Example #1
0
    def __init__(self, cfgFile="cfg/maskrcnn.yaml"):
        config = YamlConfig(cfgFile)
        print("Benchmarking model.")

        # Create new directory for outputs
        output_dir = config['output_dir']
        utils.mkdir_if_missing(output_dir)

        # Save config in output directory
        image_shape = config['model']['settings']['image_shape']
        config['model']['settings']['image_min_dim'] = min(image_shape)
        config['model']['settings']['image_max_dim'] = max(image_shape)
        config['model']['settings']['gpu_count'] = 1
        config['model']['settings']['images_per_gpu'] = 1
        inference_config = MaskConfig(config['model']['settings'])

        model_dir, _ = os.path.split(config['model']['path'])
        self.model = modellib.MaskRCNN(mode=config['model']['mode'],
                                       config=inference_config,
                                       model_dir=model_dir)

        print(("Loading weights from ", config['model']['path']))
        self.model.load_weights(config['model']['path'], by_name=True)
        self.graph = tf.get_default_graph()
        print(self.model.keras_model.layers[0].dtype)
Example #2
0
    def set_mode(self, data):
        """
        Sets the mode of the algorithm and loads the corresponding weights.
        'both' means that the algorithm is considering grayscale and depth data.
        'depth' means that the algorithm only considers depth data.
        """
        mode = data.decode().strip().lower()
        if mode not in MODES:
            return Response(f"Invalid mode {mode}")
        self.mode = mode
        config = YamlConfig(self.config_path)
        inference_config = MaskConfig(config['model']['settings'])
        inference_config.GPU_COUNT = 1
        inference_config.IMAGES_PER_GPU = 1

        model_path = MODEL_PATHS[self.mode]
        model_dir, _ = os.path.split(model_path)
        self.model = modellib.MaskRCNN(mode=config['model']['mode'],
                                       config=inference_config,
                                       model_dir=model_dir)
        self.model.load_weights(model_path, by_name=True)
        self.element.log(LogLevel.INFO, f"Loaded weights from {model_path}")
        return Response(f"Mode switched to {self.mode}")
def init_sd_mask_rcnn(yaml_file_path):
    '''
    input: yaml file path
    returns: loaded model
    '''

    # Initialization for sd mask RCNN
    # parse the provided configuration file, set tf settings, and benchmark
    # Change add_argument default for yaml file path
    conf_parser = argparse.ArgumentParser(
        description="Benchmark SD Mask RCNN model")
    conf_parser.add_argument("--config",
                             action="store",
                             default=yaml_file_path,
                             dest="conf_file",
                             type=str,
                             help="path to the configuration file")

    conf_args = conf_parser.parse_args(args=[])

    # read in config file information from proper section
    config = YamlConfig(conf_args.conf_file)

    inference_config = MaskConfig(config['model']['settings'])
    inference_config.GPU_COUNT = 1
    inference_config.IMAGES_PER_GPU = 1

    model_dir, _ = os.path.split(config['model']['path'])
    model = modellib.MaskRCNN(mode=config['model']['mode'],
                              config=inference_config,
                              model_dir=model_dir)

    # Load trained weights
    print("Loading weights from ", config['model']['path'])
    model.load_weights(config['model']['path'], by_name=True)
    graph = tf.get_default_graph()
    return model, graph
Example #4
0
def train(config):

    # Training dataset
    dataset_train = ImageDataset(config)
    dataset_train.load(config['dataset']['train_indices'], augment=True)
    dataset_train.prepare()

    # Validation dataset
    dataset_val = ImageDataset(config)
    dataset_val.load(config['dataset']['val_indices'])
    dataset_val.prepare()

    # Load config
    image_shape = config['model']['settings']['image_shape']
    config['model']['settings']['image_min_dim'] = min(image_shape)
    config['model']['settings']['image_max_dim'] = max(image_shape)
    train_config = MaskConfig(config['model']['settings'])
    train_config.STEPS_PER_EPOCH = dataset_train.indices.size/(train_config.IMAGES_PER_GPU*train_config.GPU_COUNT)
    train_config.display()

    # Create directory if it doesn't currently exist
    utils.mkdir_if_missing(config['model']['path'])

    # Create the model.
    model = modellib.MaskRCNN(mode='training', config=train_config,
                              model_dir=config['model']['path'])


    # Select weights file to load
    if config['model']['weights'].lower() == "coco":
        weights_path = os.path.join(config['model']['path'], 'mask_rcnn_coco.h5')
        # Download weights file
        if not os.path.exists(weights_path):
            utilslib.download_trained_weights(weights_path)
    elif config['model']['weights'].lower() == "last":
        # Find last trained weights
        weights_path = model.find_last()
    elif config['model']['weights'].lower() == "imagenet":
        # Start from ImageNet trained weights
        weights_path = model.get_imagenet_weights()
    else:
        weights_path = config['model']['weights']

    # Load weights
    exclude_layers = []
    print("Loading weights ", weights_path)
    if config['model']['weights'].lower() == "coco":
        # Exclude the last layers because they require a matching
        # number of classes
        if config['model']['settings']['image_channel_count'] == 1:
            exclude_layers = ['conv1']
        exclude_layers += ["mrcnn_class_logits", "mrcnn_bbox_fc", "mrcnn_bbox", "mrcnn_mask"]
        model.load_weights(weights_path, by_name=True, exclude=exclude_layers)
    elif config['model']['weights'].lower() == "imagenet":
        if config['model']['settings']['image_channel_count'] == 1:
            exclude_layers = ['conv1']
        model.load_weights(weights_path, by_name=True, exclude=exclude_layers)
    elif config['model']['weights'].lower() != "new":
        model.load_weights(weights_path, by_name=True)

    # save config in run folder
    config.save(os.path.join(config['model']['path'], config['save_conf_name']))

    # train and save weights to model_path
    model.train(dataset_train, dataset_val, learning_rate=train_config.LEARNING_RATE,
                epochs=config['model']['epochs'], layers='all')

    # save in the models folder
    current_datetime = time.strftime("%Y%m%d-%H%M%S")
    model_path = os.path.join(config['model']['path'], "mask_rcnn_{}_{}.h5".format(train_config.NAME, current_datetime))
    model.keras_model.save_weights(model_path)
Example #5
0
def benchmark(config):
    """Benchmarks a model, computes and stores model predictions and then
    evaluates them on COCO metrics and supplementary benchmarking script."""

    print("Benchmarking model.")

    # Create new directory for outputs
    output_dir = config['output_dir']
    utils.mkdir_if_missing(output_dir)

    # Save config in output directory
    config.save(os.path.join(output_dir, config['save_conf_name']))
    image_shape = config['model']['settings']['image_shape']
    config['model']['settings']['image_min_dim'] = min(image_shape)
    config['model']['settings']['image_max_dim'] = max(image_shape)
    config['model']['settings']['gpu_count'] = 1
    config['model']['settings']['images_per_gpu'] = 1
    inference_config = MaskConfig(config['model']['settings'])
    
    model_dir, _ = os.path.split(config['model']['path'])
    model = modellib.MaskRCNN(mode=config['model']['mode'], config=inference_config,
                              model_dir=model_dir)

    # Load trained weights
    print("Loading weights from ", config['model']['path'])
    model.load_weights(config['model']['path'], by_name=True)

    # Create dataset
    test_dataset = ImageDataset(config)
    test_dataset.load(config['dataset']['indices'])
    test_dataset.prepare()

    vis_config = copy(config)
    vis_config['dataset']['images'] = 'depth_ims'
    vis_config['dataset']['masks'] = 'modal_segmasks'
    vis_dataset = ImageDataset(config)
    vis_dataset.load(config['dataset']['indices'])
    vis_dataset.prepare()

    ######## BENCHMARK JUST CREATES THE RUN DIRECTORY ########
    # code that actually produces outputs should be plug-and-play
    # depending on what kind of benchmark function we run.

    # If we want to remove bin pixels, pass in the directory with
    # those masks.
    if config['mask']['remove_bin_pixels']:
        bin_mask_dir = os.path.join(config['dataset']['path'], config['mask']['bin_masks'])
        overlap_thresh = config['mask']['overlap_thresh']
    else:
        bin_mask_dir = False
        overlap_thresh = 0

    # Create predictions and record where everything gets stored.
    pred_mask_dir, pred_info_dir, gt_mask_dir = \
        detect(config['output_dir'], inference_config, model, test_dataset, bin_mask_dir, overlap_thresh)

    ap, ar = coco_benchmark(pred_mask_dir, pred_info_dir, gt_mask_dir)
    if config['vis']['predictions']:
        visualize_predictions(config['output_dir'], vis_dataset, inference_config, pred_mask_dir, pred_info_dir, 
                              show_bbox=config['vis']['show_bbox_pred'], show_scores=config['vis']['show_scores_pred'], show_class=config['vis']['show_class_pred'])
    if config['vis']['ground_truth']:
        visualize_gts(config['output_dir'], vis_dataset, inference_config, show_scores=False, show_bbox=config['vis']['show_bbox_gt'], show_class=config['vis']['show_class_gt'])
    if config['vis']['s_bench']:
        s_benchmark(config['output_dir'], vis_dataset, inference_config, pred_mask_dir, pred_info_dir)

    print("Saved benchmarking output to {}.\n".format(config['output_dir']))
    return ap, ar