Example #1
0
def evaluate(hypes, sess, image_pl, inf_out):
	#softmax
    softmax = inf_out['softmax']
    data_dir = hypes['dirs']['data_dir']

    eval_dict = {}
    for phase in ['train', 'val']:
        data_file = hypes['data']['{}_file'.format(phase)]
        data_file = os.path.join(data_dir, data_file)
        image_dir = os.path.dirname(data_file)

        thresh = np.array(range(0, 256))/255.0
        total_fp = np.zeros(thresh.shape)
        total_fn = np.zeros(thresh.shape)
        total_posnum = 0
        total_negnum = 0

        image_list = []

        with open(data_file) as file:
            for i, datum in enumerate(file):
                    datum = datum.rstrip()
                    image_file, gt_file = datum.split(" ")
                    image_file = os.path.join(image_dir, image_file)
                    gt_file = os.path.join(image_dir, gt_file)

                    image = scp.misc.imread(image_file, mode='RGB')
                    gt_image = scp.misc.imread(gt_file, mode='RGB')
					#accoriding to the image rescaling options specified in hypes
                    if hypes['jitter']['fix_shape']:
                        shape = image.shape
                        image_height = hypes['jitter']['image_height']
                        image_width = hypes['jitter']['image_width']
                        assert(image_height >= shape[0])
                        assert(image_width >= shape[1])

                        offset_x = (image_height - shape[0])//2
                        offset_y = (image_width - shape[1])//2
                        new_image = np.zeros([image_height, image_width, 3])
                        new_image[offset_x:offset_x+shape[0],
                                  offset_y:offset_y+shape[1]] = image
                        input_image = new_image
                    elif hypes['jitter']['reseize_image']:
                        image_height = hypes['jitter']['image_height']
                        image_width = hypes['jitter']['image_width']
                        gt_image_old = gt_image
                        image, gt_image = resize_label_image(image, gt_image,
                                                             image_height,
                                                             image_width)
                        input_image = image
                    else:
                        input_image = image

                    shape = input_image.shape

                    feed_dict = {image_pl: input_image}

                    output = sess.run([softmax], feed_dict=feed_dict)
                    output_im = output[0][:, 1].reshape(shape[0], shape[1])

                    if hypes['jitter']['fix_shape']:
                        gt_shape = gt_image.shape
                        output_im = output_im[offset_x:offset_x+gt_shape[0],
                                              offset_y:offset_y+gt_shape[1]]
					#if this is a validation process
                    if phase == 'val':
                        # Saving RB Plot
                        ov_image = seg.make_overlay(image, output_im)
                        name = os.path.basename(image_file)
                        image_list.append((name, ov_image))

                        name2 = name.split('.')[0] + '_green.png'

                        hard = output_im > 0.5
                        green_image = utils.fast_overlay(image, hard)
                        image_list.append((name2, green_image))

                    FN, FP, posNum, negNum = eval_image(hypes,
                                                        gt_image, output_im)

                    total_fp += FP
                    total_fn += FN
                    total_posnum += posNum
                    total_negnum += negNum

        eval_dict[phase] = seg.pxEval_maximizeFMeasure(
            total_posnum, total_negnum, total_fn, total_fp, thresh=thresh)

        if phase == 'val':
            start_time = time.time()
            for i in xrange(10):
                sess.run([softmax], feed_dict=feed_dict)
            dt = (time.time() - start_time)/10

    eval_list = []

	#performance measures
    for phase in ['train', 'val']:
        eval_list.append(('[{}] MaxF1'.format(phase),
                          100*eval_dict[phase]['MaxF']))
        eval_list.append(('[{}] BestThresh'.format(phase),
                          100*eval_dict[phase]['BestThresh']))
        eval_list.append(('[{}] Average Precision'.format(phase),
                          100*eval_dict[phase]['AvgPrec']))
    eval_list.append(('Speed (msec)', 1000*dt))
    eval_list.append(('Speed (fps)', 1/dt))

    return eval_list, image_list
Example #2
0
def evaluate(hypes, sess, image_pl, inf_out):

    out_layer = inf_out['output']
    data_dir = hypes['dirs']['data_dir']

    eval_dict = {}
    for phase in ['train', 'val']:
        data_file = hypes['data']['{}_file'.format(phase)]
        data_file = os.path.join(data_dir, data_file)
        image_dir = os.path.dirname(data_file)

        thresh = np.array(range(0, 256)) / 255.0
        total_fp = np.zeros(thresh.shape)
        total_fn = np.zeros(thresh.shape)
        total_posnum = 0
        total_negnum = 0

        image_list = []

        with open(data_file) as file:
            for i, datum in enumerate(file):
                datum = datum.rstrip()
                image_file, gt_file = datum.split("\t")
                image_file = os.path.join(image_dir, image_file)
                gt_file = os.path.join(image_dir, gt_file)

                # image = scp.misc.imread(image_file, mode='RGB')
                # gt_image = scp.misc.imread(gt_file, mode='RGB')
                image = cv2.imread(image_file, cv2.IMREAD_COLOR)
                gt_image = cv2.imread(gt_file, cv2.IMREAD_COLOR)

                if hypes['jitter']['fix_shape']:
                    shape = image.shape
                    image_height = hypes['jitter']['image_height']
                    image_width = hypes['jitter']['image_width']
                    assert (image_height >= shape[0])
                    assert (image_width >= shape[1])

                    offset_x = (image_height - shape[0]) // 2
                    offset_y = (image_width - shape[1]) // 2
                    new_image = np.zeros([image_height, image_width, 3])
                    new_image[offset_x:offset_x + shape[0],
                              offset_y:offset_y + shape[1]] = image
                    input_image = new_image
                elif hypes['jitter']['resize_image']:
                    image_height = hypes['jitter']['image_height']
                    image_width = hypes['jitter']['image_width']
                    gt_image_old = gt_image
                    image, gt_image = resize_label_image(
                        image, gt_image, image_height, image_width)
                    input_image = image
                else:
                    input_image = image

                shape = input_image.shape

                feed_dict = {image_pl: input_image}

                output = sess.run([out_layer], feed_dict=feed_dict)
                # getting an inference of object of interest location
                if hypes['arch']['output'] == "softmax":
                    output_im = output[0][:, 1].reshape(shape[0], shape[1])
                elif hypes['arch']['output'] == "sigmoid":
                    output_im = output[0].reshape(shape[0], shape[1])
                elif hypes['arch']['output'] == "regress":
                    output_center = output[0]

                if hypes['jitter']['fix_shape']:
                    gt_shape = gt_image.shape
                    output_im = output_im[offset_x:offset_x + gt_shape[0],
                                          offset_y:offset_y + gt_shape[1]]

                if hypes['arch']['output'] != "regress":
                    if phase == 'val':
                        # Saving RB Plot
                        ov_image = seg.make_overlay(image, output_im)
                        name = os.path.basename(image_file)
                        image_list.append((name, ov_image))

                        name2 = name.split('.')[0] + '_blue.png'

                        hard = output_im > 0.5
                        blue_image = utils.fast_overlay(image, hard, \
                                        color=[0, 0, 255, 127])
                        image_list.append((name2, blue_image))

                    FN, FP, posNum, negNum = eval_image(
                        hypes, gt_image, output_im)

                    total_fp += FP
                    total_fn += FN
                    total_posnum += posNum
                    total_negnum += negNum

        if hypes['arch']['output'] != "regress":
            eval_dict[phase] = seg.pxEval_maximizeFMeasure(total_posnum,
                                                           total_negnum,
                                                           total_fn,
                                                           total_fp,
                                                           thresh=thresh)

        if phase == 'val':
            start_time = time.time()
            for i in range(10):
                sess.run([out_layer], feed_dict=feed_dict)
            dt = (time.time() - start_time) / 10

    eval_list = []

    if hypes['arch']['output'] != "regress":
        for phase in ['train', 'val']:
            eval_list.append(
                ('[{}] MaxF1'.format(phase), 100 * eval_dict[phase]['MaxF']))
            eval_list.append(('[{}] BestThresh'.format(phase),
                              100 * eval_dict[phase]['BestThresh']))
            eval_list.append(('[{}] Average Precision'.format(phase),
                              100 * eval_dict[phase]['AvgPrec']))

    eval_list.append(('Speed (msec)', 1000 * dt))
    eval_list.append(('Speed (fps)', 1 / dt))

    return eval_list, image_list
Example #3
0
def evaluate(hypes, sess, image_pl, inf_out):

    softmax = inf_out['softmax']
    data_dir = hypes['dirs']['data_dir']

    eval_dict = {}
    for phase in ['train', 'val']:
        data_file = hypes['data']['{}_file'.format(phase)]
        data_file = os.path.join(data_dir, data_file)
        image_dir = os.path.dirname(data_file)

        thresh = np.array(range(0, 256))/255.0
        total_fp = np.zeros(thresh.shape)
        total_fn = np.zeros(thresh.shape)
        total_posnum = 0
        total_negnum = 0

        image_list = []

        with open(data_file) as file:
            for i, datum in enumerate(file):
                    datum = datum.rstrip()
                    image_file, gt_file = datum.split(" ")
                    image_file = os.path.join(image_dir, image_file)
                    gt_file = os.path.join(image_dir, gt_file)

                    image = scp.misc.imread(image_file, mode='RGB')
                    gt_image = scp.misc.imread(gt_file, mode='RGB')

                    if hypes['jitter']['fix_shape']:
                        shape = image.shape
                        image_height = hypes['jitter']['image_height']
                        image_width = hypes['jitter']['image_width']
                        assert(image_height >= shape[0])
                        assert(image_width >= shape[1])

                        offset_x = (image_height - shape[0])//2
                        offset_y = (image_width - shape[1])//2
                        new_image = np.zeros([image_height, image_width, 3])
                        new_image[offset_x:offset_x+shape[0],
                                  offset_y:offset_y+shape[1]] = image
                        input_image = new_image
                    elif hypes['jitter']['reseize_image']:
                        image_height = hypes['jitter']['image_height']
                        image_width = hypes['jitter']['image_width']
                        gt_image_old = gt_image
                        image, gt_image = resize_label_image(image, gt_image,
                                                             image_height,
                                                             image_width)
                        input_image = image
                    else:
                        input_image = image

                    shape = input_image.shape

                    feed_dict = {image_pl: input_image}

                    output = sess.run([softmax], feed_dict=feed_dict)
                    output_im = output[0][:, 1].reshape(shape[0], shape[1])

                    if hypes['jitter']['fix_shape']:
                        gt_shape = gt_image.shape
                        output_im = output_im[offset_x:offset_x+gt_shape[0],
                                              offset_y:offset_y+gt_shape[1]]

                    if phase == 'val':
                        # Saving RB Plot
                        ov_image = seg.make_overlay(image, output_im)
                        name = os.path.basename(image_file)
                        image_list.append((name, ov_image))

                        name2 = name.split('.')[0] + '_green.png'

                        hard = output_im > 0.5
                        green_image = utils.fast_overlay(image, hard)
                        image_list.append((name2, green_image))

                    FN, FP, posNum, negNum = eval_image(hypes,
                                                        gt_image, output_im)

                    total_fp += FP
                    total_fn += FN
                    total_posnum += posNum
                    total_negnum += negNum

        eval_dict[phase] = seg.pxEval_maximizeFMeasure(
            total_posnum, total_negnum, total_fn, total_fp, thresh=thresh)

        if phase == 'val':
            start_time = time.time()
            for i in xrange(10):
                sess.run([softmax], feed_dict=feed_dict)
            dt = (time.time() - start_time)/10

    eval_list = []

    for phase in ['train', 'val']:
        eval_list.append(('[{}] MaxF1'.format(phase),
                          100*eval_dict[phase]['MaxF']))
        eval_list.append(('[{}] BestThresh'.format(phase),
                          100*eval_dict[phase]['BestThresh']))
        eval_list.append(('[{}] Average Precision'.format(phase),
                          100*eval_dict[phase]['AvgPrec']))
    eval_list.append(('Speed (msec)', 1000*dt))
    eval_list.append(('Speed (fps)', 1/dt))

    return eval_list, image_list
Example #4
0
def evaluate(hypes, sess, image_pl, inf_out):

    softmax = inf_out['softmax']
    data_dir = hypes['dirs']['data_dir']
    num_classes = hypes['arch']['num_classes']
    colors = hypes['colors']
    for i, key in enumerate(colors):
        colors[i] = np.array(colors[key])
        del colors[key]
    eval_dict = {}
    for phase in ['train', 'val']:
        data_file = hypes['data']['{}_file'.format(phase)]
        data_file = os.path.join(data_dir, data_file)
        image_dir = os.path.dirname(data_file)

        thresh = np.array(range(0, 256)) / 255.0
        total_fp = np.zeros(thresh.shape)
        total_fn = np.zeros(thresh.shape)
        total_posnum = 0
        total_negnum = 0

        image_list = []

        with open(data_file) as file:
            for i, datum in enumerate(file):
                datum = datum.rstrip()
                image_file, gt_file = datum.split(" ")
                image_file = os.path.join(image_dir, image_file)
                gt_file = os.path.join(image_dir, gt_file)

                image = scp.misc.imread(image_file, mode='RGB')
                gt_image = scp.misc.imread(gt_file, mode='RGB')

                if hypes['jitter']['fix_shape']:
                    shape = image.shape
                    image_height = hypes['jitter']['image_height']
                    image_width = hypes['jitter']['image_width']
                    assert (image_height >= shape[0])
                    assert (image_width >= shape[1])

                    offset_x = (image_height - shape[0]) // 2
                    offset_y = (image_width - shape[1]) // 2
                    new_image = np.zeros([image_height, image_width, 3])
                    new_image[offset_x:offset_x + shape[0],
                              offset_y:offset_y + shape[1]] = image
                    input_image = new_image
                elif hypes['jitter']['reseize_image']:
                    image_height = hypes['jitter']['image_height']
                    image_width = hypes['jitter']['image_width']
                    gt_image_old = gt_image
                    image, gt_image = resize_label_image(
                        image, gt_image, image_height, image_width)
                    input_image = image
                else:
                    input_image = image

                shape = input_image.shape

                feed_dict = {image_pl: input_image}

                output = sess.run([softmax], feed_dict=feed_dict)
                output_im = output.reshape(shape[0], shape[1], num_classes)
                output_im = np.argmax(output_im, axis=2)

                if hypes['jitter']['fix_shape']:
                    gt_shape = gt_image.shape
                    output_im = output_im[offset_x:offset_x + gt_shape[0],
                                          offset_y:offset_y + gt_shape[1]]

                if phase == 'val':

                    green_image = seg.paint(output_im, colors)
                    name = os.path.basename(image_file)
                    image_list.append((name, green_image))

                    name2 = name.split('.')[0] + '_overlay.png'

                    ov_image = seg.blend_transparent(image, green_image)
                    image_list.append((name2, ov_image))

                FN, FP, posNum, negNum = eval_image(hypes, gt_image, output_im)

                total_fp += FP
                total_fn += FN
                total_posnum += posNum
                total_negnum += negNum

        eval_dict[phase] = seg.pxEval_maximizeFMeasure(total_posnum,
                                                       total_negnum,
                                                       total_fn,
                                                       total_fp,
                                                       thresh=thresh)

        if phase == 'val':
            start_time = time.time()
            for i in xrange(10):
                sess.run([softmax], feed_dict=feed_dict)
            dt = (time.time() - start_time) / 10

    eval_list = []

    for phase in ['train', 'val']:
        eval_list.append(
            ('[{}] MaxF1'.format(phase), 100 * eval_dict[phase]['MaxF']))
        eval_list.append(('[{}] BestThresh'.format(phase),
                          100 * eval_dict[phase]['BestThresh']))
        eval_list.append(('[{}] Average Precision'.format(phase),
                          100 * eval_dict[phase]['AvgPrec']))
    eval_list.append(('Speed (msec)', 1000 * dt))
    eval_list.append(('Speed (fps)', 1 / dt))

    return eval_list, image_list