Example #1
0
 def __init__(self,
              mask: numpy.ndarray,
              n_cat_list: Iterable[int] = None,
              regularizer: str = 'mask',
              positive_decoder: bool = True,
              reg_kwargs=None):
     super(DecoderVEGA, self).__init__()
     self.n_input = mask.shape[0]
     self.n_output = mask.shape[1]
     self.reg_method = regularizer
     if reg_kwargs and (reg_kwargs.get('d', None) is None):
         reg_kwargs['d'] = ~mask.T.astype(bool)
     if reg_kwargs is None:
         reg_kwargs = {}
     if regularizer == 'mask':
         print('Using masked decoder', flush=True)
         self.decoder = SparseLayer(mask,
                                    n_cat_list=n_cat_list,
                                    use_batch_norm=False,
                                    use_layer_norm=False,
                                    bias=True,
                                    dropout_rate=0)
     elif regularizer == 'gelnet':
         print('Using GelNet-regularized decoder', flush=True)
         self.decoder = FCLayers(n_in=self.n_input,
                                 n_out=self.n_output,
                                 n_layers=1,
                                 use_batch_norm=False,
                                 use_activation=False,
                                 use_layer_norm=False,
                                 bias=True,
                                 dropout_rate=0)
         self.regularizer = GelNet(**reg_kwargs)
     elif regularizer == 'l1':
         print('Using L1-regularized decoder', flush=True)
         self.decoder = FCLayers(n_in=self.n_input,
                                 n_out=self.n_output,
                                 n_layers=1,
                                 use_batch_norm=False,
                                 use_activation=False,
                                 use_layer_norm=False,
                                 bias=True,
                                 dropout_rate=0)
         self.regularizer = LassoRegularizer(**reg_kwargs)
     else:
         raise ValueError(
             "Regularizer not recognized. Choose one of ['mask', 'gelnet', 'l1']"
         )
Example #2
0
    def __init__(
        self,
        n_input: int,
        n_hidden: int = 128,
        n_labels: int = 5,
        n_layers: int = 1,
        dropout_rate: float = 0.1,
        logits: bool = False,
        use_batch_norm: bool = True,
        use_layer_norm: bool = False,
        activation_fn: nn.Module = nn.ReLU,
    ):
        super().__init__()
        self.logits = logits
        layers = [
            FCLayers(
                n_in=n_input,
                n_out=n_hidden,
                n_layers=n_layers,
                n_hidden=n_hidden,
                dropout_rate=dropout_rate,
                use_batch_norm=use_batch_norm,
                use_layer_norm=use_layer_norm,
                activation_fn=activation_fn,
            ),
            nn.Linear(n_hidden, n_labels),
        ]
        if not logits:
            layers.append(nn.Softmax(dim=-1))

        self.classifier = nn.Sequential(*layers)
Example #3
0
 def __init__(
     self,
     n_input: int,
     n_cat_list: Iterable[int] = None,
     n_layers: int = 2,
     n_hidden: int = 128,
     use_batch_norm: bool = False,
     use_layer_norm: bool = True,
     deep_inject_covariates: bool = False,
 ):
     super().__init__()
     self.px_decoder = FCLayers(
         n_in=n_input,
         n_out=n_hidden,
         n_cat_list=n_cat_list,
         n_layers=n_layers,
         n_hidden=n_hidden,
         dropout_rate=0,
         activation_fn=torch.nn.LeakyReLU,
         use_batch_norm=use_batch_norm,
         use_layer_norm=use_layer_norm,
         inject_covariates=deep_inject_covariates,
     )
     self.output = torch.nn.Sequential(torch.nn.Linear(n_hidden, 1),
                                       torch.nn.LeakyReLU())
Example #4
0
    def __init__(
        self,
        n_input: int,
        n_labels: int = 0,
        n_hidden: int = 128,
        n_latent: int = 5,
        n_layers: int = 2,
        dropout_rate: float = 0.1,
        log_variational: bool = True,
        ct_weight: np.ndarray = None,
        **module_kwargs,
    ):
        super().__init__()
        self.dispersion = "gene"
        self.n_latent = n_latent
        self.n_layers = n_layers
        self.n_hidden = n_hidden
        self.log_variational = log_variational
        self.gene_likelihood = "nb"
        self.latent_distribution = "normal"
        # Automatically deactivate if useless
        self.n_batch = 0
        self.n_labels = n_labels

        # gene dispersion
        self.px_r = torch.nn.Parameter(torch.randn(n_input))

        # z encoder goes from the n_input-dimensional data to an n_latent-d
        self.z_encoder = Encoder(
            n_input,
            n_latent,
            n_cat_list=[n_labels],
            n_layers=n_layers,
            n_hidden=n_hidden,
            dropout_rate=dropout_rate,
            inject_covariates=True,
            use_batch_norm=False,
            use_layer_norm=True,
        )

        # decoder goes from n_latent-dimensional space to n_input-d data
        self.decoder = FCLayers(
            n_in=n_latent,
            n_out=n_hidden,
            n_cat_list=[n_labels],
            n_layers=n_layers,
            n_hidden=n_hidden,
            dropout_rate=0,
            inject_covariates=True,
            use_batch_norm=False,
            use_layer_norm=True,
        )
        self.px_decoder = torch.nn.Sequential(
            torch.nn.Linear(n_hidden, n_input), torch.nn.Softplus())

        if ct_weight is not None:
            ct_weight = torch.tensor(ct_weight, dtype=torch.float32)
        else:
            ct_weight = torch.ones((self.n_labels, ), dtype=torch.float32)
        self.register_buffer("ct_weight", ct_weight)
Example #5
0
 def __init__(
     self,
     n_input: int,
     n_output: int,
     n_cat_list: Iterable[int] = None,
     n_layers: int = 1,
     n_hidden: int = 128,
     dropout_rate: float = 0.2,
     **kwargs,
 ):
     super().__init__()
     self.decoder = FCLayers(
         n_in=n_input,
         n_out=n_hidden,
         n_cat_list=n_cat_list,
         n_layers=n_layers,
         n_hidden=n_hidden,
         dropout_rate=dropout_rate,
         **kwargs,
     )
     self.linear_out = nn.Linear(n_hidden, n_output)
Example #6
0
    def __init__(
        self,
        n_spots: int,
        n_labels: int,
        n_hidden: int,
        n_layers: int,
        n_latent: int,
        n_genes: int,
        decoder_state_dict: OrderedDict,
        px_decoder_state_dict: OrderedDict,
        px_r: np.ndarray,
        mean_vprior: np.ndarray = None,
        var_vprior: np.ndarray = None,
        amortization: Literal["none", "latent", "proportion",
                              "both"] = "latent",
    ):
        super().__init__()
        self.n_spots = n_spots
        self.n_labels = n_labels
        self.n_hidden = n_hidden
        self.n_latent = n_latent
        self.n_genes = n_genes
        self.amortization = amortization
        # unpack and copy parameters
        self.decoder = FCLayers(
            n_in=n_latent,
            n_out=n_hidden,
            n_cat_list=[n_labels],
            n_layers=n_layers,
            n_hidden=n_hidden,
            dropout_rate=0,
            use_layer_norm=True,
            use_batch_norm=False,
        )
        self.px_decoder = torch.nn.Sequential(
            torch.nn.Linear(n_hidden, n_genes), torch.nn.Softplus())
        # don't compute gradient for those parameters
        self.decoder.load_state_dict(decoder_state_dict)
        for param in self.decoder.parameters():
            param.requires_grad = False
        self.px_decoder.load_state_dict(px_decoder_state_dict)
        for param in self.px_decoder.parameters():
            param.requires_grad = False
        self.register_buffer("px_o", torch.tensor(px_r))

        # cell_type specific factor loadings
        self.V = torch.nn.Parameter(
            torch.randn(self.n_labels + 1, self.n_spots))

        # within cell_type factor loadings
        self.gamma = torch.nn.Parameter(
            torch.randn(n_latent, self.n_labels, self.n_spots))

        if mean_vprior is not None:
            self.p = mean_vprior.shape[1]
            self.register_buffer("mean_vprior", torch.tensor(mean_vprior))
            self.register_buffer("var_vprior", torch.tensor(var_vprior))
        else:
            self.mean_vprior = None
            self.var_vprior = None
        # noise from data
        self.eta = torch.nn.Parameter(torch.randn(self.n_genes))
        # additive gene bias
        self.beta = torch.nn.Parameter(0.01 * torch.randn(self.n_genes))

        # create additional neural nets for amortization
        # within cell_type factor loadings
        self.gamma_encoder = torch.nn.Sequential(
            FCLayers(
                n_in=self.n_genes,
                n_out=n_hidden,
                n_cat_list=None,
                n_layers=2,
                n_hidden=n_hidden,
                dropout_rate=0.1,
            ),
            torch.nn.Linear(n_hidden, n_latent * n_labels),
        )
        # cell type loadings
        self.V_encoder = FCLayers(
            n_in=self.n_genes,
            n_out=self.n_labels + 1,
            n_layers=2,
            n_hidden=n_hidden,
            dropout_rate=0.1,
        )
Example #7
0
class MRDeconv(BaseModuleClass):
    """
    Model for multi-resolution deconvolution of spatial transriptomics.

    Parameters
    ----------
    n_spots
        Number of input spots
    n_labels
        Number of cell types
    n_hidden
        Number of neurons in the hidden layers
    n_layers
        Number of layers used in the encoder networks
    n_latent
        Number of dimensions used in the latent variables
    n_genes
        Number of genes used in the decoder
    decoder_state_dict
        state_dict from the decoder of the CondSCVI model
    px_decoder_state_dict
        state_dict from the px_decoder of the CondSCVI model
    px_r
        parameters for the px_r tensor in the CondSCVI model
    mean_vprior
        Mean parameter for each component in the empirical prior over the latent space
    var_vprior
        Diagonal variance parameter for each component in the empirical prior over the latent space
    amortization
        which of the latent variables to amortize inference over (gamma, proportions, both or none)
    """
    def __init__(
        self,
        n_spots: int,
        n_labels: int,
        n_hidden: int,
        n_layers: int,
        n_latent: int,
        n_genes: int,
        decoder_state_dict: OrderedDict,
        px_decoder_state_dict: OrderedDict,
        px_r: np.ndarray,
        mean_vprior: np.ndarray = None,
        var_vprior: np.ndarray = None,
        amortization: Literal["none", "latent", "proportion",
                              "both"] = "latent",
    ):
        super().__init__()
        self.n_spots = n_spots
        self.n_labels = n_labels
        self.n_hidden = n_hidden
        self.n_latent = n_latent
        self.n_genes = n_genes
        self.amortization = amortization
        # unpack and copy parameters
        self.decoder = FCLayers(
            n_in=n_latent,
            n_out=n_hidden,
            n_cat_list=[n_labels],
            n_layers=n_layers,
            n_hidden=n_hidden,
            dropout_rate=0,
            use_layer_norm=True,
            use_batch_norm=False,
        )
        self.px_decoder = torch.nn.Sequential(
            torch.nn.Linear(n_hidden, n_genes), torch.nn.Softplus())
        # don't compute gradient for those parameters
        self.decoder.load_state_dict(decoder_state_dict)
        for param in self.decoder.parameters():
            param.requires_grad = False
        self.px_decoder.load_state_dict(px_decoder_state_dict)
        for param in self.px_decoder.parameters():
            param.requires_grad = False
        self.register_buffer("px_o", torch.tensor(px_r))

        # cell_type specific factor loadings
        self.V = torch.nn.Parameter(
            torch.randn(self.n_labels + 1, self.n_spots))

        # within cell_type factor loadings
        self.gamma = torch.nn.Parameter(
            torch.randn(n_latent, self.n_labels, self.n_spots))

        if mean_vprior is not None:
            self.p = mean_vprior.shape[1]
            self.register_buffer("mean_vprior", torch.tensor(mean_vprior))
            self.register_buffer("var_vprior", torch.tensor(var_vprior))
        else:
            self.mean_vprior = None
            self.var_vprior = None
        # noise from data
        self.eta = torch.nn.Parameter(torch.randn(self.n_genes))
        # additive gene bias
        self.beta = torch.nn.Parameter(0.01 * torch.randn(self.n_genes))

        # create additional neural nets for amortization
        # within cell_type factor loadings
        self.gamma_encoder = torch.nn.Sequential(
            FCLayers(
                n_in=self.n_genes,
                n_out=n_hidden,
                n_cat_list=None,
                n_layers=2,
                n_hidden=n_hidden,
                dropout_rate=0.1,
            ),
            torch.nn.Linear(n_hidden, n_latent * n_labels),
        )
        # cell type loadings
        self.V_encoder = FCLayers(
            n_in=self.n_genes,
            n_out=self.n_labels + 1,
            n_layers=2,
            n_hidden=n_hidden,
            dropout_rate=0.1,
        )

    def _get_inference_input(self, tensors):
        # we perform MAP here, so we just need to subsample the variables
        return {}

    def _get_generative_input(self, tensors, inference_outputs):
        x = tensors[REGISTRY_KEYS.X_KEY]
        ind_x = tensors[REGISTRY_KEYS.X_KEY].long()

        input_dict = dict(x=x, ind_x=ind_x)
        return input_dict

    @auto_move_data
    def inference(self):
        return {}

    @auto_move_data
    def generative(self, x, ind_x):
        """Build the deconvolution model for every cell in the minibatch."""
        m = x.shape[0]
        library = torch.sum(x, dim=1, keepdim=True)
        # setup all non-linearities
        beta = torch.nn.functional.softplus(self.beta)  # n_genes
        eps = torch.nn.functional.softplus(self.eta)  # n_genes
        x_ = torch.log(1 + x)
        # subsample parameters

        if self.amortization in ["both", "latent"]:
            gamma_ind = torch.transpose(self.gamma_encoder(x_), 0, 1).reshape(
                (self.n_latent, self.n_labels, -1))
        else:
            gamma_ind = self.gamma[:, :,
                                   ind_x[:,
                                         0]]  # n_latent, n_labels, minibatch_size

        if self.amortization in ["both", "proportion"]:
            v_ind = self.V_encoder(x_)
        else:
            v_ind = self.V[:, ind_x[:, 0]].T  # minibatch_size, labels + 1
        v_ind = torch.nn.functional.softplus(v_ind)

        # reshape and get gene expression value for all minibatch
        gamma_ind = torch.transpose(gamma_ind, 2,
                                    0)  # minibatch_size, n_labels, n_latent
        gamma_reshape = gamma_ind.reshape(
            (-1, self.n_latent))  # minibatch_size * n_labels, n_latent
        enum_label = (torch.arange(0, self.n_labels).repeat((m)).view(
            (-1, 1)))  # minibatch_size * n_labels, 1
        h = self.decoder(gamma_reshape, enum_label.to(x.device))
        px_rate = self.px_decoder(h).reshape(
            (m, self.n_labels, -1))  # (minibatch, n_labels, n_genes)

        # add the dummy cell type
        eps = eps.repeat(
            (m, 1)).view(m, 1,
                         -1)  # (M, 1, n_genes) <- this is the dummy cell type

        # account for gene specific bias and add noise
        r_hat = torch.cat([beta.unsqueeze(0).unsqueeze(1) * px_rate, eps],
                          dim=1)  # M, n_labels + 1, n_genes
        # now combine them for convolution
        px_scale = torch.sum(v_ind.unsqueeze(2) * r_hat,
                             dim=1)  # batch_size, n_genes
        px_rate = library * px_scale

        return dict(px_o=self.px_o,
                    px_rate=px_rate,
                    px_scale=px_scale,
                    gamma=gamma_ind,
                    v=v_ind)

    def loss(
        self,
        tensors,
        inference_outputs,
        generative_outputs,
        kl_weight: float = 1.0,
        n_obs: int = 1.0,
    ):
        x = tensors[REGISTRY_KEYS.X_KEY]
        px_rate = generative_outputs["px_rate"]
        px_o = generative_outputs["px_o"]
        gamma = generative_outputs["gamma"]

        reconst_loss = -NegativeBinomial(px_rate,
                                         logits=px_o).log_prob(x).sum(-1)

        # eta prior likelihood
        mean = torch.zeros_like(self.eta)
        scale = torch.ones_like(self.eta)
        glo_neg_log_likelihood_prior = -Normal(mean, scale).log_prob(
            self.eta).sum()
        glo_neg_log_likelihood_prior += torch.var(self.beta)

        # gamma prior likelihood
        if self.mean_vprior is None:
            # isotropic normal prior
            mean = torch.zeros_like(gamma)
            scale = torch.ones_like(gamma)
            neg_log_likelihood_prior = (
                -Normal(mean, scale).log_prob(gamma).sum(2).sum(1))
        else:
            # vampprior
            # gamma is of shape n_latent, n_labels, minibatch_size
            gamma = gamma.unsqueeze(1)  # minibatch_size, 1, n_labels, n_latent
            mean_vprior = torch.transpose(self.mean_vprior, 0, 1).unsqueeze(
                0)  # 1, p, n_labels, n_latent
            var_vprior = torch.transpose(self.var_vprior, 0, 1).unsqueeze(
                0)  # 1, p, n_labels, n_latent
            pre_lse = (Normal(mean_vprior,
                              torch.sqrt(var_vprior)).log_prob(gamma).sum(-1)
                       )  # minibatch, p, n_labels
            log_likelihood_prior = torch.logsumexp(pre_lse, 1) - np.log(
                self.p)  # minibatch, n_labels
            neg_log_likelihood_prior = -log_likelihood_prior.sum(
                1)  # minibatch
            # mean_vprior is of shape n_labels, p, n_latent

        loss = (
            n_obs *
            torch.mean(reconst_loss + kl_weight * neg_log_likelihood_prior) +
            glo_neg_log_likelihood_prior)

        return LossRecorder(loss, reconst_loss, neg_log_likelihood_prior,
                            glo_neg_log_likelihood_prior)

    @torch.no_grad()
    def sample(
        self,
        tensors,
        n_samples=1,
        library_size=1,
    ):
        raise NotImplementedError("No sampling method for DestVI")

    @torch.no_grad()
    @auto_move_data
    def get_proportions(self, x=None, keep_noise=False) -> np.ndarray:
        """Returns the loadings."""
        if self.amortization in ["both", "proportion"]:
            # get estimated unadjusted proportions
            x_ = torch.log(1 + x)
            res = torch.nn.functional.softplus(self.V_encoder(x_))
        else:
            res = (torch.nn.functional.softplus(self.V).cpu().numpy().T
                   )  # n_spots, n_labels + 1
        # remove dummy cell type proportion values
        if not keep_noise:
            res = res[:, :-1]
        # normalize to obtain adjusted proportions
        res = res / res.sum(axis=1).reshape(-1, 1)
        return res

    @torch.no_grad()
    @auto_move_data
    def get_gamma(self, x: torch.Tensor = None) -> torch.Tensor:
        """
        Returns the loadings.

        Returns
        -------
        type
            tensor
        """
        # get estimated unadjusted proportions
        if self.amortization in ["latent", "both"]:
            x_ = torch.log(1 + x)
            gamma = self.gamma_encoder(x_)
            return torch.transpose(gamma, 0, 1).reshape(
                (self.n_latent, self.n_labels,
                 -1))  # n_latent, n_labels, minibatch
        else:
            return self.gamma.cpu().numpy()  # (n_latent, n_labels, n_spots)

    @torch.no_grad()
    @auto_move_data
    def get_ct_specific_expression(self,
                                   x: torch.Tensor = None,
                                   ind_x: torch.Tensor = None,
                                   y: int = None):
        """
        Returns cell type specific gene expression at the queried spots.

        Parameters
        ----------
        x
            tensor of data
        ind_x
            tensor of indices
        y
            integer for cell types
        """
        # cell-type specific gene expression, shape (minibatch, celltype, gene).
        beta = torch.nn.functional.softplus(self.beta)  # n_genes
        y_torch = y * torch.ones_like(ind_x)
        # obtain the relevant gammas
        if self.amortization in ["both", "latent"]:
            x_ = torch.log(1 + x)
            gamma_ind = torch.transpose(self.gamma_encoder(x_), 0, 1).reshape(
                (self.n_latent, self.n_labels, -1))
        else:
            gamma_ind = self.gamma[:, :,
                                   ind_x[:,
                                         0]]  # n_latent, n_labels, minibatch_size

        # calculate cell type specific expression
        gamma_select = gamma_ind[:, y_torch[:, 0],
                                 torch.arange(ind_x.shape[0]
                                              )].T  # minibatch_size, n_latent
        h = self.decoder(gamma_select, y_torch)
        px_scale = self.px_decoder(h)  # (minibatch, n_genes)
        px_ct = torch.exp(
            self.px_o).unsqueeze(0) * beta.unsqueeze(0) * px_scale
        return px_ct  # shape (minibatch, genes)
Example #8
0
    def __init__(self,
                 adata,
                 gmt_paths=None,
                 add_nodes=1,
                 min_genes=0,
                 max_genes=5000,
                 positive_decoder=True,
                 encode_covariates=False,
                 regularizer='mask',
                 reg_kwargs=None,
                 **kwargs):
        """ 
        Constructor for class VEGA (VAE Enhanced by Gene Annotations).

        Parameters
        ----------
            adata
                scanpy single-cell object. Please run setup_anndata() before passing to VEGA.
            gmt_paths
                one or more paths to .gmt files for GMVs initialization.
            add_nodes
                additional fully-connected nodes in the mask.
            min_genes
                minimum gene size for GMVs.
            max_genes
                maximum gene size for GMVs.
            positive_decoder
                whether to constrain decoder to positive weights
            encode_covariates
                whether to encode covariates along gene expression
            regularizer
                which regularization strategy to use (l1, gelnet, mask). Default: mask.
            reg_kwargs
                parameters for regularizer.
            **kwargs
                use_cuda
                    using CPU (False) or CUDA (True).
                beta
                    weight for KL-divergence.
                dropout
                    dropout rate in model.
                z_dropout
                    dropout rate for the latent space (for correlation).
        """
        super(VEGA, self).__init__()
        self.adata = adata
        self.add_nodes_ = add_nodes
        self.min_genes_ = min_genes
        self.max_genes_ = max_genes
        # Check for setup and mask existence
        if '_vega' not in self.adata.uns.keys():
            raise ValueError(
                'Please run vega.utils.setup_anndata(adata) before initializing VEGA.'
            )
        if 'mask' not in self.adata.uns['_vega'].keys() and not gmt_paths:
            raise ValueError(
                'No existing mask found in Anndata object and no .gmt files passed to VEGA. Please provide .gmt file paths to initialize a new mask or use an Anndata object used for training of a previous VEGA model.'
            )
        elif gmt_paths:
            create_mask(self.adata, gmt_paths, add_nodes, self.min_genes_,
                        self.max_genes_)

        self.gmv_mask = adata.uns['_vega']['mask']
        self.n_gmvs = self.gmv_mask.shape[1]
        self.n_genes = self.gmv_mask.shape[0]
        self.use_cuda = kwargs.get('use_cuda', False)
        self.beta_ = kwargs.get('beta', 0.0001)
        self.dropout_ = kwargs.get('dropout', 0.1)
        self.z_dropout_ = kwargs.get('z_dropout', 0.3)
        self.pos_dec_ = positive_decoder
        self.regularizer_ = regularizer
        self.encode_covariates = encode_covariates
        self.epoch_history = {}
        # Categorical covariates
        n_cats_per_cov = (
            adata.uns['_scvi']['extra_categoricals']['n_cats_per_key']
            if 'extra_categoricals' in adata.uns['_scvi'] else None)
        n_batch = adata.uns['_scvi']['summary_stats']['n_batch']
        cat_list = [n_batch
                    ] + list([] if n_cats_per_cov is None else n_cats_per_cov)
        # Model architecture
        self.encoder = FCLayers(
            n_in=self.n_genes,
            n_out=800,
            n_cat_list=cat_list if encode_covariates else None,
            n_layers=2,
            n_hidden=800,
            dropout_rate=self.dropout_)
        self.mean = nn.Sequential(nn.Linear(800, self.n_gmvs),
                                  nn.Dropout(self.z_dropout_))
        self.logvar = nn.Sequential(nn.Linear(800, self.n_gmvs),
                                    nn.Dropout(self.z_dropout_))
        #self.decoder = SparseLayer(self.gmv_mask.T,
        #n_cat_list=cat_list,
        #use_batch_norm=False,
        #use_layer_norm=False,
        #bias=True,
        #dropout_rate=0)
        # Setup decoder
        self.decoder = DecoderVEGA(mask=self.gmv_mask.T,
                                   n_cat_list=cat_list,
                                   regularizer=self.regularizer_,
                                   positive_decoder=self.pos_dec_,
                                   reg_kwargs=reg_kwargs)
        # Other hyperparams
        self.is_trained_ = kwargs.get('is_trained', False)
        # Constraining decoder to positive weights or not
        if self.pos_dec_:
            print('Constraining decoder to positive weights', flush=True)
            #self.decoder.sparse_layer[0].reset_params_pos()
            #self.decoder.sparse_layer[0].weight.data *= self.decoder.sparse_layer[0].mask
            self.decoder._positive_weights()