname_manual_gmseg_corrected = add_suffix(fname_manual_gmseg, '_reg') sct_register_multimodal.main(args=[ '-i', fname_manual_gmseg, '-d', fname_gmseg, '-identity', '1' ]) sct_maths.main(args=[ '-i', fname_manual_gmseg_corrected, '-bin', '0.1', '-o', fname_manual_gmseg_corrected ]) # fname_manual_wmseg_corrected = add_suffix(fname_manual_wmseg, '_reg') sct_register_multimodal.main(args=[ '-i', fname_manual_wmseg, '-d', fname_wmseg, '-identity', '1' ]) sct_maths.main(args=[ '-i', fname_manual_wmseg_corrected, '-bin', '0.1', '-o', fname_manual_wmseg_corrected ]) # recompute DC status_gm, output_gm = run('sct_dice_coefficient -i ' + fname_manual_gmseg_corrected + ' -d ' + fname_gmseg + ' -2d-slices 2') status_wm, output_wm = run('sct_dice_coefficient -i ' + fname_manual_wmseg_corrected + ' -d ' + fname_wmseg + ' -2d-slices 2') # save results to a text file fname_dc = 'dice_coefficient_' + extract_fname( self.param_seg.fname_im)[1] + '.txt' file_dc = open(fname_dc, 'w') if self.param_seg.type_seg == 'prob': file_dc.write( 'WARNING : the probabilistic segmentations were binarized with a threshold at 0.5 to compute the dice coefficient \n' ) file_dc.write( '\n--------------------------------------------------------------\nDice coefficient on the Gray Matter segmentation:\n' ) file_dc.write(output_gm) file_dc.write( '\n\n--------------------------------------------------------------\nDice coefficient on the White Matter segmentation:\n' ) file_dc.write(output_wm) file_dc.close() # compute HD and MD: fname_hd = 'hausdorff_dist_' + extract_fname( self.param_seg.fname_im)[1] + '.txt' run('sct_compute_hausdorff_distance -i ' + fname_gmseg + ' -d ' + fname_manual_gmseg + ' -thinning 1 -o ' + fname_hd + ' -v ' + str(self.param.verbose)) # get out of tmp dir to copy results to output folder os.chdir(curdir) sct.copy(os.path.join(self.tmp_dir, tmp_dir_val, fname_dc), self.param_seg.path_results) sct.copy(os.path.join(self.tmp_dir, tmp_dir_val, fname_hd), self.param_seg.path_results) if self.param.rm_tmp: sct.rmtree(tmp_dir_val)
def main(args=None): if not args: args = sys.argv[1:] # initialize parameters param = Param() # call main function parser = get_parser() arguments = parser.parse(args) fname_data = arguments['-i'] fname_bvecs = arguments['-bvec'] average = arguments['-a'] verbose = int(arguments['-v']) remove_temp_files = int(arguments['-r']) path_out = arguments['-ofolder'] if '-bval' in arguments: fname_bvals = arguments['-bval'] else: fname_bvals = '' if '-bvalmin' in arguments: param.bval_min = arguments['-bvalmin'] # Initialization start_time = time.time() # sct.printv(arguments) sct.printv('\nInput parameters:', verbose) sct.printv(' input file ............' + fname_data, verbose) sct.printv(' bvecs file ............' + fname_bvecs, verbose) sct.printv(' bvals file ............' + fname_bvals, verbose) sct.printv(' average ...............' + str(average), verbose) # Get full path fname_data = os.path.abspath(fname_data) fname_bvecs = os.path.abspath(fname_bvecs) if fname_bvals: fname_bvals = os.path.abspath(fname_bvals) # Extract path, file and extension path_data, file_data, ext_data = sct.extract_fname(fname_data) # create temporary folder path_tmp = sct.tmp_create(basename="dmri_separate", verbose=verbose) # copy files into tmp folder and convert to nifti sct.printv('\nCopy files into temporary folder...', verbose) ext = '.nii' dmri_name = 'dmri' b0_name = file_data + '_b0' b0_mean_name = b0_name + '_mean' dwi_name = file_data + '_dwi' dwi_mean_name = dwi_name + '_mean' if not convert(fname_data, os.path.join(path_tmp, dmri_name + ext)): sct.printv('ERROR in convert.', 1, 'error') sct.copy(fname_bvecs, os.path.join(path_tmp, "bvecs"), verbose=verbose) # go to tmp folder curdir = os.getcwd() os.chdir(path_tmp) # Get size of data im_dmri = Image(dmri_name + ext) sct.printv('\nGet dimensions data...', verbose) nx, ny, nz, nt, px, py, pz, pt = im_dmri.dim sct.printv( '.. ' + str(nx) + ' x ' + str(ny) + ' x ' + str(nz) + ' x ' + str(nt), verbose) # Identify b=0 and DWI images sct.printv(fname_bvals) index_b0, index_dwi, nb_b0, nb_dwi = identify_b0(fname_bvecs, fname_bvals, param.bval_min, verbose) # Split into T dimension sct.printv('\nSplit along T dimension...', verbose) im_dmri_split_list = split_data(im_dmri, 3) for im_d in im_dmri_split_list: im_d.save() # Merge b=0 images sct.printv('\nMerge b=0...', verbose) from sct_image import concat_data l = [] for it in range(nb_b0): l.append(dmri_name + '_T' + str(index_b0[it]).zfill(4) + ext) im_out = concat_data(l, 3).save(b0_name + ext) # Average b=0 images if average: sct.printv('\nAverage b=0...', verbose) sct.run([ 'sct_maths', '-i', b0_name + ext, '-o', b0_mean_name + ext, '-mean', 't' ], verbose) # Merge DWI l = [] for it in range(nb_dwi): l.append(dmri_name + '_T' + str(index_dwi[it]).zfill(4) + ext) im_out = concat_data(l, 3).save(dwi_name + ext) # Average DWI images if average: sct.printv('\nAverage DWI...', verbose) sct.run([ 'sct_maths', '-i', dwi_name + ext, '-o', dwi_mean_name + ext, '-mean', 't' ], verbose) # come back os.chdir(curdir) # Generate output files fname_b0 = os.path.abspath(os.path.join(path_out, b0_name + ext_data)) fname_dwi = os.path.abspath(os.path.join(path_out, dwi_name + ext_data)) fname_b0_mean = os.path.abspath( os.path.join(path_out, b0_mean_name + ext_data)) fname_dwi_mean = os.path.abspath( os.path.join(path_out, dwi_mean_name + ext_data)) sct.printv('\nGenerate output files...', verbose) sct.generate_output_file(os.path.join(path_tmp, b0_name + ext), fname_b0, verbose) sct.generate_output_file(os.path.join(path_tmp, dwi_name + ext), fname_dwi, verbose) if average: sct.generate_output_file(os.path.join(path_tmp, b0_mean_name + ext), fname_b0_mean, verbose) sct.generate_output_file(os.path.join(path_tmp, dwi_mean_name + ext), fname_dwi_mean, verbose) # Remove temporary files if remove_temp_files == 1: sct.printv('\nRemove temporary files...', verbose) sct.rmtree(path_tmp, verbose=verbose) # display elapsed time elapsed_time = time.time() - start_time sct.printv( '\nFinished! Elapsed time: ' + str(int(np.round(elapsed_time))) + 's', verbose) return fname_b0, fname_b0_mean, fname_dwi, fname_dwi_mean
def create_mask(param): # parse argument for method method_type = param.process[0] # check method val if not method_type == 'center': method_val = param.process[1] # check existence of input files if method_type == 'centerline': sct.check_file_exist(method_val, param.verbose) # Extract path/file/extension path_data, file_data, ext_data = sct.extract_fname(param.fname_data) # Get output folder and file name if param.fname_out == '': param.fname_out = os.path.abspath(param.file_prefix + file_data + ext_data) path_tmp = sct.tmp_create(basename="create_mask", verbose=param.verbose) sct.printv('\nOrientation:', param.verbose) orientation_input = Image(param.fname_data).orientation sct.printv(' ' + orientation_input, param.verbose) # copy input data to tmp folder and re-orient to RPI Image(param.fname_data).change_orientation("RPI").save( os.path.join(path_tmp, "data_RPI.nii")) if method_type == 'centerline': Image(method_val).change_orientation("RPI").save( os.path.join(path_tmp, "centerline_RPI.nii")) if method_type == 'point': Image(method_val).change_orientation("RPI").save( os.path.join(path_tmp, "point_RPI.nii")) # go to tmp folder curdir = os.getcwd() os.chdir(path_tmp) # Get dimensions of data im_data = Image('data_RPI.nii') nx, ny, nz, nt, px, py, pz, pt = im_data.dim sct.printv('\nDimensions:', param.verbose) sct.printv(im_data.dim, param.verbose) # in case user input 4d data if nt != 1: sct.printv( 'WARNING in ' + os.path.basename(__file__) + ': Input image is 4d but output mask will be 3D from first time slice.', param.verbose, 'warning') # extract first volume to have 3d reference nii = msct_image.empty_like(Image('data_RPI.nii')) data3d = nii.data[:, :, :, 0] nii.data = data3d nii.save('data_RPI.nii') if method_type == 'coord': # parse to get coordinate coord = [x for x in map(int, method_val.split('x'))] if method_type == 'point': # get file name # extract coordinate of point sct.printv('\nExtract coordinate of point...', param.verbose) # TODO: change this way to remove dependence to sct.run. ProcessLabels.display_voxel returns list of coordinates status, output = sct.run( ['sct_label_utils', '-i', 'point_RPI.nii', '-display'], verbose=param.verbose) # parse to get coordinate # TODO fixup... this is quite magic coord = output[output.find('Position=') + 10:-17].split(',') if method_type == 'center': # set coordinate at center of FOV coord = np.round(float(nx) / 2), np.round(float(ny) / 2) if method_type == 'centerline': # get name of centerline from user argument fname_centerline = 'centerline_RPI.nii' else: # generate volume with line along Z at coordinates 'coord' sct.printv('\nCreate line...', param.verbose) fname_centerline = create_line(param, 'data_RPI.nii', coord, nz) # create mask sct.printv('\nCreate mask...', param.verbose) centerline = nibabel.load(fname_centerline) # open centerline hdr = centerline.get_header() # get header hdr.set_data_dtype('uint8') # set imagetype to uint8 spacing = hdr.structarr['pixdim'] data_centerline = centerline.get_data() # get centerline # if data is 2D, reshape with empty third dimension if len(data_centerline.shape) == 2: data_centerline_shape = list(data_centerline.shape) data_centerline_shape.append(1) data_centerline = data_centerline.reshape(data_centerline_shape) z_centerline_not_null = [ iz for iz in range(0, nz, 1) if data_centerline[:, :, iz].any() ] # get center of mass of the centerline cx = [0] * nz cy = [0] * nz for iz in range(0, nz, 1): if iz in z_centerline_not_null: cx[iz], cy[iz] = ndimage.measurements.center_of_mass( np.array(data_centerline[:, :, iz])) # create 2d masks file_mask = 'data_mask' for iz in range(nz): if iz not in z_centerline_not_null: # write an empty nifty volume img = nibabel.Nifti1Image(data_centerline[:, :, iz], None, hdr) nibabel.save(img, (file_mask + str(iz) + '.nii')) else: center = np.array([cx[iz], cy[iz]]) mask2d = create_mask2d(param, center, param.shape, param.size, im_data=im_data) # Write NIFTI volumes img = nibabel.Nifti1Image(mask2d, None, hdr) nibabel.save(img, (file_mask + str(iz) + '.nii')) fname_list = [file_mask + str(iz) + '.nii' for iz in range(nz)] im_out = concat_data(fname_list, dim=2).save('mask_RPI.nii.gz') im_out.change_orientation(orientation_input) im_out.header = Image(param.fname_data).header im_out.save(param.fname_out) # come back os.chdir(curdir) # Remove temporary files if param.remove_temp_files == 1: sct.printv('\nRemove temporary files...', param.verbose) sct.rmtree(path_tmp) sct.display_viewer_syntax([param.fname_data, param.fname_out], colormaps=['gray', 'red'], opacities=['', '0.5'])
def main(args=None): # initializations param = Param() # check user arguments if args is None: args = sys.argv[1:] # get parser info parser = get_parser() arguments = parser.parse_args(args) param.download = int(arguments.download) param.path_data = arguments.path functions_to_test = arguments.function param.remove_tmp_file = int(arguments.remove_temps) jobs = arguments.jobs param.verbose = arguments.verbose start_time = time.time() # get absolute path and add slash at the end param.path_data = os.path.abspath(param.path_data) # check existence of testing data folder if not os.path.isdir(param.path_data) or param.download: downloaddata(param) # display path to data sct.printv('\nPath to testing data: ' + param.path_data, param.verbose) # create temp folder that will have all results and go in it path_tmp = os.path.abspath(arguments.execution_folder or sct.tmp_create(verbose=param.verbose)) curdir = os.getcwd() os.chdir(path_tmp) functions_parallel = list() functions_serial = list() if functions_to_test: for f in functions_to_test: if f in get_functions_parallelizable(): functions_parallel.append(f) elif f in get_functions_nonparallelizable(): functions_serial.append(f) else: sct.printv('Command-line usage error: Function "%s" is not part of the list of testing functions' % f, type='error') jobs = min(jobs, len(functions_parallel)) else: functions_parallel = get_functions_parallelizable() functions_serial = get_functions_nonparallelizable() if arguments.continue_from: first_func = arguments.continue_from if first_func in functions_parallel: functions_serial = [] functions_parallel = functions_parallel[functions_parallel.index(first_func):] elif first_func in functions_serial: functions_serial = functions_serial[functions_serial.index(first_func):] if arguments.check_filesystem and jobs != 1: print("Check filesystem used -> jobs forced to 1") jobs = 1 print("Will run through the following tests:") if functions_serial: print("- sequentially: {}".format(" ".join(functions_serial))) if functions_parallel: print("- in parallel with {} jobs: {}".format(jobs, " ".join(functions_parallel))) list_status = [] for name, functions in ( ("serial", functions_serial), ("parallel", functions_parallel), ): if not functions: continue if any([s for (f, s) in list_status]) and arguments.abort_on_failure: break try: if functions == functions_parallel and jobs != 1: pool = multiprocessing.Pool(processes=jobs) results = list() # loop across functions and run tests for f in functions: func_param = copy.deepcopy(param) func_param.path_output = f res = pool.apply_async(process_function_multiproc, (f, func_param,)) results.append(res) else: pool = None for idx_function, f in enumerate(functions): print_line('Checking ' + f) if functions == functions_serial or jobs == 1: if arguments.check_filesystem: if os.path.exists(os.path.join(path_tmp, f)): shutil.rmtree(os.path.join(path_tmp, f)) sig_0 = fs_signature(path_tmp) func_param = copy.deepcopy(param) func_param.path_output = f res = process_function(f, func_param) if arguments.check_filesystem: sig_1 = fs_signature(path_tmp) fs_ok(sig_0, sig_1, exclude=(f,)) else: res = results[idx_function].get() list_output, list_status_function = res # manage status if any(list_status_function): if 1 in list_status_function: print_fail() status = (f, 1) else: print_warning() status = (f, 99) for output in list_output: for line in output.splitlines(): print(" %s" % line) else: print_ok() if param.verbose: for output in list_output: for line in output.splitlines(): print(" %s" % line) status = (f, 0) # append status function to global list of status list_status.append(status) if any([s for (f, s) in list_status]) and arguments.abort_on_failure: break except KeyboardInterrupt: raise finally: if pool: pool.terminate() pool.join() print('status: ' + str([s for (f, s) in list_status])) if any([s for (f, s) in list_status]): print("Failures: {}".format(" ".join([f for (f, s) in list_status if s]))) # display elapsed time elapsed_time = time.time() - start_time sct.printv('Finished! Elapsed time: ' + str(int(np.round(elapsed_time))) + 's\n') # come back os.chdir(curdir) # remove temp files if param.remove_tmp_file and arguments.execution_folder is None: sct.printv('\nRemove temporary files...', 0) sct.rmtree(path_tmp) e = 0 if any([s for (f, s) in list_status]): e = 1 # print(e) sys.exit(e)
def register_slicewise(fname_src, fname_dest, fname_mask='', warp_forward_out='step0Warp.nii.gz', warp_inverse_out='step0InverseWarp.nii.gz', paramreg=None, ants_registration_params=None, path_qc='./', remove_temp_files=0, verbose=0): im_and_seg = (paramreg.algo == 'centermassrot') and (paramreg.rot_method == 'hog') # bool for simplicity # future contributor wanting to implement a method that use both im and seg will add: and (paramreg.rot_method == 'OTHER_METHOD') if im_and_seg is True: fname_src_im = fname_src[0] fname_dest_im = fname_dest[0] fname_src_seg = fname_src[1] fname_dest_seg = fname_dest[1] del fname_src del fname_dest # to be sure it is not missused later # create temporary folder path_tmp = sct.tmp_create(basename="register", verbose=verbose) # copy data to temp folder sct.printv('\nCopy input data to temp folder...', verbose) if im_and_seg is False: convert(fname_src, os.path.join(path_tmp, "src.nii")) convert(fname_dest, os.path.join(path_tmp, "dest.nii")) else: convert(fname_src_im, os.path.join(path_tmp, "src_im.nii")) convert(fname_dest_im, os.path.join(path_tmp, "dest_im.nii")) convert(fname_src_seg, os.path.join(path_tmp, "src_seg.nii")) convert(fname_dest_seg, os.path.join(path_tmp, "dest_seg.nii")) if fname_mask != '': convert(fname_mask, os.path.join(path_tmp, "mask.nii.gz")) # go to temporary folder curdir = os.getcwd() os.chdir(path_tmp) # Calculate displacement if paramreg.algo == 'centermass': # translation of center of mass between source and destination in voxel space register2d_centermassrot('src.nii', 'dest.nii', fname_warp=warp_forward_out, fname_warp_inv=warp_inverse_out, rot=0, polydeg=int(paramreg.poly), path_qc=path_qc, verbose=verbose) elif paramreg.algo == 'centermassrot': if im_and_seg is False: # translation of center of mass and rotation based on source and destination first eigenvectors from PCA. register2d_centermassrot('src.nii', 'dest.nii', fname_warp=warp_forward_out, fname_warp_inv=warp_inverse_out, rot=1, polydeg=int(paramreg.poly), path_qc=path_qc, verbose=verbose, pca_eigenratio_th=float(paramreg.pca_eigenratio_th)) else: # translation based of center of mass and rotation based on the symmetry of the image register2d_centermassrot(['src_im.nii','src_seg.nii'], ['dest_im.nii', 'dest_seg.nii'], fname_warp=warp_forward_out, fname_warp_inv=warp_inverse_out, rot=2, polydeg=int(paramreg.poly), path_qc=path_qc, verbose=verbose) elif paramreg.algo == 'columnwise': # scaling R-L, then column-wise center of mass alignment and scaling register2d_columnwise('src.nii', 'dest.nii', fname_warp=warp_forward_out, fname_warp_inv=warp_inverse_out, verbose=verbose, path_qc=path_qc, smoothWarpXY=int(paramreg.smoothWarpXY)) else: # convert SCT flags into ANTs-compatible flags algo_dic = {'translation': 'Translation', 'rigid': 'Rigid', 'affine': 'Affine', 'syn': 'SyN', 'bsplinesyn': 'BSplineSyN', 'centermass': 'centermass'} paramreg.algo = algo_dic[paramreg.algo] # run slicewise registration register2d('src.nii', 'dest.nii', fname_mask=fname_mask, fname_warp=warp_forward_out, fname_warp_inv=warp_inverse_out, paramreg=paramreg, ants_registration_params=ants_registration_params, verbose=verbose) sct.printv('\nMove warping fields...', verbose) sct.copy(warp_forward_out, curdir) sct.copy(warp_inverse_out, curdir) # go back os.chdir(curdir) if remove_temp_files: sct.rmtree(path_tmp, verbose=verbose)
def main(args=None): if args is None: args = sys.argv[1:] # create param objects param_seg = ParamSeg() param_data = ParamData() param_model = ParamModel() param = Param() # get parser parser = get_parser() arguments = parser.parse(args) # set param arguments ad inputted by user param_seg.fname_im = arguments["-i"] param_seg.fname_im_original = arguments["-i"] param_seg.fname_seg = arguments["-s"] if '-vertfile' in arguments: if extract_fname(arguments['-vertfile'])[1].lower() == "none": param_seg.fname_level = None elif os.path.isfile(arguments['-vertfile']): param_seg.fname_level = arguments['-vertfile'] else: param_seg.fname_level = None printv( 'WARNING: -vertfile input file: "' + arguments['-vertfile'] + '" does not exist.\nSegmenting GM without using vertebral information', 1, 'warning') if '-denoising' in arguments: param_data.denoising = bool(int(arguments['-denoising'])) if '-normalization' in arguments: param_data.normalization = bool(int(arguments['-normalization'])) if '-p' in arguments: param_data.register_param = arguments['-p'] if '-w-levels' in arguments: param_seg.weight_level = arguments['-w-levels'] if '-w-coordi' in arguments: param_seg.weight_coord = arguments['-w-coordi'] if '-thr-sim' in arguments: param_seg.thr_similarity = arguments['-thr-sim'] if '-model' in arguments: param_model.path_model_to_load = os.path.abspath(arguments['-model']) if '-res-type' in arguments: param_seg.type_seg = arguments['-res-type'] if '-ratio' in arguments: param_seg.ratio = arguments['-ratio'] if '-ref' in arguments: param_seg.fname_manual_gmseg = arguments['-ref'] if '-ofolder' in arguments: param_seg.path_results = os.path.abspath(arguments['-ofolder']) param_seg.qc = arguments.get("-qc", None) if '-r' in arguments: param.rm_tmp = bool(int(arguments['-r'])) if '-v' in arguments: param.verbose = arguments['-v'] start_time = time.time() seg_gm = SegmentGM(param_seg=param_seg, param_data=param_data, param_model=param_model, param=param) seg_gm.segment() elapsed_time = time.time() - start_time printv( '\nFinished! Elapsed time: ' + str(int(np.round(elapsed_time))) + 's', param.verbose) # save quality control and sct.printv(info) if param_seg.type_seg == 'bin': wm_col = 'red' gm_col = 'blue' b = '0,1' else: wm_col = 'blue-lightblue' gm_col = 'red-yellow' b = '0.4,1' if param_seg.qc is not None: generate_qc(param_seg.fname_im_original, seg_gm.fname_res_gmseg, seg_gm.fname_res_wmseg, param_seg, args, os.path.abspath(param_seg.qc)) if param.rm_tmp: # remove tmp_dir sct.rmtree(seg_gm.tmp_dir) sct.display_viewer_syntax([ param_seg.fname_im_original, seg_gm.fname_res_gmseg, seg_gm.fname_res_wmseg ], colormaps=['gray', gm_col, wm_col], minmax=['', b, b], opacities=['1', '0.7', '0.7'], verbose=param.verbose)
def main(): # Check input parameters try: opts, args = getopt.getopt(sys.argv[1:], 'h:d:p:r:t:') except getopt.GetoptError: usage() for opt, arg in opts: if opt == '-h': usage() sys.exit(0) if opt == '-d': param.download = int(arg) if opt == '-p': param.path_data = arg if opt == '-t': if ',' in arg: param.data = arg.split(',') else: param.data = arg if opt == '-r': param.remove_tmp_file = int(arg) print(param.data) start_time = time.time() # download data if param.download: sct.printv('\nDownloading testing data...', param.verbose) # remove data folder if exist if os.path.exists('PropSeg_data'): sct.printv('WARNING: PropSeg_data already exists. Removing it...', param.verbose, 'warning') sct.rmtree('PropSeg_data') # clone git repos sct.run('git clone ' + param.url_git) # update path_data field param.path_data = 'PropSeg_data' # get absolute path and add slash at the end param.path_data = sct.slash_at_the_end(os.path.abspath(param.path_data), 1) # segment all data in t1 folder results_t1 = [] sum_old, sum_new = 0, 0 if 't1' in param.data: for dirname in os.listdir(os.path.join(param.path_data, "t1")): if dirname not in ['._.DS_Store', '.DS_Store']: for filename in os.listdir( os.path.join(param.path_data, "t1", dirname)): if filename.startswith('t1') and not filename.endswith( '_seg.nii.gz') and not filename.endswith( '_detection.nii.gz') and not filename.endswith( '.vtk'): print(dirname, filename) [d_old, d_new], [r_old, r_new] = segmentation( os.path.join(param.path_data, "t1", dirname, filename), os.path.join(param.path_data, "t1", dirname), 't1') if d_old == 0: d_old = 'OK' sum_old = sum_old + 1 else: d_old = 'Not In' if d_new == 0: d_new = 'OK' sum_new = sum_new + 1 else: d_new = 'Not In' results_t1.append([ dirname, d_old, d_new, round(r_old, 2), round(r_new, 2) ]) # compute average results_t1.append([ 'average', sum_old, sum_new, np.mean([line[3] for line in results_t1]), np.mean([line[4] for line in results_t1]) ]) # segment all data in t2 folder results_t2 = [] sum_old, sum_new = 0, 0 if 't2' in param.data: for dirname in os.listdir(os.path.join(param.path_data, "t2")): if dirname not in ['._.DS_Store', '.DS_Store']: for filename in os.listdir( os.path.join(param.path_data, "t2", dirname)): if filename.startswith('t2_') and not filename.endswith( '_seg.nii.gz') and not filename.endswith( '_detection.nii.gz') and not filename.endswith( '.vtk'): print(dirname, filename) [d_old, d_new], [r_old, r_new] = segmentation( os.path.join(param.path_data, "t2", dirname, filename), os.path.join(param.path_data, "t2", dirname), 't2') if d_old == 0: d_old = 'OK' sum_old = sum_old + 1 else: d_old = 'Not In' if d_new == 0: d_new = 'OK' sum_new = sum_new + 1 else: d_new = 'Not In' results_t2.append([ dirname, d_old, d_new, round(r_old, 2), round(r_new, 2) ]) # compute average results_t2.append([ 'average', sum_old, sum_new, np.mean([line[3] for line in results_t2]), np.mean([line[4] for line in results_t2]) ]) results_dmri = [] sum_old, sum_new = 0, 0 if 'dmri' in param.data: for dirname in os.listdir(os.path.join(param.path_data, "dmri")): if dirname not in ['._.DS_Store', '.DS_Store']: for filename in os.listdir( os.path.join(param.path_data, "dmri", dirname)): if filename.startswith('dmri') and not filename.endswith( '_seg.nii.gz') and not filename.endswith( '_detection.nii.gz') and not filename.endswith( '.vtk'): print(dirname, filename) [d_old, d_new], [r_old, r_new] = segmentation( os.path.join(param.path_data, "dmri", dirname, filename), os.path.join(param.path_data, "dmri", dirname), 't1') if d_old == 0: d_old = 'OK' sum_old = sum_old + 1 else: d_old = 'Not In' if d_new == 0: d_new = 'OK' sum_new = sum_new + 1 else: d_new = 'Not In' results_dmri.append([ dirname, d_old, d_new, round(r_old, 2), round(r_new, 2) ]) # compute average results_dmri.append([ 'average', sum_old, sum_new, np.mean([line[3] for line in results_dmri]), np.mean([line[4] for line in results_dmri]) ]) if 't1' in param.data: print('') print( tabulate(results_t1, headers=[ "Subject-T1", "Detect-old", "Detect-new", "DC-old", "DC-new" ], floatfmt=".2f")) if 't2' in param.data: print('') print( tabulate(results_t2, headers=[ "Subject-T2", "Detect-old", "Detect-new", "DC-old", "DC-new" ], floatfmt=".2f")) if 'dmri' in param.data: print('') print( tabulate(results_dmri, headers=[ "Subject-dmri", "Detect-old", "Detect-new", "DC-old", "DC-new" ], floatfmt=".2f")) # display elapsed time elapsed_time = time.time() - start_time print('Finished! Elapsed time: ' + str(int(round(elapsed_time))) + 's\n') # remove temp files if param.remove_tmp_file: sct.printv('\nRemove temporary files...', param.verbose) sct.rmtree(param.path_tmp) e = 0 for i in range(0, len(results_t2)): if (results_t2[i][4] < 0.8 or results_t2[i][4] < results_t2[i][3]): e = e + 1 sys.exit(e)
def main(args=None): # Initialization # fname_anat = '' # fname_centerline = '' sigma = 3 # default value of the standard deviation for the Gaussian smoothing (in terms of number of voxels) param = Param() # remove_temp_files = param.remove_temp_files # verbose = param.verbose start_time = time.time() parser = get_parser() arguments = parser.parse(sys.argv[1:]) fname_anat = arguments['-i'] fname_centerline = arguments['-s'] if '-smooth' in arguments: sigma = arguments['-smooth'] if '-param' in arguments: param.update(arguments['-param']) if '-r' in arguments: remove_temp_files = int(arguments['-r']) if '-v' in arguments: verbose = int(arguments['-v']) # Display arguments sct.printv('\nCheck input arguments...') sct.printv(' Volume to smooth .................. ' + fname_anat) sct.printv(' Centerline ........................ ' + fname_centerline) sct.printv(' Sigma (mm) ........................ ' + str(sigma)) sct.printv(' Verbose ........................... ' + str(verbose)) # Check that input is 3D: from spinalcordtoolbox.image import Image nx, ny, nz, nt, px, py, pz, pt = Image(fname_anat).dim dim = 4 # by default, will be adjusted later if nt == 1: dim = 3 if nz == 1: dim = 2 if dim == 4: sct.printv( 'WARNING: the input image is 4D, please split your image to 3D before smoothing spinalcord using :\n' 'sct_image -i ' + fname_anat + ' -split t -o ' + fname_anat, verbose, 'warning') sct.printv('4D images not supported, aborting ...', verbose, 'error') # Extract path/file/extension path_anat, file_anat, ext_anat = sct.extract_fname(fname_anat) path_centerline, file_centerline, ext_centerline = sct.extract_fname( fname_centerline) path_tmp = sct.tmp_create(basename="smooth_spinalcord", verbose=verbose) # Copying input data to tmp folder sct.printv('\nCopying input data to tmp folder and convert to nii...', verbose) sct.copy(fname_anat, os.path.join(path_tmp, "anat" + ext_anat)) sct.copy(fname_centerline, os.path.join(path_tmp, "centerline" + ext_centerline)) # go to tmp folder curdir = os.getcwd() os.chdir(path_tmp) # convert to nii format convert('anat' + ext_anat, 'anat.nii') convert('centerline' + ext_centerline, 'centerline.nii') # Change orientation of the input image into RPI sct.printv('\nOrient input volume to RPI orientation...') fname_anat_rpi = msct_image.Image("anat.nii") \ .change_orientation("RPI", generate_path=True) \ .save() \ .absolutepath # Change orientation of the input image into RPI sct.printv('\nOrient centerline to RPI orientation...') fname_centerline_rpi = msct_image.Image("centerline.nii") \ .change_orientation("RPI", generate_path=True) \ .save() \ .absolutepath # Straighten the spinal cord # straighten segmentation sct.printv('\nStraighten the spinal cord using centerline/segmentation...', verbose) cache_sig = sct.cache_signature( input_files=[fname_anat_rpi, fname_centerline_rpi], input_params={"x": "spline"}, ) cachefile = os.path.join(curdir, "straightening.cache") if sct.cache_valid(cachefile, cache_sig) and os.path.isfile( os.path.join( curdir, 'warp_curve2straight.nii.gz')) and os.path.isfile( os.path.join( curdir, 'warp_straight2curve.nii.gz')) and os.path.isfile( os.path.join(curdir, 'straight_ref.nii.gz')): # if they exist, copy them into current folder sct.printv('Reusing existing warping field which seems to be valid', verbose, 'warning') sct.copy(os.path.join(curdir, 'warp_curve2straight.nii.gz'), 'warp_curve2straight.nii.gz') sct.copy(os.path.join(curdir, 'warp_straight2curve.nii.gz'), 'warp_straight2curve.nii.gz') sct.copy(os.path.join(curdir, 'straight_ref.nii.gz'), 'straight_ref.nii.gz') # apply straightening sct.run([ 'sct_apply_transfo', '-i', fname_anat_rpi, '-w', 'warp_curve2straight.nii.gz', '-d', 'straight_ref.nii.gz', '-o', 'anat_rpi_straight.nii', '-x', 'spline' ], verbose) else: sct.run([ 'sct_straighten_spinalcord', '-i', fname_anat_rpi, '-o', 'anat_rpi_straight.nii', '-s', fname_centerline_rpi, '-x', 'spline', '-param', 'algo_fitting=' + param.algo_fitting ], verbose) sct.cache_save(cachefile, cache_sig) # Smooth the straightened image along z sct.printv('\nSmooth the straightened image along z...') sct.run([ 'sct_maths', '-i', 'anat_rpi_straight.nii', '-smooth', '0,0,' + str(sigma), '-o', 'anat_rpi_straight_smooth.nii' ], verbose) # Apply the reversed warping field to get back the curved spinal cord sct.printv( '\nApply the reversed warping field to get back the curved spinal cord...' ) sct.run([ 'sct_apply_transfo', '-i', 'anat_rpi_straight_smooth.nii', '-o', 'anat_rpi_straight_smooth_curved.nii', '-d', 'anat.nii', '-w', 'warp_straight2curve.nii.gz', '-x', 'spline' ], verbose) # replace zeroed voxels by original image (issue #937) sct.printv('\nReplace zeroed voxels by original image...', verbose) nii_smooth = Image('anat_rpi_straight_smooth_curved.nii') data_smooth = nii_smooth.data data_input = Image('anat.nii').data indzero = np.where(data_smooth == 0) data_smooth[indzero] = data_input[indzero] nii_smooth.data = data_smooth nii_smooth.save('anat_rpi_straight_smooth_curved_nonzero.nii') # come back os.chdir(curdir) # Generate output file sct.printv('\nGenerate output file...') sct.generate_output_file( os.path.join(path_tmp, "anat_rpi_straight_smooth_curved_nonzero.nii"), file_anat + '_smooth' + ext_anat) # Remove temporary files if remove_temp_files == 1: sct.printv('\nRemove temporary files...') sct.rmtree(path_tmp) # Display elapsed time elapsed_time = time.time() - start_time sct.printv('\nFinished! Elapsed time: ' + str(int(np.round(elapsed_time))) + 's\n') sct.display_viewer_syntax([file_anat, file_anat + '_smooth'], verbose=verbose)
def merge_images(list_fname_src, fname_dest, list_fname_warp, param): """ Merge multiple source images onto destination space. All images are warped to the destination space and then added. To deal with overlap during merging (e.g. one voxel in destination image is shared with two input images), the resulting voxel is divided by the sum of the partial volume of each image. For example, if src(x,y,z)=1 is mapped to dest(i,j,k) with a partial volume of 0.5 (because destination voxel is bigger), then its value after linear interpolation will be 0.5. To account for partial volume, the resulting voxel will be: dest(i,j,k) = 0.5*0.5/0.5 = 0.5. Now, if two voxels overlap in the destination space, let's say: src(x,y,z)=1 and src2'(x',y',z')=1, then the resulting value will be: dest(i,j,k) = (0.5*0.5 + 0.5*0.5) / (0.5+0.5) = 0.5. So this function acts like a weighted average operator, only in destination voxels that share multiple source voxels. Parameters ---------- list_fname_src fname_dest list_fname_warp param Returns ------- """ # create temporary folder path_tmp = sct.tmp_create() # get dimensions of destination file nii_dest = msct_image.Image(fname_dest) # initialize variables data = np.zeros([nii_dest.dim[0], nii_dest.dim[1], nii_dest.dim[2], len(list_fname_src)]) partial_volume = np.zeros([nii_dest.dim[0], nii_dest.dim[1], nii_dest.dim[2], len(list_fname_src)]) data_merge = np.zeros([nii_dest.dim[0], nii_dest.dim[1], nii_dest.dim[2]]) # loop across files i_file = 0 for fname_src in list_fname_src: # apply transformation src --> dest sct_apply_transfo.main(args=[ '-i', fname_src, '-d', fname_dest, '-w', list_fname_warp[i_file], '-x', param.interp, '-o', 'src_' + str(i_file) + '_template.nii.gz', '-v', param.verbose]) # create binary mask from input file by assigning one to all non-null voxels sct_maths.main(args=[ '-i', fname_src, '-bin', str(param.almost_zero), '-o', 'src_' + str(i_file) + 'native_bin.nii.gz']) # apply transformation to binary mask to compute partial volume sct_apply_transfo.main(args=[ '-i', 'src_' + str(i_file) + 'native_bin.nii.gz', '-d', fname_dest, '-w', list_fname_warp[i_file], '-x', param.interp, '-o', 'src_' + str(i_file) + '_template_partialVolume.nii.gz']) # open data data[:, :, :, i_file] = msct_image.Image('src_' + str(i_file) + '_template.nii.gz').data partial_volume[:, :, :, i_file] = msct_image.Image('src_' + str(i_file) + '_template_partialVolume.nii.gz').data i_file += 1 # merge files using partial volume information (and convert nan resulting from division by zero to zeros) data_merge = np.divide(np.sum(data * partial_volume, axis=3), np.sum(partial_volume, axis=3)) data_merge = np.nan_to_num(data_merge) # write result in file nii_dest.data = data_merge nii_dest.save(param.fname_out) # remove temporary folder if param.rm_tmp: sct.rmtree(path_tmp)
def apply(self): # Initialization fname_src = self.input_filename # source image (moving) fname_warp_list = self.warp_input # list of warping fields fname_out = self.output_filename # output fname_dest = self.fname_dest # destination image (fix) verbose = self.verbose remove_temp_files = self.remove_temp_files crop_reference = self.crop # if = 1, put 0 everywhere around warping field, if = 2, real crop interp = sct.get_interpolation('isct_antsApplyTransforms', self.interp) # Parse list of warping fields sct.printv('\nParse list of warping fields...', verbose) use_inverse = [] fname_warp_list_invert = [] # fname_warp_list = fname_warp_list.replace(' ', '') # remove spaces # fname_warp_list = fname_warp_list.split(",") # parse with comma for idx_warp, path_warp in enumerate(fname_warp_list): # Check if inverse matrix is specified with '-' at the beginning of file name if path_warp.startswith("-"): use_inverse.append('-i') fname_warp_list[idx_warp] = path_warp[1:] # remove '-' fname_warp_list_invert += [[use_inverse[idx_warp], fname_warp_list[idx_warp]]] else: use_inverse.append('') fname_warp_list_invert += [[path_warp]] path_warp = fname_warp_list[idx_warp] if path_warp.endswith((".nii", ".nii.gz")) \ and msct_image.Image(fname_warp_list[idx_warp]).header.get_intent()[0] != 'vector': raise ValueError("Displacement field in {} is invalid: should be encoded" \ " in a 5D file with vector intent code" \ " (see https://nifti.nimh.nih.gov/pub/dist/src/niftilib/nifti1.h" \ .format(path_warp)) # need to check if last warping field is an affine transfo isLastAffine = False path_fname, file_fname, ext_fname = sct.extract_fname(fname_warp_list_invert[-1][-1]) if ext_fname in ['.txt', '.mat']: isLastAffine = True # check if destination file is 3d if not sct.check_if_3d(fname_dest): sct.printv('ERROR: Destination data must be 3d') # N.B. Here we take the inverse of the warp list, because sct_WarpImageMultiTransform concatenates in the reverse order fname_warp_list_invert.reverse() fname_warp_list_invert = functools.reduce(lambda x,y: x+y, fname_warp_list_invert) # Extract path, file and extension path_src, file_src, ext_src = sct.extract_fname(fname_src) path_dest, file_dest, ext_dest = sct.extract_fname(fname_dest) # Get output folder and file name if fname_out == '': path_out = '' # output in user's current directory file_out = file_src + '_reg' ext_out = ext_src fname_out = os.path.join(path_out, file_out + ext_out) # Get dimensions of data sct.printv('\nGet dimensions of data...', verbose) img_src = msct_image.Image(fname_src) nx, ny, nz, nt, px, py, pz, pt = img_src.dim # nx, ny, nz, nt, px, py, pz, pt = sct.get_dimension(fname_src) sct.printv(' ' + str(nx) + ' x ' + str(ny) + ' x ' + str(nz) + ' x ' + str(nt), verbose) # if 3d if nt == 1: # Apply transformation sct.printv('\nApply transformation...', verbose) if nz in [0, 1]: dim = '2' else: dim = '3' sct.run(['isct_antsApplyTransforms', '-d', dim, '-i', fname_src, '-o', fname_out, '-t', ] + fname_warp_list_invert + [ '-r', fname_dest, ] + interp, verbose=verbose, is_sct_binary=True) # if 4d, loop across the T dimension else: path_tmp = sct.tmp_create(basename="apply_transfo", verbose=verbose) # convert to nifti into temp folder sct.printv('\nCopying input data to tmp folder and convert to nii...', verbose) img_src.save(os.path.join(path_tmp, "data.nii")) sct.copy(fname_dest, os.path.join(path_tmp, file_dest + ext_dest)) fname_warp_list_tmp = [] for fname_warp in fname_warp_list: path_warp, file_warp, ext_warp = sct.extract_fname(fname_warp) sct.copy(fname_warp, os.path.join(path_tmp, file_warp + ext_warp)) fname_warp_list_tmp.append(file_warp + ext_warp) fname_warp_list_invert_tmp = fname_warp_list_tmp[::-1] curdir = os.getcwd() os.chdir(path_tmp) # split along T dimension sct.printv('\nSplit along T dimension...', verbose) im_dat = msct_image.Image('data.nii') im_header = im_dat.hdr data_split_list = sct_image.split_data(im_dat, 3) for im in data_split_list: im.save() # apply transfo sct.printv('\nApply transformation to each 3D volume...', verbose) for it in range(nt): file_data_split = 'data_T' + str(it).zfill(4) + '.nii' file_data_split_reg = 'data_reg_T' + str(it).zfill(4) + '.nii' status, output = sct.run(['isct_antsApplyTransforms', '-d', '3', '-i', file_data_split, '-o', file_data_split_reg, '-t', ] + fname_warp_list_invert_tmp + [ '-r', file_dest + ext_dest, ] + interp, verbose, is_sct_binary=True) # Merge files back sct.printv('\nMerge file back...', verbose) import glob path_out, name_out, ext_out = sct.extract_fname(fname_out) # im_list = [Image(file_name) for file_name in glob.glob('data_reg_T*.nii')] # concat_data use to take a list of image in input, now takes a list of file names to open the files one by one (see issue #715) fname_list = glob.glob('data_reg_T*.nii') fname_list.sort() im_out = sct_image.concat_data(fname_list, 3, im_header['pixdim']) im_out.save(name_out + ext_out) os.chdir(curdir) sct.generate_output_file(os.path.join(path_tmp, name_out + ext_out), fname_out) # Delete temporary folder if specified if int(remove_temp_files): sct.printv('\nRemove temporary files...', verbose) sct.rmtree(path_tmp, verbose=verbose) # 2. crop the resulting image using dimensions from the warping field warping_field = fname_warp_list_invert[-1] # if last warping field is an affine transfo, we need to compute the space of the concatenate warping field: if isLastAffine: sct.printv('WARNING: the resulting image could have wrong apparent results. You should use an affine transformation as last transformation...', verbose, 'warning') elif crop_reference == 1: ImageCropper(input_file=fname_out, output_file=fname_out, ref=warping_field, background=0).crop() # sct.run('sct_crop_image -i '+fname_out+' -o '+fname_out+' -ref '+warping_field+' -b 0') elif crop_reference == 2: ImageCropper(input_file=fname_out, output_file=fname_out, ref=warping_field).crop() # sct.run('sct_crop_image -i '+fname_out+' -o '+fname_out+' -ref '+warping_field) sct.display_viewer_syntax([fname_dest, fname_out], verbose=verbose)
def merge_images(list_fname_src, fname_dest, list_fname_warp, param): """ Merge multiple source images onto destination space. All images are warped to the destination space and then added. To deal with overlap during merging (e.g. one voxel in destination image is shared with two input images), the resulting voxel is divided by the sum of the partial volume of each image. For example, if src(x,y,z)=1 is mapped to dest(i,j,k) with a partial volume of 0.5 (because destination voxel is bigger), then its value after linear interpolation will be 0.5. To account for partial volume, the resulting voxel will be: dest(i,j,k) = 0.5*0.5/0.5 = 0.5. Now, if two voxels overlap in the destination space, let's say: src(x,y,z)=1 and src2'(x',y',z')=1, then the resulting value will be: dest(i,j,k) = (0.5*0.5 + 0.5*0.5) / (0.5+0.5) = 0.5. So this function acts like a weighted average operator, only in destination voxels that share multiple source voxels. Parameters ---------- list_fname_src fname_dest list_fname_warp param Returns ------- """ # create temporary folder path_tmp = sct.tmp_create() # get dimensions of destination file nii_dest = msct_image.Image(fname_dest) # initialize variables data = np.zeros([ nii_dest.dim[0], nii_dest.dim[1], nii_dest.dim[2], len(list_fname_src) ]) partial_volume = np.zeros([ nii_dest.dim[0], nii_dest.dim[1], nii_dest.dim[2], len(list_fname_src) ]) data_merge = np.zeros([nii_dest.dim[0], nii_dest.dim[1], nii_dest.dim[2]]) # loop across files i_file = 0 for fname_src in list_fname_src: # apply transformation src --> dest sct_apply_transfo.main(args=[ '-i', fname_src, '-d', fname_dest, '-w', list_fname_warp[i_file], '-x', param.interp, '-o', 'src_' + str(i_file) + '_template.nii.gz', '-v', param.verbose ]) # create binary mask from input file by assigning one to all non-null voxels sct_maths.main(args=[ '-i', fname_src, '-bin', str(param.almost_zero), '-o', 'src_' + str(i_file) + 'native_bin.nii.gz' ]) # apply transformation to binary mask to compute partial volume sct_apply_transfo.main(args=[ '-i', 'src_' + str(i_file) + 'native_bin.nii.gz', '-d', fname_dest, '-w', list_fname_warp[i_file], '-x', param.interp, '-o', 'src_' + str(i_file) + '_template_partialVolume.nii.gz' ]) # open data data[:, :, :, i_file] = msct_image.Image('src_' + str(i_file) + '_template.nii.gz').data partial_volume[:, :, :, i_file] = msct_image.Image( 'src_' + str(i_file) + '_template_partialVolume.nii.gz').data i_file += 1 # merge files using partial volume information (and convert nan resulting from division by zero to zeros) data_merge = np.divide(np.sum(data * partial_volume, axis=3), np.sum(partial_volume, axis=3)) data_merge = np.nan_to_num(data_merge) # write result in file nii_dest.data = data_merge nii_dest.save(param.fname_out) # remove temporary folder if param.rm_tmp: sct.rmtree(path_tmp)
def crop_with_gui(self): import matplotlib.pyplot as plt import matplotlib.image as mpimg # Initialization fname_data = self.input_filename suffix_out = '_crop' remove_temp_files = self.rm_tmp_files verbose = self.verbose # Check file existence sct.printv('\nCheck file existence...', verbose) sct.check_file_exist(fname_data, verbose) # Get dimensions of data sct.printv('\nGet dimensions of data...', verbose) nx, ny, nz, nt, px, py, pz, pt = Image(fname_data).dim sct.printv('.. ' + str(nx) + ' x ' + str(ny) + ' x ' + str(nz), verbose) # check if 4D data if not nt == 1: sct.printv('\nERROR in ' + os.path.basename(__file__) + ': Data should be 3D.\n', 1, 'error') sys.exit(2) # sct.printv(arguments) sct.printv('\nCheck parameters:') sct.printv(' data ................... ' + fname_data) # Extract path/file/extension path_data, file_data, ext_data = sct.extract_fname(fname_data) path_out, file_out, ext_out = '', file_data + suffix_out, ext_data path_tmp = sct.tmp_create() + "/" # copy files into tmp folder from sct_convert import convert sct.printv('\nCopying input data to tmp folder and convert to nii...', verbose) convert(fname_data, os.path.join(path_tmp, "data.nii")) # go to tmp folder curdir = os.getcwd() os.chdir(path_tmp) # change orientation sct.printv('\nChange orientation to RPI...', verbose) Image('data.nii').change_orientation("RPI").save('data_rpi.nii') # get image of medial slab sct.printv('\nGet image of medial slab...', verbose) image_array = nibabel.load('data_rpi.nii').get_data() nx, ny, nz = image_array.shape scipy.misc.imsave('image.jpg', image_array[math.floor(nx / 2), :, :]) # Display the image sct.printv('\nDisplay image and get cropping region...', verbose) fig = plt.figure() # fig = plt.gcf() # ax = plt.gca() ax = fig.add_subplot(111) img = mpimg.imread("image.jpg") implot = ax.imshow(img.T) implot.set_cmap('gray') plt.gca().invert_yaxis() # mouse callback ax.set_title('Left click on the top and bottom of your cropping field.\n Right click to remove last point.\n Close window when your done.') line, = ax.plot([], [], 'ro') # empty line cropping_coordinates = LineBuilder(line) plt.show() # disconnect callback # fig.canvas.mpl_disconnect(line) # check if user clicked two times if len(cropping_coordinates.xs) != 2: sct.printv('\nERROR: You have to select two points. Exit program.\n', 1, 'error') sys.exit(2) # convert coordinates to integer zcrop = [int(i) for i in cropping_coordinates.ys] # sort coordinates zcrop.sort() # crop image sct.printv('\nCrop image...', verbose) nii = Image('data_rpi.nii') data_crop = nii.data[:, :, zcrop[0]:zcrop[1]] nii.data = data_crop nii.absolutepath = 'data_rpi_crop.nii' nii.save() # come back os.chdir(curdir) sct.printv('\nGenerate output files...', verbose) sct.generate_output_file(os.path.join(path_tmp, "data_rpi_crop.nii"), os.path.join(path_out, file_out + ext_out)) # Remove temporary files if remove_temp_files == 1: sct.printv('\nRemove temporary files...') sct.rmtree(path_tmp) sct.display_viewer_syntax(files=[os.path.join(path_out, file_out + ext_out)])
def main(args=None): # initializations initz = '' initcenter = '' fname_initlabel = '' file_labelz = 'labelz.nii.gz' param = Param() # check user arguments if not args: args = sys.argv[1:] # Get parser info parser = get_parser() arguments = parser.parse(args) fname_in = os.path.abspath(arguments["-i"]) fname_seg = os.path.abspath(arguments['-s']) contrast = arguments['-c'] path_template = arguments['-t'] scale_dist = arguments['-scale-dist'] if '-ofolder' in arguments: path_output = arguments['-ofolder'] else: path_output = os.curdir param.path_qc = arguments.get("-qc", None) if '-discfile' in arguments: fname_disc = os.path.abspath(arguments['-discfile']) else: fname_disc = None if '-initz' in arguments: initz = arguments['-initz'] if '-initcenter' in arguments: initcenter = arguments['-initcenter'] # if user provided text file, parse and overwrite arguments if '-initfile' in arguments: file = open(arguments['-initfile'], 'r') initfile = ' ' + file.read().replace('\n', '') arg_initfile = initfile.split(' ') for idx_arg, arg in enumerate(arg_initfile): if arg == '-initz': initz = [int(x) for x in arg_initfile[idx_arg + 1].split(',')] if arg == '-initcenter': initcenter = int(arg_initfile[idx_arg + 1]) if '-initlabel' in arguments: # get absolute path of label fname_initlabel = os.path.abspath(arguments['-initlabel']) if '-param' in arguments: param.update(arguments['-param'][0]) verbose = int(arguments.get('-v')) sct.init_sct(log_level=verbose, update=True) # Update log level remove_temp_files = int(arguments['-r']) denoise = int(arguments['-denoise']) laplacian = int(arguments['-laplacian']) path_tmp = sct.tmp_create(basename="label_vertebrae", verbose=verbose) # Copying input data to tmp folder sct.printv('\nCopying input data to tmp folder...', verbose) Image(fname_in).save(os.path.join(path_tmp, "data.nii")) Image(fname_seg).save(os.path.join(path_tmp, "segmentation.nii")) # Go go temp folder curdir = os.getcwd() os.chdir(path_tmp) # Straighten spinal cord sct.printv('\nStraighten spinal cord...', verbose) # check if warp_curve2straight and warp_straight2curve already exist (i.e. no need to do it another time) cache_sig = sct.cache_signature( input_files=[fname_in, fname_seg], ) cachefile = os.path.join(curdir, "straightening.cache") if sct.cache_valid(cachefile, cache_sig) and os.path.isfile(os.path.join(curdir, "warp_curve2straight.nii.gz")) and os.path.isfile(os.path.join(curdir, "warp_straight2curve.nii.gz")) and os.path.isfile(os.path.join(curdir, "straight_ref.nii.gz")): # if they exist, copy them into current folder sct.printv('Reusing existing warping field which seems to be valid', verbose, 'warning') sct.copy(os.path.join(curdir, "warp_curve2straight.nii.gz"), 'warp_curve2straight.nii.gz') sct.copy(os.path.join(curdir, "warp_straight2curve.nii.gz"), 'warp_straight2curve.nii.gz') sct.copy(os.path.join(curdir, "straight_ref.nii.gz"), 'straight_ref.nii.gz') # apply straightening s, o = sct.run(['sct_apply_transfo', '-i', 'data.nii', '-w', 'warp_curve2straight.nii.gz', '-d', 'straight_ref.nii.gz', '-o', 'data_straight.nii']) else: cmd = ['sct_straighten_spinalcord', '-i', 'data.nii', '-s', 'segmentation.nii', '-r', str(remove_temp_files)] if param.path_qc is not None and os.environ.get("SCT_RECURSIVE_QC", None) == "1": cmd += ['-qc', param.path_qc] s, o = sct.run(cmd) sct.cache_save(cachefile, cache_sig) # resample to 0.5mm isotropic to match template resolution sct.printv('\nResample to 0.5mm isotropic...', verbose) s, o = sct.run(['sct_resample', '-i', 'data_straight.nii', '-mm', '0.5x0.5x0.5', '-x', 'linear', '-o', 'data_straightr.nii'], verbose=verbose) # Apply straightening to segmentation # N.B. Output is RPI sct.printv('\nApply straightening to segmentation...', verbose) sct.run('isct_antsApplyTransforms -d 3 -i %s -r %s -t %s -o %s -n %s' % ('segmentation.nii', 'data_straightr.nii', 'warp_curve2straight.nii.gz', 'segmentation_straight.nii', 'Linear'), verbose=verbose, is_sct_binary=True, ) # Threshold segmentation at 0.5 sct.run(['sct_maths', '-i', 'segmentation_straight.nii', '-thr', '0.5', '-o', 'segmentation_straight.nii'], verbose) # If disc label file is provided, label vertebrae using that file instead of automatically if fname_disc: # Apply straightening to disc-label sct.printv('\nApply straightening to disc labels...', verbose) sct.run('isct_antsApplyTransforms -d 3 -i %s -r %s -t %s -o %s -n %s' % (fname_disc, 'data_straightr.nii', 'warp_curve2straight.nii.gz', 'labeldisc_straight.nii.gz', 'NearestNeighbor'), verbose=verbose, is_sct_binary=True, ) label_vert('segmentation_straight.nii', 'labeldisc_straight.nii.gz', verbose=1) else: # create label to identify disc sct.printv('\nCreate label to identify disc...', verbose) fname_labelz = os.path.join(path_tmp, file_labelz) if initz or initcenter: if initcenter: # find z centered in FOV nii = Image('segmentation.nii').change_orientation("RPI") nx, ny, nz, nt, px, py, pz, pt = nii.dim # Get dimensions z_center = int(np.round(nz / 2)) # get z_center initz = [z_center, initcenter] # create single label and output as labels.nii.gz label = ProcessLabels('segmentation.nii', fname_output='tmp.labelz.nii.gz', coordinates=['{},{}'.format(initz[0], initz[1])]) im_label = label.process('create-seg') im_label.data = sct_maths.dilate(im_label.data, [3]) # TODO: create a dilation method specific to labels, # which does not apply a convolution across all voxels (highly inneficient) im_label.save(fname_labelz) elif fname_initlabel: import sct_label_utils # subtract "1" to label value because due to legacy, in this code the disc C2-C3 has value "2", whereas in the # recent version of SCT it is defined as "3". Therefore, when asking the user to define a label, we point to the # new definition of labels (i.e., C2-C3 = 3). sct_label_utils.main(['-i', fname_initlabel, '-add', '-1', '-o', fname_labelz]) else: # automatically finds C2-C3 disc im_data = Image('data.nii') im_seg = Image('segmentation.nii') im_label_c2c3 = detect_c2c3(im_data, im_seg, contrast) ind_label = np.where(im_label_c2c3.data) if not np.size(ind_label) == 0: # subtract "1" to label value because due to legacy, in this code the disc C2-C3 has value "2", whereas in the # recent version of SCT it is defined as "3". im_label_c2c3.data[ind_label] = 2 else: sct.printv('Automatic C2-C3 detection failed. Please provide manual label with sct_label_utils', 1, 'error') im_label_c2c3.save(fname_labelz) # dilate label so it is not lost when applying warping sct_maths.main(['-i', fname_labelz, '-dilate', '3', '-o', fname_labelz]) # Apply straightening to z-label sct.printv('\nAnd apply straightening to label...', verbose) sct.run('isct_antsApplyTransforms -d 3 -i %s -r %s -t %s -o %s -n %s' % (file_labelz, 'data_straightr.nii', 'warp_curve2straight.nii.gz', 'labelz_straight.nii.gz', 'NearestNeighbor'), verbose=verbose, is_sct_binary=True, ) # get z value and disk value to initialize labeling sct.printv('\nGet z and disc values from straight label...', verbose) init_disc = get_z_and_disc_values_from_label('labelz_straight.nii.gz') sct.printv('.. ' + str(init_disc), verbose) # denoise data if denoise: sct.printv('\nDenoise data...', verbose) sct.run(['sct_maths', '-i', 'data_straightr.nii', '-denoise', 'h=0.05', '-o', 'data_straightr.nii'], verbose) # apply laplacian filtering if laplacian: sct.printv('\nApply Laplacian filter...', verbose) sct.run(['sct_maths', '-i', 'data_straightr.nii', '-laplacian', '1', '-o', 'data_straightr.nii'], verbose) # detect vertebral levels on straight spinal cord vertebral_detection('data_straightr.nii', 'segmentation_straight.nii', contrast, param, init_disc=init_disc, verbose=verbose, path_template=path_template, path_output=path_output, scale_dist=scale_dist) # un-straighten labeled spinal cord sct.printv('\nUn-straighten labeling...', verbose) sct.run('isct_antsApplyTransforms -d 3 -i %s -r %s -t %s -o %s -n %s' % ('segmentation_straight_labeled.nii', 'segmentation.nii', 'warp_straight2curve.nii.gz', 'segmentation_labeled.nii', 'NearestNeighbor'), verbose=verbose, is_sct_binary=True, ) # Clean labeled segmentation sct.printv('\nClean labeled segmentation (correct interpolation errors)...', verbose) clean_labeled_segmentation('segmentation_labeled.nii', 'segmentation.nii', 'segmentation_labeled.nii') # label discs sct.printv('\nLabel discs...', verbose) label_discs('segmentation_labeled.nii', verbose=verbose) # come back os.chdir(curdir) # Generate output files path_seg, file_seg, ext_seg = sct.extract_fname(fname_seg) fname_seg_labeled = os.path.join(path_output, file_seg + '_labeled' + ext_seg) sct.printv('\nGenerate output files...', verbose) sct.generate_output_file(os.path.join(path_tmp, "segmentation_labeled.nii"), fname_seg_labeled) sct.generate_output_file(os.path.join(path_tmp, "segmentation_labeled_disc.nii"), os.path.join(path_output, file_seg + '_labeled_discs' + ext_seg)) # copy straightening files in case subsequent SCT functions need them sct.generate_output_file(os.path.join(path_tmp, "warp_curve2straight.nii.gz"), os.path.join(path_output, "warp_curve2straight.nii.gz"), verbose) sct.generate_output_file(os.path.join(path_tmp, "warp_straight2curve.nii.gz"), os.path.join(path_output, "warp_straight2curve.nii.gz"), verbose) sct.generate_output_file(os.path.join(path_tmp, "straight_ref.nii.gz"), os.path.join(path_output, "straight_ref.nii.gz"), verbose) # Remove temporary files if remove_temp_files == 1: sct.printv('\nRemove temporary files...', verbose) sct.rmtree(path_tmp) # Generate QC report if param.path_qc is not None: path_qc = os.path.abspath(param.path_qc) qc_dataset = arguments.get("-qc-dataset", None) qc_subject = arguments.get("-qc-subject", None) labeled_seg_file = os.path.join(path_output, file_seg + '_labeled' + ext_seg) generate_qc(fname_in, fname_seg=labeled_seg_file, args=args, path_qc=os.path.abspath(path_qc), dataset=qc_dataset, subject=qc_subject, process='sct_label_vertebrae') sct.display_viewer_syntax([fname_in, fname_seg_labeled], colormaps=['', 'subcortical'], opacities=['1', '0.5'])
def main(args=None): if not args: args = sys.argv[1:] # initialize parameters param = Param() # call main function parser = get_parser() arguments = parser.parse(args) fname_data = arguments['-i'] fname_bvecs = arguments['-bvec'] average = arguments['-a'] verbose = int(arguments.get('-v')) sct.init_sct(log_level=verbose, update=True) # Update log level remove_temp_files = int(arguments['-r']) path_out = arguments['-ofolder'] if '-bval' in arguments: fname_bvals = arguments['-bval'] else: fname_bvals = '' if '-bvalmin' in arguments: param.bval_min = arguments['-bvalmin'] # Initialization start_time = time.time() # sct.printv(arguments) sct.printv('\nInput parameters:', verbose) sct.printv(' input file ............' + fname_data, verbose) sct.printv(' bvecs file ............' + fname_bvecs, verbose) sct.printv(' bvals file ............' + fname_bvals, verbose) sct.printv(' average ...............' + str(average), verbose) # Get full path fname_data = os.path.abspath(fname_data) fname_bvecs = os.path.abspath(fname_bvecs) if fname_bvals: fname_bvals = os.path.abspath(fname_bvals) # Extract path, file and extension path_data, file_data, ext_data = sct.extract_fname(fname_data) # create temporary folder path_tmp = sct.tmp_create(basename="dmri_separate", verbose=verbose) # copy files into tmp folder and convert to nifti sct.printv('\nCopy files into temporary folder...', verbose) ext = '.nii' dmri_name = 'dmri' b0_name = file_data + '_b0' b0_mean_name = b0_name + '_mean' dwi_name = file_data + '_dwi' dwi_mean_name = dwi_name + '_mean' if not convert(fname_data, os.path.join(path_tmp, dmri_name + ext)): sct.printv('ERROR in convert.', 1, 'error') sct.copy(fname_bvecs, os.path.join(path_tmp, "bvecs"), verbose=verbose) # go to tmp folder curdir = os.getcwd() os.chdir(path_tmp) # Get size of data im_dmri = Image(dmri_name + ext) sct.printv('\nGet dimensions data...', verbose) nx, ny, nz, nt, px, py, pz, pt = im_dmri.dim sct.printv('.. ' + str(nx) + ' x ' + str(ny) + ' x ' + str(nz) + ' x ' + str(nt), verbose) # Identify b=0 and DWI images sct.printv(fname_bvals) index_b0, index_dwi, nb_b0, nb_dwi = identify_b0(fname_bvecs, fname_bvals, param.bval_min, verbose) # Split into T dimension sct.printv('\nSplit along T dimension...', verbose) im_dmri_split_list = split_data(im_dmri, 3) for im_d in im_dmri_split_list: im_d.save() # Merge b=0 images sct.printv('\nMerge b=0...', verbose) from sct_image import concat_data l = [] for it in range(nb_b0): l.append(dmri_name + '_T' + str(index_b0[it]).zfill(4) + ext) im_out = concat_data(l, 3).save(b0_name + ext) # Average b=0 images if average: sct.printv('\nAverage b=0...', verbose) sct.run(['sct_maths', '-i', b0_name + ext, '-o', b0_mean_name + ext, '-mean', 't'], verbose) # Merge DWI l = [] for it in range(nb_dwi): l.append(dmri_name + '_T' + str(index_dwi[it]).zfill(4) + ext) im_out = concat_data(l, 3).save(dwi_name + ext) # Average DWI images if average: sct.printv('\nAverage DWI...', verbose) sct.run(['sct_maths', '-i', dwi_name + ext, '-o', dwi_mean_name + ext, '-mean', 't'], verbose) # come back os.chdir(curdir) # Generate output files fname_b0 = os.path.abspath(os.path.join(path_out, b0_name + ext_data)) fname_dwi = os.path.abspath(os.path.join(path_out, dwi_name + ext_data)) fname_b0_mean = os.path.abspath(os.path.join(path_out, b0_mean_name + ext_data)) fname_dwi_mean = os.path.abspath(os.path.join(path_out, dwi_mean_name + ext_data)) sct.printv('\nGenerate output files...', verbose) sct.generate_output_file(os.path.join(path_tmp, b0_name + ext), fname_b0, verbose) sct.generate_output_file(os.path.join(path_tmp, dwi_name + ext), fname_dwi, verbose) if average: sct.generate_output_file(os.path.join(path_tmp, b0_mean_name + ext), fname_b0_mean, verbose) sct.generate_output_file(os.path.join(path_tmp, dwi_mean_name + ext), fname_dwi_mean, verbose) # Remove temporary files if remove_temp_files == 1: sct.printv('\nRemove temporary files...', verbose) sct.rmtree(path_tmp, verbose=verbose) # display elapsed time elapsed_time = time.time() - start_time sct.printv('\nFinished! Elapsed time: ' + str(int(np.round(elapsed_time))) + 's', verbose) return fname_b0, fname_b0_mean, fname_dwi, fname_dwi_mean
def main(): # Initialization fname_data = '' interp_factor = param.interp_factor remove_temp_files = param.remove_temp_files verbose = param.verbose suffix = param.suffix smoothing_sigma = param.smoothing_sigma # start timer start_time = time.time() # Parameters for debug mode if param.debug: fname_data = os.path.join(sct.__data_dir__, 'sct_testing_data', 't2', 't2_seg.nii.gz') remove_temp_files = 0 param.mask_size = 10 else: # Check input parameters try: opts, args = getopt.getopt(sys.argv[1:], 'hi:v:r:s:') except getopt.GetoptError: usage() if not opts: usage() for opt, arg in opts: if opt == '-h': usage() elif opt in ('-i'): fname_data = arg elif opt in ('-r'): remove_temp_files = int(arg) elif opt in ('-s'): smoothing_sigma = arg elif opt in ('-v'): verbose = int(arg) # display usage if a mandatory argument is not provided if fname_data == '': usage() # sct.printv(arguments) sct.printv('\nCheck parameters:') sct.printv(' segmentation ........... ' + fname_data) sct.printv(' interp factor .......... ' + str(interp_factor)) sct.printv(' smoothing sigma ........ ' + str(smoothing_sigma)) # check existence of input files sct.printv('\nCheck existence of input files...') sct.check_file_exist(fname_data, verbose) # Extract path, file and extension path_data, file_data, ext_data = sct.extract_fname(fname_data) path_tmp = sct.tmp_create(basename="binary_to_trilinear", verbose=verbose) from sct_convert import convert sct.printv('\nCopying input data to tmp folder and convert to nii...', param.verbose) convert(fname_data, os.path.join(path_tmp, "data.nii")) # go to tmp folder curdir = os.getcwd() os.chdir(path_tmp) # Get dimensions of data sct.printv('\nGet dimensions of data...', verbose) nx, ny, nz, nt, px, py, pz, pt = Image('data.nii').dim sct.printv('.. ' + str(nx) + ' x ' + str(ny) + ' x ' + str(nz), verbose) # upsample data sct.printv('\nUpsample data...', verbose) sct.run(["sct_resample", "-i", "data.nii", "-x", "linear", "-vox", str(nx * interp_factor) + 'x' + str(ny * interp_factor) + 'x' + str(nz * interp_factor), "-o", "data_up.nii"], verbose) # Smooth along centerline sct.printv('\nSmooth along centerline...', verbose) sct.run(["sct_smooth_spinalcord", "-i", "data_up.nii", "-s", "data_up.nii", "-smooth", str(smoothing_sigma), "-r", str(remove_temp_files), "-v", str(verbose)], verbose) # downsample data sct.printv('\nDownsample data...', verbose) sct.run(["sct_resample", "-i", "data_up_smooth.nii", "-x", "linear", "-vox", str(nx) + 'x' + str(ny) + 'x' + str(nz), "-o", "data_up_smooth_down.nii"], verbose) # come back os.chdir(curdir) # Generate output files sct.printv('\nGenerate output files...') fname_out = sct.generate_output_file(os.path.join(path_tmp, "data_up_smooth_down.nii"), '' + file_data + suffix + ext_data) # Delete temporary files if remove_temp_files == 1: sct.printv('\nRemove temporary files...') sct.rmtree(path_tmp) # display elapsed time elapsed_time = time.time() - start_time sct.printv('\nFinished! Elapsed time: ' + str(int(np.round(elapsed_time))) + 's') # to view results sct.printv('\nTo view results, type:') sct.printv('fslview ' + file_data + ' ' + file_data + suffix + ' &\n')
def main(args=None): if args is None: args = sys.argv[1:] # initialize parameters param = Param() # Initialization fname_output = '' path_out = '' fname_src_seg = '' fname_dest_seg = '' fname_src_label = '' fname_dest_label = '' generate_warpinv = 1 start_time = time.time() # get path of the toolbox path_sct = os.environ.get("SCT_DIR", os.path.dirname(os.path.dirname(__file__))) # get default registration parameters # step1 = Paramreg(step='1', type='im', algo='syn', metric='MI', iter='5', shrink='1', smooth='0', gradStep='0.5') step0 = Paramreg( step='0', type='im', algo='syn', metric='MI', iter='0', shrink='1', smooth='0', gradStep='0.5', slicewise='0', dof='Tx_Ty_Tz_Rx_Ry_Rz') # only used to put src into dest space step1 = Paramreg(step='1', type='im') paramreg = ParamregMultiStep([step0, step1]) parser = get_parser(paramreg=paramreg) arguments = parser.parse(args) # get arguments fname_src = arguments['-i'] fname_dest = arguments['-d'] if '-iseg' in arguments: fname_src_seg = arguments['-iseg'] if '-dseg' in arguments: fname_dest_seg = arguments['-dseg'] if '-ilabel' in arguments: fname_src_label = arguments['-ilabel'] if '-dlabel' in arguments: fname_dest_label = arguments['-dlabel'] if '-o' in arguments: fname_output = arguments['-o'] if '-ofolder' in arguments: path_out = arguments['-ofolder'] if '-owarp' in arguments: fname_output_warp = arguments['-owarp'] else: fname_output_warp = '' if '-initwarp' in arguments: fname_initwarp = os.path.abspath(arguments['-initwarp']) else: fname_initwarp = '' if '-initwarpinv' in arguments: fname_initwarpinv = os.path.abspath(arguments['-initwarpinv']) else: fname_initwarpinv = '' if '-m' in arguments: fname_mask = arguments['-m'] else: fname_mask = '' padding = arguments['-z'] if "-param" in arguments: paramreg_user = arguments['-param'] # update registration parameters for paramStep in paramreg_user: paramreg.addStep(paramStep) path_qc = arguments.get("-qc", None) identity = int(arguments['-identity']) interp = arguments['-x'] remove_temp_files = int(arguments['-r']) verbose = int(arguments['-v']) # sct.printv(arguments) sct.printv('\nInput parameters:') sct.printv(' Source .............. ' + fname_src) sct.printv(' Destination ......... ' + fname_dest) sct.printv(' Init transfo ........ ' + fname_initwarp) sct.printv(' Mask ................ ' + fname_mask) sct.printv(' Output name ......... ' + fname_output) # sct.printv(' Algorithm ........... '+paramreg.algo) # sct.printv(' Number of iterations '+paramreg.iter) # sct.printv(' Metric .............. '+paramreg.metric) sct.printv(' Remove temp files ... ' + str(remove_temp_files)) sct.printv(' Verbose ............. ' + str(verbose)) # update param param.verbose = verbose param.padding = padding param.fname_mask = fname_mask param.remove_temp_files = remove_temp_files # Get if input is 3D sct.printv('\nCheck if input data are 3D...', verbose) sct.check_if_3d(fname_src) sct.check_if_3d(fname_dest) # Check if user selected type=seg, but did not input segmentation data if 'paramreg_user' in locals(): if True in [ 'type=seg' in paramreg_user[i] for i in range(len(paramreg_user)) ]: if fname_src_seg == '' or fname_dest_seg == '': sct.printv( '\nERROR: if you select type=seg you must specify -iseg and -dseg flags.\n', 1, 'error') # Extract path, file and extension path_src, file_src, ext_src = sct.extract_fname(fname_src) path_dest, file_dest, ext_dest = sct.extract_fname(fname_dest) # check if source and destination images have the same name (related to issue #373) # If so, change names to avoid conflict of result files and warns the user suffix_src, suffix_dest = '_reg', '_reg' if file_src == file_dest: suffix_src, suffix_dest = '_src_reg', '_dest_reg' # define output folder and file name if fname_output == '': path_out = '' if not path_out else path_out # output in user's current directory file_out = file_src + suffix_src file_out_inv = file_dest + suffix_dest ext_out = ext_src else: path, file_out, ext_out = sct.extract_fname(fname_output) path_out = path if not path_out else path_out file_out_inv = file_out + '_inv' # create temporary folder path_tmp = sct.tmp_create() sct.printv('\nCopying input data to tmp folder and convert to nii...', verbose) Image(fname_src).save(os.path.join(path_tmp, "src.nii")) Image(fname_dest).save(os.path.join(path_tmp, "dest.nii")) if fname_src_seg: Image(fname_src_seg).save(os.path.join(path_tmp, "src_seg.nii")) if fname_dest_seg: Image(fname_dest_seg).save(os.path.join(path_tmp, "dest_seg.nii")) if fname_src_label: Image(fname_src_label).save(os.path.join(path_tmp, "src_label.nii")) Image(fname_dest_label).save(os.path.join(path_tmp, "dest_label.nii")) if fname_mask != '': Image(fname_mask).save(os.path.join(path_tmp, "mask.nii.gz")) # go to tmp folder curdir = os.getcwd() os.chdir(path_tmp) # reorient destination to RPI Image('dest.nii').change_orientation("RPI").save('dest_RPI.nii') if fname_dest_seg: Image('dest_seg.nii').change_orientation("RPI").save( 'dest_seg_RPI.nii') if fname_dest_label: Image('dest_label.nii').change_orientation("RPI").save( 'dest_label_RPI.nii') if identity: # overwrite paramreg and only do one identity transformation step0 = Paramreg(step='0', type='im', algo='syn', metric='MI', iter='0', shrink='1', smooth='0', gradStep='0.5') paramreg = ParamregMultiStep([step0]) # Put source into destination space using header (no estimation -- purely based on header) # TODO: Check if necessary to do that # TODO: use that as step=0 # sct.printv('\nPut source into destination space using header...', verbose) # sct.run('isct_antsRegistration -d 3 -t Translation[0] -m MI[dest_pad.nii,src.nii,1,16] -c 0 -f 1 -s 0 -o # [regAffine,src_regAffine.nii] -n BSpline[3]', verbose) # if segmentation, also do it for seg # initialize list of warping fields warp_forward = [] warp_inverse = [] # initial warping is specified, update list of warping fields and skip step=0 if fname_initwarp: sct.printv('\nSkip step=0 and replace with initial transformations: ', param.verbose) sct.printv(' ' + fname_initwarp, param.verbose) # sct.copy(fname_initwarp, 'warp_forward_0.nii.gz') warp_forward = [fname_initwarp] start_step = 1 if fname_initwarpinv: warp_inverse = [fname_initwarpinv] else: sct.printv( '\nWARNING: No initial inverse warping field was specified, therefore the inverse warping field ' 'will NOT be generated.', param.verbose, 'warning') generate_warpinv = 0 else: start_step = 0 # loop across registration steps for i_step in range(start_step, len(paramreg.steps)): sct.printv('\n--\nESTIMATE TRANSFORMATION FOR STEP #' + str(i_step), param.verbose) # identify which is the src and dest if paramreg.steps[str(i_step)].type == 'im': src = 'src.nii' dest = 'dest_RPI.nii' interp_step = 'spline' elif paramreg.steps[str(i_step)].type == 'seg': src = 'src_seg.nii' dest = 'dest_seg_RPI.nii' interp_step = 'nn' elif paramreg.steps[str(i_step)].type == 'label': src = 'src_label.nii' dest = 'dest_label_RPI.nii' interp_step = 'nn' else: # src = dest = interp_step = None sct.printv('ERROR: Wrong image type.', 1, 'error') # if step>0, apply warp_forward_concat to the src image to be used if i_step > 0: sct.printv('\nApply transformation from previous step', param.verbose) sct.run([ 'sct_apply_transfo', '-i', src, '-d', dest, '-w', ','.join(warp_forward), '-o', sct.add_suffix(src, '_reg'), '-x', interp_step ], verbose) src = sct.add_suffix(src, '_reg') # register src --> dest warp_forward_out, warp_inverse_out = register(src, dest, paramreg, param, str(i_step)) warp_forward.append(warp_forward_out) warp_inverse.insert(0, warp_inverse_out) # Concatenate transformations sct.printv('\nConcatenate transformations...', verbose) sct.run([ 'sct_concat_transfo', '-w', ','.join(warp_forward), '-d', 'dest.nii', '-o', 'warp_src2dest.nii.gz' ], verbose) sct.run([ 'sct_concat_transfo', '-w', ','.join(warp_inverse), '-d', 'src.nii', '-o', 'warp_dest2src.nii.gz' ], verbose) # Apply warping field to src data sct.printv('\nApply transfo source --> dest...', verbose) sct.run([ 'sct_apply_transfo', '-i', 'src.nii', '-o', 'src_reg.nii', '-d', 'dest.nii', '-w', 'warp_src2dest.nii.gz', '-x', interp ], verbose) sct.printv('\nApply transfo dest --> source...', verbose) sct.run([ 'sct_apply_transfo', '-i', 'dest.nii', '-o', 'dest_reg.nii', '-d', 'src.nii', '-w', 'warp_dest2src.nii.gz', '-x', interp ], verbose) # come back os.chdir(curdir) # Generate output files sct.printv('\nGenerate output files...', verbose) # generate: src_reg fname_src2dest = sct.generate_output_file( os.path.join(path_tmp, "src_reg.nii"), os.path.join(path_out, file_out + ext_out), verbose) # generate: forward warping field if fname_output_warp == '': fname_output_warp = os.path.join( path_out, 'warp_' + file_src + '2' + file_dest + '.nii.gz') sct.generate_output_file(os.path.join(path_tmp, "warp_src2dest.nii.gz"), fname_output_warp, verbose) if generate_warpinv: # generate: dest_reg fname_dest2src = sct.generate_output_file( os.path.join(path_tmp, "dest_reg.nii"), os.path.join(path_out, file_out_inv + ext_dest), verbose) # generate: inverse warping field sct.generate_output_file( os.path.join(path_tmp, "warp_dest2src.nii.gz"), os.path.join(path_out, 'warp_' + file_dest + '2' + file_src + '.nii.gz'), verbose) # Delete temporary files if remove_temp_files: sct.printv('\nRemove temporary files...', verbose) sct.rmtree(path_tmp, verbose=verbose) # display elapsed time elapsed_time = time.time() - start_time sct.printv( '\nFinished! Elapsed time: ' + str(int(np.round(elapsed_time))) + 's', verbose) if path_qc is not None: if fname_dest_seg: generate_qc(fname_src2dest, fname_in2=fname_dest, fname_seg=fname_dest_seg, args=args, path_qc=os.path.abspath(path_qc), process='sct_register_multimodal') else: sct.printv( 'WARNING: Cannot generate QC because it requires destination segmentation.', 1, 'warning') if generate_warpinv: sct.display_viewer_syntax([fname_src, fname_dest2src], verbose=verbose) sct.display_viewer_syntax([fname_dest, fname_src2dest], verbose=verbose)
def main(args=None): # initialization start_time = time.time() param = Param() # check user arguments if not args: args = sys.argv[1:] # Get parser info parser = get_parser() arguments = parser.parse(sys.argv[1:]) param.fname_data = arguments['-i'] if '-g' in arguments: param.group_size = arguments['-g'] if '-m' in arguments: param.fname_mask = arguments['-m'] if '-param' in arguments: param.update(arguments['-param']) if '-x' in arguments: param.interp = arguments['-x'] if '-ofolder' in arguments: path_out = arguments['-ofolder'] if '-r' in arguments: param.remove_temp_files = int(arguments['-r']) param.verbose = int(arguments.get('-v')) sct.init_sct(log_level=param.verbose, update=True) # Update log level sct.printv('\nInput parameters:', param.verbose) sct.printv(' input file ............' + param.fname_data, param.verbose) # Get full path param.fname_data = os.path.abspath(param.fname_data) if param.fname_mask != '': param.fname_mask = os.path.abspath(param.fname_mask) # Extract path, file and extension path_data, file_data, ext_data = sct.extract_fname(param.fname_data) path_tmp = sct.tmp_create(basename="fmri_moco", verbose=param.verbose) # Copying input data to tmp folder and convert to nii # TODO: no need to do that (takes time for nothing) sct.printv('\nCopying input data to tmp folder and convert to nii...', param.verbose) convert(param.fname_data, os.path.join(path_tmp, "fmri.nii"), squeeze_data=False) # go to tmp folder curdir = os.getcwd() os.chdir(path_tmp) # run moco fmri_moco(param) # come back os.chdir(curdir) # Generate output files fname_fmri_moco = os.path.join(path_out, file_data + param.suffix + ext_data) sct.create_folder(path_out) sct.printv('\nGenerate output files...', param.verbose) sct.generate_output_file(os.path.join(path_tmp, "fmri" + param.suffix + '.nii'), fname_fmri_moco, param.verbose) sct.generate_output_file(os.path.join(path_tmp, "fmri" + param.suffix + '_mean.nii'), os.path.join(path_out, file_data + param.suffix + '_mean' + ext_data), param.verbose) # Delete temporary files if param.remove_temp_files == 1: sct.printv('\nDelete temporary files...', param.verbose) sct.rmtree(path_tmp, verbose=param.verbose) # display elapsed time elapsed_time = time.time() - start_time sct.printv('\nFinished! Elapsed time: ' + str(int(np.round(elapsed_time))) + 's', param.verbose) sct.display_viewer_syntax([fname_fmri_moco, file_data], mode='ortho,ortho')
def segmentation(fname_input, output_dir, image_type): # parameters path_in, file_in, ext_in = sct.extract_fname(fname_input) segmentation_filename_old = os.path.join(path_in, 'old', file_in + '_seg' + ext_in) manual_segmentation_filename_old = os.path.join( path_in, 'manual_' + file_in + ext_in) detection_filename_old = os.path.join(path_in, 'old', file_in + '_detection' + ext_in) segmentation_filename_new = os.path.join(path_in, 'new', file_in + '_seg' + ext_in) manual_segmentation_filename_new = os.path.join( path_in, 'manual_' + file_in + ext_in) detection_filename_new = os.path.join(path_in, 'new', file_in + '_detection' + ext_in) # initialize results of segmentation and detection results_detection = [0, 0] results_segmentation = [0.0, 0.0] # perform PropSeg old version sct.rmtree(os.path.join(output_dir, 'old')) sct.create_folder(os.path.join(output_dir, 'old')) cmd = 'sct_propseg_old -i ' + fname_input \ + ' -o ' + os.path.join(output_dir, 'old') \ + ' -t ' + image_type \ + ' -detect-nii' sct.printv(cmd) status_propseg_old, output_propseg_old = sct.run(cmd) sct.printv(output_propseg_old) # check if spinal cord is correctly detected with old version of PropSeg cmd = "isct_check_detection.py -i " + detection_filename_old + " -t " + manual_segmentation_filename_old sct.printv(cmd) status_detection_old, output_detection_old = sct.run(cmd) sct.printv(output_detection_old) results_detection[0] = status_detection_old # compute Dice coefficient for old version of PropSeg cmd_validation = 'sct_dice_coefficient '+segmentation_filename_old \ + ' '+manual_segmentation_filename_old \ + ' -bzmax' sct.printv(cmd_validation) status_validation_old, output_validation_old = sct.run(cmd_validation) print(output_validation_old) res = output_validation_old.split()[-1] if res != 'nan': results_segmentation[0] = float(res) else: results_segmentation[0] = 0.0 # perform PropSeg new version sct.rmtree(os.path.join(output_dir, 'new')) sct.create_folder(os.path.join(output_dir, 'new')) cmd = 'sct_propseg -i ' + fname_input \ + ' -o ' + os.path.join(output_dir, 'new') \ + ' -t ' + image_type \ + ' -detect-nii' sct.printv(cmd) status_propseg_new, output_propseg_new = sct.run(cmd) sct.printv(output_propseg_new) # check if spinal cord is correctly detected with new version of PropSeg cmd = "isct_check_detection.py -i " + detection_filename_new + " -t " + manual_segmentation_filename_new sct.printv(cmd) status_detection_new, output_detection_new = sct.run(cmd) sct.printv(output_detection_new) results_detection[1] = status_detection_new # compute Dice coefficient for new version of PropSeg cmd_validation = 'sct_dice_coefficient '+segmentation_filename_new \ + ' '+manual_segmentation_filename_new \ + ' -bzmax' sct.printv(cmd_validation) status_validation_new, output_validation_new = sct.run(cmd_validation) print(output_validation_new) res = output_validation_new.split()[-1] if res != 'nan': results_segmentation[1] = float(res) else: results_segmentation[1] = 0.0 return results_detection, results_segmentation
def main(args=None): if args is None: args = sys.argv[1:] # initialization # note: mirror servers are listed in order of priority dict_url = { 'sct_example_data': ['https://osf.io/kjcgs/?action=download', 'https://www.neuro.polymtl.ca/_media/downloads/sct/20180525_sct_example_data.zip'], 'sct_testing_data': ['https://osf.io/z8gaj/?action=download', 'https://www.neuro.polymtl.ca/_media/downloads/sct/20180125_sct_testing_data.zip'], 'PAM50': ['https://osf.io/kc3jx/?action=download', 'https://www.neuro.polymtl.ca/_media/downloads/sct/20181214_PAM50.zip'], 'MNI-Poly-AMU': ['https://osf.io/sh6h4/?action=download', 'https://www.neuro.polymtl.ca/_media/downloads/sct/20170310_MNI-Poly-AMU.zip'], 'gm_model': ['https://osf.io/ugscu/?action=download', 'https://www.neuro.polymtl.ca/_media/downloads/sct/20160922_gm_model.zip'], 'optic_models': ['https://osf.io/g4fwn/?action=download', 'https://www.neuro.polymtl.ca/_media/downloads/sct/20170413_optic_models.zip'], 'pmj_models': ['https://osf.io/4gufr/?action=download', 'https://www.neuro.polymtl.ca/_media/downloads/sct/20170922_pmj_models.zip'], 'binaries_debian': ['https://osf.io/z72vn/?action=download', 'https://www.neuro.polymtl.ca/_media/downloads/sct/20181204_sct_binaries_linux.tar.gz'], 'binaries_centos': ['https://osf.io/97ybd/?action=download', 'https://www.neuro.polymtl.ca/_media/downloads/sct/20181204_sct_binaries_linux_centos6.tar.gz'], 'binaries_osx': ['https://osf.io/zjv4c/?action=download', 'https://www.neuro.polymtl.ca/_media/downloads/sct/20181204_sct_binaries_osx.tar.gz'], 'course_hawaii17': 'https://osf.io/6exht/?action=download', 'course_paris18': ['https://osf.io/9bmn5/?action=download', 'https://www.neuro.polymtl.ca/_media/downloads/sct/20180612_sct_course-paris18.zip'], 'course_london19': ['https://osf.io/4q3u7/?action=download', 'https://www.neuro.polymtl.ca/_media/downloads/sct/20190121_sct_course-london19.zip'], 'deepseg_gm_models': ['https://osf.io/b9y4x/?action=download', 'https://www.neuro.polymtl.ca/_media/downloads/sct/20180205_deepseg_gm_models.zip'], 'deepseg_sc_models': ['https://osf.io/avf97/?action=download', 'https://www.neuro.polymtl.ca/_media/downloads/sct/20180610_deepseg_sc_models.zip'], 'deepseg_lesion_models': ['https://osf.io/eg7v9/?action=download', 'https://www.neuro.polymtl.ca/_media/downloads/sct/20180613_deepseg_lesion_models.zip'], 'c2c3_disc_models': ['https://osf.io/t97ap/?action=download', 'https://www.neuro.polymtl.ca/_media/downloads/sct/20190117_c2c3_disc_models.zip'] } # Get parser info parser = get_parser() arguments = parser.parse(args) data_name = arguments['-d'] verbose = int(arguments.get('-v')) sct.init_sct(log_level=verbose, update=True) # Update log level dest_folder = arguments.get('-o', os.path.abspath(os.curdir)) # Download data url = dict_url[data_name] tmp_file = download_data(url, verbose) # Check if folder already exists sct.printv('\nCheck if folder already exists...', verbose) if os.path.isdir(data_name): sct.printv('WARNING: Folder ' + data_name + ' already exists. Removing it...', 1, 'warning') sct.rmtree(data_name) # unzip unzip(tmp_file, dest_folder, verbose) sct.printv('\nRemove temporary file...', verbose) os.remove(tmp_file) sct.printv('Done!\n', verbose) return 0
def main(args=None): # Initialization param = Param() start_time = time.time() parser = get_parser() arguments = parser.parse(sys.argv[1:]) fname_anat = arguments['-i'] fname_centerline = arguments['-s'] if '-smooth' in arguments: sigma = arguments['-smooth'] if '-param' in arguments: param.update(arguments['-param']) if '-r' in arguments: remove_temp_files = int(arguments['-r']) verbose = int(arguments.get('-v')) sct.init_sct(log_level=verbose, update=True) # Update log level # Display arguments sct.printv('\nCheck input arguments...') sct.printv(' Volume to smooth .................. ' + fname_anat) sct.printv(' Centerline ........................ ' + fname_centerline) sct.printv(' Sigma (mm) ........................ ' + str(sigma)) sct.printv(' Verbose ........................... ' + str(verbose)) # Check that input is 3D: from spinalcordtoolbox.image import Image nx, ny, nz, nt, px, py, pz, pt = Image(fname_anat).dim dim = 4 # by default, will be adjusted later if nt == 1: dim = 3 if nz == 1: dim = 2 if dim == 4: sct.printv('WARNING: the input image is 4D, please split your image to 3D before smoothing spinalcord using :\n' 'sct_image -i ' + fname_anat + ' -split t -o ' + fname_anat, verbose, 'warning') sct.printv('4D images not supported, aborting ...', verbose, 'error') # Extract path/file/extension path_anat, file_anat, ext_anat = sct.extract_fname(fname_anat) path_centerline, file_centerline, ext_centerline = sct.extract_fname(fname_centerline) path_tmp = sct.tmp_create(basename="smooth_spinalcord", verbose=verbose) # Copying input data to tmp folder sct.printv('\nCopying input data to tmp folder and convert to nii...', verbose) sct.copy(fname_anat, os.path.join(path_tmp, "anat" + ext_anat)) sct.copy(fname_centerline, os.path.join(path_tmp, "centerline" + ext_centerline)) # go to tmp folder curdir = os.getcwd() os.chdir(path_tmp) # convert to nii format convert('anat' + ext_anat, 'anat.nii') convert('centerline' + ext_centerline, 'centerline.nii') # Change orientation of the input image into RPI sct.printv('\nOrient input volume to RPI orientation...') fname_anat_rpi = msct_image.Image("anat.nii") \ .change_orientation("RPI", generate_path=True) \ .save() \ .absolutepath # Change orientation of the input image into RPI sct.printv('\nOrient centerline to RPI orientation...') fname_centerline_rpi = msct_image.Image("centerline.nii") \ .change_orientation("RPI", generate_path=True) \ .save() \ .absolutepath # Straighten the spinal cord # straighten segmentation sct.printv('\nStraighten the spinal cord using centerline/segmentation...', verbose) cache_sig = sct.cache_signature(input_files=[fname_anat_rpi, fname_centerline_rpi], input_params={"x": "spline"}) cachefile = os.path.join(curdir, "straightening.cache") if sct.cache_valid(cachefile, cache_sig) and os.path.isfile(os.path.join(curdir, 'warp_curve2straight.nii.gz')) and os.path.isfile(os.path.join(curdir, 'warp_straight2curve.nii.gz')) and os.path.isfile(os.path.join(curdir, 'straight_ref.nii.gz')): # if they exist, copy them into current folder sct.printv('Reusing existing warping field which seems to be valid', verbose, 'warning') sct.copy(os.path.join(curdir, 'warp_curve2straight.nii.gz'), 'warp_curve2straight.nii.gz') sct.copy(os.path.join(curdir, 'warp_straight2curve.nii.gz'), 'warp_straight2curve.nii.gz') sct.copy(os.path.join(curdir, 'straight_ref.nii.gz'), 'straight_ref.nii.gz') # apply straightening sct.run(['sct_apply_transfo', '-i', fname_anat_rpi, '-w', 'warp_curve2straight.nii.gz', '-d', 'straight_ref.nii.gz', '-o', 'anat_rpi_straight.nii', '-x', 'spline'], verbose) else: sct.run(['sct_straighten_spinalcord', '-i', fname_anat_rpi, '-o', 'anat_rpi_straight.nii', '-s', fname_centerline_rpi, '-x', 'spline', '-param', 'algo_fitting='+param.algo_fitting], verbose) sct.cache_save(cachefile, cache_sig) # move warping fields locally (to use caching next time) sct.copy('warp_curve2straight.nii.gz', os.path.join(curdir, 'warp_curve2straight.nii.gz')) sct.copy('warp_straight2curve.nii.gz', os.path.join(curdir, 'warp_straight2curve.nii.gz')) # Smooth the straightened image along z sct.printv('\nSmooth the straightened image...') sigma_smooth = ",".join([str(i) for i in sigma]) sct_maths.main(args=['-i', 'anat_rpi_straight.nii', '-smooth', sigma_smooth, '-o', 'anat_rpi_straight_smooth.nii', '-v', '0']) # Apply the reversed warping field to get back the curved spinal cord sct.printv('\nApply the reversed warping field to get back the curved spinal cord...') sct.run(['sct_apply_transfo', '-i', 'anat_rpi_straight_smooth.nii', '-o', 'anat_rpi_straight_smooth_curved.nii', '-d', 'anat.nii', '-w', 'warp_straight2curve.nii.gz', '-x', 'spline'], verbose) # replace zeroed voxels by original image (issue #937) sct.printv('\nReplace zeroed voxels by original image...', verbose) nii_smooth = Image('anat_rpi_straight_smooth_curved.nii') data_smooth = nii_smooth.data data_input = Image('anat.nii').data indzero = np.where(data_smooth == 0) data_smooth[indzero] = data_input[indzero] nii_smooth.data = data_smooth nii_smooth.save('anat_rpi_straight_smooth_curved_nonzero.nii') # come back os.chdir(curdir) # Generate output file sct.printv('\nGenerate output file...') sct.generate_output_file(os.path.join(path_tmp, "anat_rpi_straight_smooth_curved_nonzero.nii"), file_anat + '_smooth' + ext_anat) # Remove temporary files if remove_temp_files == 1: sct.printv('\nRemove temporary files...') sct.rmtree(path_tmp) # Display elapsed time elapsed_time = time.time() - start_time sct.printv('\nFinished! Elapsed time: ' + str(int(np.round(elapsed_time))) + 's\n') sct.display_viewer_syntax([file_anat, file_anat + '_smooth'], verbose=verbose)
def pre_processing(fname_target, fname_sc_seg, fname_level=None, fname_manual_gmseg=None, new_res=0.3, square_size_size_mm=22.5, denoising=True, verbose=1, rm_tmp=True, for_model=False): printv('\nPre-process data...', verbose, 'normal') tmp_dir = sct.tmp_create() sct.copy(fname_target, tmp_dir) fname_target = ''.join(extract_fname(fname_target)[1:]) sct.copy(fname_sc_seg, tmp_dir) fname_sc_seg = ''.join(extract_fname(fname_sc_seg)[1:]) curdir = os.getcwd() os.chdir(tmp_dir) original_info = {'orientation': None, 'im_sc_seg_rpi': None, 'interpolated_images': []} im_target = Image(fname_target).copy() im_sc_seg = Image(fname_sc_seg).copy() # get original orientation printv(' Reorient...', verbose, 'normal') original_info['orientation'] = im_target.orientation # assert images are in the same orientation assert im_target.orientation == im_sc_seg.orientation, "ERROR: the image to segment and it's SC segmentation are not in the same orientation" im_target_rpi = im_target.copy().change_orientation('RPI', generate_path=True).save() im_sc_seg_rpi = im_sc_seg.copy().change_orientation('RPI', generate_path=True).save() original_info['im_sc_seg_rpi'] = im_sc_seg_rpi.copy() # target image in RPI will be used to post-process segmentations # denoise using P. Coupe non local means algorithm (see [Manjon et al. JMRI 2010]) implemented in dipy if denoising: printv(' Denoise...', verbose, 'normal') # crop image before denoising to fasten denoising nx, ny, nz, nt, px, py, pz, pt = im_target_rpi.dim size_x, size_y = (square_size_size_mm + 1) / px, (square_size_size_mm + 1) / py size = int(np.ceil(max(size_x, size_y))) # create mask fname_mask = 'mask_pre_crop.nii.gz' sct_create_mask.main(['-i', im_target_rpi.absolutepath, '-p', 'centerline,' + im_sc_seg_rpi.absolutepath, '-f', 'box', '-size', str(size), '-o', fname_mask]) # crop image fname_target_crop = add_suffix(im_target_rpi.absolutepath, '_pre_crop') crop_im = ImageCropper(input_file=im_target_rpi.absolutepath, output_file=fname_target_crop, mask=fname_mask) im_target_rpi_crop = crop_im.crop() # crop segmentation fname_sc_seg_crop = add_suffix(im_sc_seg_rpi.absolutepath, '_pre_crop') crop_sc_seg = ImageCropper(input_file=im_sc_seg_rpi.absolutepath, output_file=fname_sc_seg_crop, mask=fname_mask) im_sc_seg_rpi_crop = crop_sc_seg.crop() # denoising from sct_maths import denoise_nlmeans block_radius = 3 block_radius = int(im_target_rpi_crop.data.shape[2] / 2) if im_target_rpi_crop.data.shape[2] < (block_radius*2) else block_radius patch_radius = block_radius -1 data_denoised = denoise_nlmeans(im_target_rpi_crop.data, block_radius=block_radius, patch_radius=patch_radius) im_target_rpi_crop.data = data_denoised im_target_rpi = im_target_rpi_crop im_sc_seg_rpi = im_sc_seg_rpi_crop else: fname_mask = None # interpolate image to reference square image (resample and square crop centered on SC) printv(' Interpolate data to the model space...', verbose, 'normal') list_im_slices = interpolate_im_to_ref(im_target_rpi, im_sc_seg_rpi, new_res=new_res, sq_size_size_mm=square_size_size_mm) original_info['interpolated_images'] = list_im_slices # list of images (not Slice() objects) printv(' Mask data using the spinal cord segmentation...', verbose, 'normal') list_sc_seg_slices = interpolate_im_to_ref(im_sc_seg_rpi, im_sc_seg_rpi, new_res=new_res, sq_size_size_mm=square_size_size_mm, interpolation_mode=1) for i in range(len(list_im_slices)): # list_im_slices[i].data[list_sc_seg_slices[i].data == 0] = 0 list_sc_seg_slices[i] = binarize(list_sc_seg_slices[i], thr_min=0.5, thr_max=1) list_im_slices[i].data = list_im_slices[i].data * list_sc_seg_slices[i].data printv(' Split along rostro-caudal direction...', verbose, 'normal') list_slices_target = [Slice(slice_id=i, im=im_slice.data, gm_seg=[], wm_seg=[]) for i, im_slice in enumerate(list_im_slices)] # load vertebral levels if fname_level is not None: printv(' Load vertebral levels...', verbose, 'normal') # copy level file to tmp dir os.chdir(curdir) sct.copy(fname_level, tmp_dir) os.chdir(tmp_dir) # change fname level to only file name (path = tmp dir now) fname_level = ''.join(extract_fname(fname_level)[1:]) # load levels list_slices_target = load_level(list_slices_target, fname_level) os.chdir(curdir) # load manual gmseg if there is one (model data) if fname_manual_gmseg is not None: printv('\n\tLoad manual GM segmentation(s) ...', verbose, 'normal') list_slices_target = load_manual_gmseg(list_slices_target, fname_manual_gmseg, tmp_dir, im_sc_seg_rpi, new_res, square_size_size_mm, for_model=for_model, fname_mask=fname_mask) if rm_tmp: # remove tmp folder sct.rmtree(tmp_dir) return list_slices_target, original_info