Example #1
0
def main():

    ap = argparse.ArgumentParser()
    ap.add_argument("-i1",
                    "--image1",
                    required=True,
                    help="Path to the checkboard_image")
    ap.add_argument("-i2",
                    "--image2",
                    required=True,
                    help="Path to the arm_spread_image")
    ap.add_argument("-i3",
                    "--image3",
                    required=True,
                    help="Path to the waist_image")
    ap.add_argument("-a",
                    "--affine_mode",
                    required=True,
                    help="To perform Affine Corrections")
    args = vars(ap.parse_args())

    # load the image, clone it, and setup the mouse callback function
    image = cv2.imread(args["image1"])
    arm_spread_image = cv2.imread(args["image2"])
    waist_image = cv2.imread(args["image3"])

    affine_correct_flag = (args["affine_mode"])

    metre_pixel_x, metre_pixel_y, coordinate, affine_correct_parameters = analyze_chessboard(
        image, affine_correct_flag)

    segmented_image = segment.segmenter(image)
    print "Segmentation Completed 1"

    segmented_arm_image = segment.segmenter(arm_spread_image)
    print "Segmentation Completed 2"

    cv2.imwrite("first.jpg", segmented_image)
    cv2.imwrite("second.jpg", segmented_arm_image)

    block_cut = np.zeros(segmented_image.shape)
    block_cut[coordinate[0][1]:coordinate[1][1],
              coordinate[0][0]:coordinate[1][0]] = 1
    # segmented_image=segmented_image*block_cut

    if (affine_correct_flag == 'True'):
        arm_spread_image = affine_correct(arm_spread_image,
                                          affine_correct_parameters)
        waist_image = affine_correct(waist_image, affine_correct_parameters)
        segmented_image = affine_correct(segmented_image,
                                         affine_correct_parameters)
        print "Affine Corrected"

    # detect_wrist(segmented_arm_image)

    # cv2.imwrite("affine_corrected.jpg",segmented_image)

    measure_distance(segmented_image, segmented_arm_image, arm_spread_image,
                     waist_image, image, metre_pixel_x, metre_pixel_y)
Example #2
0
def main():

    ap = argparse.ArgumentParser()
    ap.add_argument("-i1",
                    "--image1",
                    required=True,
                    help="Path to the checkboard_image")
    ap.add_argument("-i2",
                    "--image2",
                    required=True,
                    help="Path to the arm_spread_image")
    ap.add_argument("-i3",
                    "--image3",
                    required=True,
                    help="Path to the waist_image")
    ap.add_argument("-a",
                    "--affine_mode",
                    required=True,
                    help="To perform Affine Corrections")
    args = vars(ap.parse_args())
    image = cv2.imread(args["image1"])
    arm_spread_image = cv2.imread(args["image2"])
    waist_image = cv2.imread(args["image3"])

    affine_correct_flag = (args["affine_mode"])

    metre_pixel_x, metre_pixel_y, coordinate, affine_correct_parameters = analyze_chessboard(
        image, affine_correct_flag)

    segmented_image = segment.segmenter(image)

    segmented_arm_image = segment.segmenter(arm_spread_image)

    a = cv2.imwrite("first.jpg", segmented_image)
    b = cv2.imwrite("second.jpg", segmented_arm_image)

    block_cut = np.zeros(segmented_image.shape)
    block_cut[coordinate[0][1]:coordinate[1][1],
              coordinate[0][0]:coordinate[1][0]] = 1

    if (affine_correct_flag == 'True'):
        arm_spread_image = affine_correct(arm_spread_image,
                                          affine_correct_parameters)
        waist_image = affine_correct(waist_image, affine_correct_parameters)
        segmented_image = affine_correct(segmented_image,
                                         affine_correct_parameters)

    measure_distance(segmented_image, segmented_arm_image, arm_spread_image,
                     waist_image, image, metre_pixel_x, metre_pixel_y)
Example #3
0
def read_data(src_dir, training):
    tags = []
    articles = []
    for dir_path, dir_names, file_names in os.walk(src_dir):
        for filename in file_names:
            file_path = os.path.join(dir_path, filename)
            with open(file_path, 'r') as f:
                text = f.read()
            segs = segmenter(text)
            article = " ".join(del_stops(segs))
            article = del_stops(segs)
            if training:
                tag = dir_path.split("/")[-1]
                tags.append(tag)
            articles.append(article)
    if training:
        assert len(tags) == len(articles)
    tags_list = ["dry", "normal", "oily"]
    return (tags, articles, tags_list)
Example #4
0
import tkinter as tk
import cv2
from segment import segmenter

from tkinter import filedialog
root = tk.Tk()
root.withdraw()
file_path = filedialog.askopenfilename()
image_to_segment = cv2.imread(file_path)
segmenter(image_to_segment)

from sklearn.model_selection import train_test_split

# == Load data ==
print("Loading dataset...")
files = os.listdir()
D = []

# Label:
# - dry: 0
# - normal: 1
# - oil: 2
y = np.array([])
print(len(D), " documents, ", len(y), " labels.")

# == Chinese Segmentation ==
X = np.array([del_stops(segmenter(d)) for d in D])

# == Split dataset ==
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42)

# == Vector Transformation ==
print("Extracting features from the dataset...")
vectorizer = Pipeline([
    ('vect',
     HashingVectorizer(n_features=(2**21), non_negative=True,
                       lowercase=False)),
    ('tfidf', TfidfTransformer(norm='l2')),
])

if __name__ == '__main__':
    vectorizer.fit()
def main():

    ap = argparse.ArgumentParser()
    ap.add_argument("-i1",
                    "--image1",
                    required=True,
                    help="Path to the checkboard_image")
    ap.add_argument("-i2",
                    "--image2",
                    required=True,
                    help="Path to the arm_spread_image")
    ap.add_argument("-i3",
                    "--image3",
                    required=True,
                    help="Path to the waist_image")
    ap.add_argument("-a",
                    "--affine_mode",
                    required=True,
                    help="To perform Affine Corrections")
    args = vars(ap.parse_args())

    # load the image, clone it, and setup the mouse callback function
    image = cv2.imread(args["image1"])
    image22 = np.copy(image)
    arm_spread_image = cv2.imread(args["image2"])
    waist_image = cv2.imread(args["image3"])

    affine_correct_flag = (args["affine_mode"])

    metre_pixel_x, metre_pixel_y, coordinate, affine_correct_parameters = analyze_chessboard(
        image, affine_correct_flag)

    segmented_image = segment.segmenter(image)
    print "Segmentation Completed 1"

    segmented_arm_image = segment.segmenter(arm_spread_image)
    print "Segmentation Completed 2"

    image2 = affine_correct(image, affine_correct_parameters)
    image2 = cv2.rectangle(image2, (coordinate[0][0], coordinate[0][1]),
                           (coordinate[1][0], coordinate[1][1]), (255, 0, 0),
                           3)

    block_cut = np.zeros(segmented_image.shape)
    block_cut[coordinate[0][1]:coordinate[1][1],
              coordinate[0][0]:coordinate[1][0]] = 1
    segmented_image = segmented_image * block_cut

    if (affine_correct_flag == 'True'):
        image2 = affine_correct(image, affine_correct_parameters)
        cv2.imwrite('affine_correction_3.jpg',
                    np.concatenate((image, image2), axis=1))
        arm_spread_image = affine_correct(arm_spread_image,
                                          affine_correct_parameters)
        waist_image = affine_correct(waist_image, affine_correct_parameters)
        segmented_image = affine_correct(segmented_image,
                                         affine_correct_parameters)
        print "Affine Corrected"

    measure_distance(segmented_image, segmented_arm_image, arm_spread_image,
                     waist_image, image22, metre_pixel_x, metre_pixel_y)