def segmentation_mymethod(train_data_matrix, train_labels_matrix, test_data, task='brain'): # segments the image based on your own method! # Input: # train_data_matrix num_pixels x num_features x num_subjects matrix of # features # train_labels_matrix num_pixels x num_subjects matrix of labels # test_data num_pixels x num_features test data # task String corresponding to the segmentation task: either 'brain' or 'tissue' # Output: # predicted_labels Predicted labels for the test slice predicted_labels_1 = seg.segmentation_combined_knn(train_data_matrix, train_labels_matrix, test_data, k=5) predicted_labels_2 = seg.segmentation_combined_knn(train_data_matrix, train_labels_matrix, test_data, k=1) predicted_labels_2 = seg.segmentation_combined_atlas(train_labels_matrix) predicted_labels = np.concatenate((predicted_labels_1, predicted_labels_2), axis=1) # predicted_labels = np.concatenate((predicted_labels, predicted_labels_3), axis=1) predicted_labels = seg.segmentation_combined_atlas(predicted_labels, combining='mode') # predicted_labels = scipy.ndimage.median_filter(predicted_labels.reshape(240, 240), size=3) return predicted_labels
def TestcombinedkNN(train_data_matrix, train_labels_matrix, test_data, test_labels): im_size = [240, 240] #predict test data labels predicted_labels, predicted_labels2_knn = seg.segmentation_combined_knn( train_data_matrix, train_labels_matrix, test_data) #calculate error and dice dice_knn = util.dice_multiclass(test_labels, predicted_labels2_knn) err_knn = util.classification_error(test_labels, predicted_labels2_knn) predicted_mask_atlas = predicted_labels2_knn.reshape( im_size[0], im_size[1]) return predicted_mask_atlas, err_knn, dice_knn
def segmentation_combined_atlas_minmax_test(): task = 'brain' n = 5 all_subjects = np.arange(n) train_slice = 1 tmp_data, tmp_labels, tmp_feature_labels = util.create_dataset(1, train_slice, task) all_data_matrix = np.empty((tmp_data.shape[0], tmp_data.shape[1], n)) all_labels_matrix = np.empty((tmp_labels.shape[0], n)) # Load datasets once for i in all_subjects: train_data, train_labels, train_feature_labels = util.create_dataset(i + 1, train_slice, task) all_data_matrix[:, :, i] = train_data all_labels_matrix[:, i] = train_labels.ravel() predicted_labels = seg.segmentation_combined_knn(all_data_matrix[:, :, :n - 2], all_labels_matrix[:, :n - 2], all_data_matrix[:, :, n - 1]) # predicted_labels_max = seg.segmentation_combined_atlas(all_labels_matrix, combining='max') # predicted_labels_min = seg.segmentation_combined_atlas(all_labels_matrix, combining='min') test_labels = all_labels_matrix[:, n - 1].astype(bool) # print('Combining method = min:') # err = util.classification_error(test_labels, predicted_labels_min) # print('Error:\n{}'.format(err)) # dice = util.dice_overlap(test_labels, predicted_labels_min) # print('Dice coefficient:\n{}'.format(dice)) print() print('Combining knn') err = util.classification_error(test_labels, predicted_labels) print('Error:\n{}'.format(err)) dice = util.dice_overlap(test_labels, predicted_labels) print('Dice coefficient:\n{}'.format(dice)) plt.imshow(predicted_labels.reshape(240, 240)) plt.show() plt.imshow(test_labels.reshape(240, 240))
def segmentation_demo(): # Data name specification train_subject = 1 test_subject = 2 train_slice = 1 test_slice = 1 task = 'tissue' # Load data train_data, train_labels, train_feature_labels = util.create_dataset( train_subject, train_slice, task) test_data, test_labels, test_feature_labels = util.create_dataset( test_subject, test_slice, task) # find the predicted labels (here: the train_labels) predicted_labels = seg.segmentation_atlas(None, train_labels, None) # Calculate the error and dice score of these predicted labels in comparison to test labels err = util.classification_error(test_labels, predicted_labels) dice = util.dice_overlap(test_labels, predicted_labels) # Display results true_mask = test_labels.reshape(240, 240) predicted_mask = predicted_labels.reshape(240, 240) fig = plt.figure(figsize=(8, 8)) ax1 = fig.add_subplot(111) ax1.imshow(true_mask, 'gray') ax1.imshow(predicted_mask, 'viridis', alpha=0.5) print('Subject {}, slice {}.\nErr {}, dice {}'.format( test_subject, test_slice, err, dice)) # COMPARE METHODS num_images = 5 num_methods = 3 im_size = [240, 240] # make space for error and dice data all_errors = np.empty([num_images, num_methods]) all_errors[:] = np.nan all_dice = np.empty([num_images, num_methods]) all_dice[:] = np.nan # data name specification all_subjects = np.arange(num_images) train_slice = 1 task = 'tissue' # make space for data all_data_matrix = np.empty( [train_data.shape[0], train_data.shape[1], num_images]) # all_labels_matrix = np.empty([train_labels.size, num_images], dtype=bool) all_labels_matrix = np.empty([train_labels.size, num_images]) # Load datasets once print('Loading data for ' + str(num_images) + ' subjects...') for i in all_subjects: sub = i + 1 train_data, train_labels, train_feature_labels = util.create_dataset( sub, train_slice, task) all_data_matrix[:, :, i] = train_data all_labels_matrix[:, i] = train_labels.flatten() print('Finished loading data.\nStarting segmentation...') # Go through each subject, taking i-th subject as the test for i in np.arange(num_images): sub = i + 1 # Define training subjects as all, except the test subject train_subjects = all_subjects.copy() train_subjects = np.delete(train_subjects, i) # Obtain data about the chosen amount of subjects train_data_matrix = all_data_matrix[:, :, train_subjects] train_labels_matrix = all_labels_matrix[:, train_subjects] test_data = all_data_matrix[:, :, i] test_labels = all_labels_matrix[:, i] test_shape_1 = test_labels.reshape(im_size[0], im_size[1]) fig = plt.figure(figsize=(15, 5)) # Get predicted labels from atlas method predicted_labels = seg.segmentation_combined_atlas(train_labels_matrix) all_errors[i, 0] = util.classification_error(test_labels, predicted_labels) all_dice[i, 0] = util.dice_overlap(test_labels, predicted_labels) # Plot atlas method predicted_mask_1 = predicted_labels.reshape(im_size[0], im_size[1]) ax1 = fig.add_subplot(131) ax1.imshow(test_shape_1, 'gray') ax1.imshow(predicted_mask_1, 'viridis', alpha=0.5) text_str = 'Err {:.4f}, dice {:.4f}'.format(all_errors[i, 0], all_dice[i, 0]) ax1.set_xlabel(text_str) ax1.set_title('Subject {}: Combined atlas'.format(sub)) # Get predicted labels from kNN method predicted_labels = seg.segmentation_combined_knn( train_data_matrix, train_labels_matrix, test_data) all_errors[i, 1] = util.classification_error(test_labels, predicted_labels) all_dice[i, 1] = util.dice_overlap(test_labels, predicted_labels) # Plot kNN method predicted_mask_2 = predicted_labels.reshape(im_size[0], im_size[1]) ax2 = fig.add_subplot(132) ax2.imshow(test_shape_1, 'gray') ax2.imshow(predicted_mask_2, 'viridis', alpha=0.5) text_str = 'Err {:.4f}, dice {:.4f}'.format(all_errors[i, 1], all_dice[i, 1]) ax2.set_xlabel(text_str) ax2.set_title('Subject {}: Combined k-NN'.format(sub)) # Get predicted labels from my own method predicted_labels = segmentation_mymethod(train_data_matrix, train_labels_matrix, test_data, task) print(predicted_labels.shape) print(np.unique(predicted_labels)) all_errors[i, 2] = util.classification_error(test_labels, predicted_labels) all_dice[i, 2] = util.dice_overlap(test_labels, predicted_labels) # Plot my own method predicted_mask_3 = predicted_labels.reshape(im_size[0], im_size[1]) ax3 = fig.add_subplot(133) ax3.imshow(test_shape_1, 'gray') ax3.imshow(predicted_mask_3, 'viridis', alpha=0.5) text_str = 'Err {:.4f}, dice {:.4f}'.format(all_errors[i, 2], all_dice[i, 2]) ax3.set_xlabel(text_str) ax3.set_title('Subject {}: My method'.format(sub))
def segmentation_demo(): train_subject = 1 test_subject = 2 train_slice = 1 test_slice = 1 task = 'brain' #Load data train_data, train_labels, train_feature_labels = util.create_dataset( train_subject, train_slice, task) test_data, test_labels, test_feature_labels = util.create_dataset( test_subject, test_slice, task) predicted_labels = seg.segmentation_atlas(None, train_labels, None) err = util.classification_error(test_labels, predicted_labels) dice = util.dice_overlap(test_labels, predicted_labels) #Display results true_mask = test_labels.reshape(240, 240) predicted_mask = predicted_labels.reshape(240, 240) # fig = plt.figure(figsize=(8,8)) # ax1 = fig.add_subplot(111) # ax1.imshow(true_mask, 'gray') # ax1.imshow(predicted_mask, 'viridis', alpha=0.5) # print('Subject {}, slice {}.\nErr {}, dice {}'.format(test_subject, test_slice, err, dice)) ## Compare methods num_images = 5 num_methods = 3 im_size = [240, 240] all_errors = np.empty([num_images, num_methods]) all_errors[:] = np.nan all_dice = np.empty([num_images, num_methods]) all_dice[:] = np.nan all_subjects = np.arange(num_images) train_slice = 1 task = 'brain' all_data_matrix = np.empty( [train_data.shape[0], train_data.shape[1], num_images]) all_labels_matrix = np.empty([train_labels.size, num_images], dtype=bool) #Load datasets once print('Loading data for ' + str(num_images) + ' subjects...') for i in all_subjects: sub = i + 1 train_data, train_labels, train_feature_labels = util.create_dataset( sub, train_slice, task) all_data_matrix[:, :, i] = train_data all_labels_matrix[:, i] = train_labels.flatten() print('Finished loading data.\nStarting segmentation...') #Go through each subject, taking i-th subject as the test for i in np.arange(num_images): sub = i + 1 #Define training subjects as all, except the test subject train_subjects = all_subjects.copy() train_subjects = np.delete(train_subjects, i) train_data_matrix = all_data_matrix[:, :, train_subjects] train_labels_matrix = all_labels_matrix[:, train_subjects] test_data = all_data_matrix[:, :, i] test_labels = all_labels_matrix[:, i] test_shape_1 = test_labels.reshape(im_size[0], im_size[1]) fig = plt.figure(figsize=(15, 5)) predicted_labels = seg.segmentation_combined_atlas(train_labels_matrix) all_errors[i, 0] = util.classification_error(test_labels, predicted_labels) all_dice[i, 0] = util.dice_overlap(test_labels, predicted_labels) predicted_mask_1 = predicted_labels.reshape(im_size[0], im_size[1]) ax1 = fig.add_subplot(131) ax1.imshow(test_shape_1, 'gray') ax1.imshow(predicted_mask_1, 'viridis', alpha=0.5) text_str = 'Err {:.4f}, dice {:.4f}'.format(all_errors[i, 0], all_dice[i, 0]) ax1.set_xlabel(text_str) ax1.set_title('Subject {}: Combined atlas'.format(sub)) predicted_labels = seg.segmentation_combined_knn( train_data_matrix, train_labels_matrix, test_data) all_errors[i, 1] = util.classification_error(test_labels, predicted_labels) all_dice[i, 1] = util.dice_overlap(test_labels, predicted_labels) predicted_mask_2 = predicted_labels.reshape(im_size[0], im_size[1]) ax2 = fig.add_subplot(132) ax2.imshow(test_shape_1, 'gray') ax2.imshow(predicted_mask_2, 'viridis', alpha=0.5) text_str = 'Err {:.4f}, dice {:.4f}'.format(all_errors[i, 1], all_dice[i, 1]) ax2.set_xlabel(text_str) ax2.set_title('Subject {}: Combined k-NN'.format(sub)) predicted_labels = segmentation_mymethod(train_data_matrix, train_labels_matrix, test_data, task) all_errors[i, 2] = util.classification_error(test_labels, predicted_labels) all_dice[i, 2] = util.dice_overlap(test_labels, predicted_labels) predicted_mask_3 = predicted_labels.reshape(im_size[0], im_size[1]) ax3 = fig.add_subplot(133) ax3.imshow(test_shape_1, 'gray') ax3.imshow(predicted_mask_3, 'viridis', alpha=0.5) text_str = 'Err {:.4f}, dice {:.4f}'.format(all_errors[i, 2], all_dice[i, 2]) ax3.set_xlabel(text_str) ax3.set_title('Subject {}: My method'.format(sub))
def segmentation_demo(): #only SECTION 2 is needed for what we want to do train_subject = 1 test_subject = 2 train_slice = 1 test_slice = 1 task = 'tissue' #SECTION 1 (this seciton has nothing to do with SECTION 2) #Load data from a train and testsubject train_data, train_labels, train_feature_labels = util.create_dataset( train_subject, train_slice, task) test_data, test_labels, test_feature_labels = util.create_dataset( test_subject, test_slice, task) util.scatter_data(train_data, train_labels, 0, 6) util.scatter_data(test_data, test_labels, 0, 6) predicted_labels = seg.segmentation_atlas(None, train_labels, None) err = util.classification_error(test_labels, predicted_labels) dice = util.dice_overlap(test_labels, predicted_labels) #Display results true_mask = test_labels.reshape(240, 240) predicted_mask = predicted_labels.reshape(240, 240) fig = plt.figure(figsize=(8, 8)) ax1 = fig.add_subplot(111) ax1.imshow(true_mask, 'gray') ax1.imshow(predicted_mask, 'viridis', alpha=0.5) print('Subject {}, slice {}.\nErr {}, dice {}'.format( test_subject, test_slice, err, dice)) ## SECTION 2:Compare methods num_images = 5 num_methods = 3 im_size = [240, 240] all_errors = np.empty([num_images, num_methods]) all_errors[:] = np.nan all_dice = np.empty([num_images, num_methods]) all_dice[:] = np.nan all_subjects = np.arange(5) #list of all subjects [0, 1, 2, 3, 4] train_slice = 2 task = 'tissue' all_data_matrix = np.empty( [train_data.shape[0], train_data.shape[1], num_images]) all_labels_matrix = np.empty([train_labels.size, num_images]) #Load datasets once print('Loading data for ' + str(num_images) + ' subjects...') for i in all_subjects: sub = i + 1 train_data, train_labels, train_feature_labels = util.create_dataset( sub, train_slice, task) all_data_matrix[:, :, i] = train_data all_labels_matrix[:, i] = train_labels.flatten() print('Finished loading data.\nStarting segmentation...') #Go through each subject, taking i-th subject as the test for i in all_subjects: sub = i + 1 #Define training subjects as all, except the test subject train_subjects = all_subjects.copy() train_subjects = np.delete(train_subjects, i) train_data_matrix = all_data_matrix[:, :, train_subjects] train_labels_matrix = all_labels_matrix[:, train_subjects] test_data = all_data_matrix[:, :, i] test_labels = all_labels_matrix[:, i] test_shape_1 = test_labels.reshape(im_size[0], im_size[1]) fig = plt.figure(figsize=(15, 5)) predicted_labels, predicted_labels2 = seg.segmentation_combined_atlas( train_labels_matrix) all_errors[i, 0] = util.classification_error(test_labels, predicted_labels2) all_dice[i, 0] = util.dice_multiclass(test_labels, predicted_labels2) predicted_mask_1 = predicted_labels2.reshape(im_size[0], im_size[1]) ax1 = fig.add_subplot(131) ax1.imshow(test_shape_1, 'gray') ax1.imshow(predicted_mask_1, 'viridis', alpha=0.5) text_str = 'Err {:.4f}, dice {:.4f}'.format(all_errors[i, 0], all_dice[i, 0]) ax1.set_xlabel(text_str) ax1.set_title('Subject {}: Combined atlas'.format(sub)) predicted_labels, predicted_labels2 = seg.segmentation_combined_knn( train_data_matrix, train_labels_matrix, test_data) all_errors[i, 1] = util.classification_error(test_labels, predicted_labels2) all_dice[i, 1] = util.dice_multiclass(test_labels, predicted_labels2) predicted_mask_2 = predicted_labels2.reshape(im_size[0], im_size[1]) ax2 = fig.add_subplot(132) ax2.imshow(test_shape_1, 'gray') ax2.imshow(predicted_mask_2, 'viridis', alpha=0.5) text_str = 'Err {:.4f}, dice {:.4f}'.format(all_errors[i, 1], all_dice[i, 1]) ax2.set_xlabel(text_str) ax2.set_title('Subject {}: Combined k-NN'.format(sub)) #OUR METHOD #predict the labels using our method predicted_labels_mymethod = segmentation_mymethod(train_data_matrix, train_labels_matrix, test_data, num_iter=100, mu=0.1) #determine error and dice (multiclass, since there are more classes) all_errors[i, 2] = util.classification_error(test_labels, predicted_labels_mymethod) all_dice[i, 2] = util.dice_multiclass(test_labels, predicted_labels_mymethod) #reshape the predicted labels in order to plot the results predicted_mask_3 = predicted_labels_mymethod.reshape( im_size[0], im_size[1]) #plot the predicted image over the real image plt.imshow(predicted_mask_3, 'viridis') ax3 = fig.add_subplot(133) ax3.imshow(test_shape_1, 'gray') ax3.imshow(predicted_mask_3, 'viridis', alpha=0.5) text_str = 'Err {:.4f}, dice {:.4f}'.format(all_errors[i, 2], all_dice[i, 2]) ax3.set_xlabel(text_str) ax3.set_title('Subject {}: My method'.format(sub)) #save the figure after every loop (3 subimages/plots) fig.savefig("Results for test subject {}".format(sub), )
def segmentation_mymethod(train_data, train_labels, test_data, num_iter=100, mu=0.1): # def segmentation_mymethod(train_data, train_labels, all_data_matrix, all_labels_matrix, test_data,num_iter = 200,mu = 0.01, task='tissue'): # segments the image based on your own method! # Input: # train_data_matrix num_pixels x num_features x num_subjects matrix of # features # train_labels_matrix num_pixels x num_subjects matrix of labels # test_data num_pixels x num_features test data # task String corresponding to the segmentation task: either 'brain' or 'tissue' # Output: # predicted_labels Predicted labels for the test slice #------------------------------------------------------------------# #TODO: Implement your method here #define your features features = [1, 4] #change this if needed #select the data using features train_data_matrix = train_data[:, features, :] test_data_matrix = test_data[:, features] #define the shape of your label matrix pred_labels_kmeans = np.empty( [train_data_matrix.shape[0], train_data_matrix.shape[2]]) for i in range( train_data.shape[2] ): #predict for each subject in the traindata the labels using kmeans #normalize data (only needed for kmeans, because normalizing data already happens in the ckNN and cAtlases function) train_data, test_data = seg.normalize_data(train_data_matrix[:, :, i], test_data_matrix) #find the optimized clusterpoints #1) kmeans will show start and end plot with the cluster centers # _, _, w_final = kmeans(train_data, train_labels[:,i], num_iter, mu) #realize train_labels is only needed for plotting #2) kmeans will not show any plots _, _, w_final = kmeans_no_plot( train_data, train_labels[:, i], num_iter, mu) #realize train_labels is only needed for plotting #predict the data temp_pred = predicted_kmeans_test(w_final, test_data) #store the predicted lables for each subject pred_labels_kmeans[:, i] = temp_pred #decision fusion based on majority voting predicted_labels_kmeans_final = scipy.stats.mode(pred_labels_kmeans, axis=1)[0].flatten() #get the labels from the other two methods: combined_atlas and combined knn _, pred_labels_cat = seg.segmentation_combined_atlas(train_labels, combining='mode') _, pred_labels_cnn = seg.segmentation_combined_knn(train_data_matrix, train_labels, test_data_matrix, 1) #concatenate all predictions from the three 'submethods' pred_labels_cat = pred_labels_cat.T pred_labels_cnn = pred_labels_cnn.T concat_labels = np.vstack( (predicted_labels_kmeans_final, pred_labels_cat, pred_labels_cnn)).T #decision fusion based on majority voting for the three submethods together predicted_labels = scipy.stats.mode(concat_labels, axis=1)[0] #------------------------------------------------------------------# return predicted_labels
k = 2 kmeans_cost, train_predicted, w_final = prj.kmeans(train_data, train_labels k, mu = 0.1, num_iter = 5) dice = util.dice_multiclass(train_labels, train_predicted) error = util.classification_error(train_labels, train_predicted) print("Dice score is {:.2f}".format(dice)) print("Error is {:.2f}".format(error)) #Use my method #predicted_labels = prj.segmentation_mymethod(train_data, train_labels, test_data, task='tissue') pred_labels_kmeans = prj.predicted_kmeans_test(w_final, test_data).T _, pred_labels_cat = seg.segmentation_combined_atlas(train_labels, combining='mode') _, pred_labels_cnn = seg.segmentation_combined_knn(all_data_matrix, all_labels_matrix, test_data, k=1) pred_labels_cat = pred_labels_cat.T pred_labels_cnn = pred_labels_cnn.T concat_labels = np.vstack((pred_labels_kmeans, pred_labels_cat, pred_labels_cnn)).T predicted_labels = scipy.stats.mode(concat_labels, axis = 1)[0] dice = util.dice_multiclass(train_labels, predicted_labels) error = util.classification_error(train_labels, predicted_labels) print("Dice score of combined methods is {:.2f}".format(dice)) print("Error of combined methods is {:.2f}".format(error))
sub = i + 1 train_data, train_labels, train_feature_labels = util.create_dataset( sub, train_slice, task) all_data_matrix[:, :, i] = train_data train_labels_matrix[:, i] = train_labels.flatten() #select certain data: train_data_matrix = all_data_matrix[:, :, train_subjects] train_data_matrix = train_data_matrix[:, features, :] test_data = test_data[:, features] train_labels_matrix = train_labels_matrix[:, train_subjects] #predict test data labels predicted_labels, predicted_labels2_atlas = seg.segmentation_combined_atlas( train_labels_matrix) predicted_labels, predicted_labels2_knn = seg.segmentation_combined_knn( train_data_matrix, train_labels_matrix, test_data) #calculate error and dice dice_atlas = util.dice_multiclass(test_labels, predicted_labels2_atlas) err_atlas = util.classification_error(test_labels, predicted_labels2_atlas) dice_knn = util.dice_multiclass(test_labels, predicted_labels2_knn) err_knn = util.classification_error(test_labels, predicted_labels2_knn) #needed for plotting the 'real' data and the predicted test_shape = test_labels.reshape(im_size[0], im_size[1]) #Plot for combined atlas predicted_mask_atlas = predicted_labels2_atlas.reshape(im_size[0], im_size[1]) fig, ax = plt.subplots() ax.imshow(test_shape, 'gray')
def segmentation_demo(): # Data name specification train_subject = 1 test_subject = 2 train_slice = 1 test_slice = 1 task = 'tissue' # Load data train_data, train_labels, train_feature_labels = util.create_dataset( train_subject, train_slice, task) test_data, test_labels, test_feature_labels = util.create_dataset( test_subject, test_slice, task) # Normalize and feed data through X_pca train_norm, _ = seg.normalize_data(train_data) Xpca, v, w, fraction_variance, ix = seg.mypca(train_norm) relevant_feature = int(np.sum(fraction_variance < 0.95)) + 1 train_norm_ord = train_norm[:, ix] train_norm = train_norm_ord[:, :relevant_feature] # find the predicted labels (here: the train_labels) predicted_labels = seg.segmentation_atlas(None, train_labels, None) # Calculate the error and dice score of these predicted labels in comparison to test labels err = util.classification_error(test_labels, predicted_labels) dice = util.dice_multiclass(test_labels, predicted_labels) # Display results true_mask = test_labels.reshape(240, 240) predicted_mask = predicted_labels.reshape(240, 240) fig = plt.figure(figsize=(8, 8)) ax1 = fig.add_subplot(111) ax1.imshow(true_mask, 'gray') ax1.imshow(predicted_mask, 'viridis', alpha=0.5) print('Subject {}, slice {}.\nErr {}, dice {}'.format( test_subject, test_slice, err, dice)) # COMPARE METHODS num_images = 5 num_methods = 3 im_size = [240, 240] # make space for error and dice data all_errors = np.empty([num_images, num_methods]) all_errors[:] = np.nan all_dice = np.empty([num_images, num_methods]) all_dice[:] = np.nan # data name specification all_subjects = np.arange(num_images) train_slice = 1 task = 'tissue' # make space for data all_data_matrix = np.empty( [train_norm.shape[0], train_norm.shape[1], num_images]) all_labels_matrix = np.empty([train_labels.size, num_images]) all_data_matrix_kmeans = np.empty( [train_norm.shape[0], train_norm.shape[1], num_images]) all_labels_matrix_kmeans = np.empty([train_labels.size, num_images]) # Load datasets once print('Loading data for ' + str(num_images) + ' subjects...') for i in all_subjects: sub = i + 1 train_data, train_labels, train_feature_labels = util.create_dataset( sub, train_slice, task) train_norm, _ = seg.normalize_data(train_data) Xpca, v, w, fraction_variance, ix = seg.mypca(train_norm) relevant_labels = int(np.sum(fraction_variance < 0.95)) + 1 train_norm_ord = train_norm[:, ix] train_norm = train_norm_ord[:, :relevant_labels] all_data_matrix[:, :, i] = train_norm all_labels_matrix[:, i] = train_labels.flatten() # Load datasets for kmeans print('Loading data for ' + str(num_images) + ' subjects...') for i in all_subjects: sub = i + 1 train_data_kmeans, train_labels_kmeans, train_feature_labels_kmeans = create_dataset( sub, train_slice, task) train_norm_kmeans, _ = seg.normalize_data(train_data_kmeans) all_data_matrix_kmeans[:, :, i] = train_norm_kmeans all_labels_matrix_kmeans[:, i] = train_labels_kmeans.flatten() print('Finished loading data.\nStarting segmentation...') # Go through each subject, taking i-th subject as the test for i in np.arange(num_images): sub = i + 1 # Define training subjects as all, except the test subject train_subjects = all_subjects.copy() train_subjects = np.delete(train_subjects, i) # Obtain data about the chosen amount of subjects train_data_matrix = all_data_matrix[:, :, train_subjects] train_labels_matrix = all_labels_matrix[:, train_subjects] test_data = all_data_matrix[:, :, i] test_labels = all_labels_matrix[:, i] test_shape_1 = test_labels.reshape(im_size[0], im_size[1]) fig = plt.figure(figsize=(15, 5)) # Get predicted labels from atlas method predicted_labels = seg.segmentation_combined_atlas(train_labels_matrix) all_errors[i, 0] = util.classification_error(test_labels, predicted_labels) all_dice[i, 0] = util.dice_multiclass(test_labels, predicted_labels) # Plot atlas method predicted_mask_1 = predicted_labels.reshape(im_size[0], im_size[1]) ax1 = fig.add_subplot(151) ax1.imshow(test_shape_1, 'gray') ax1.imshow(predicted_mask_1, 'viridis', alpha=0.5) text_str = 'Err {:.4f}, dice {:.4f}'.format(all_errors[i, 0], all_dice[i, 0]) ax1.set_xlabel(text_str) ax1.set_title('Subject {}: Combined atlas'.format(sub)) # Get predicted labels from kNN method predicted_labels = seg.segmentation_combined_knn(train_data_matrix, train_labels_matrix, test_data, k=10) all_errors[i, 1] = util.classification_error(test_labels, predicted_labels) all_dice[i, 1] = util.dice_multiclass(test_labels, predicted_labels) # Plot kNN method predicted_mask_2 = predicted_labels.reshape(im_size[0], im_size[1]) ax2 = fig.add_subplot(152) ax2.imshow(test_shape_1, 'gray') ax2.imshow(predicted_mask_2, 'viridis', alpha=0.5) text_str = 'Err {:.4f}, dice {:.4f}'.format(all_errors[i, 1], all_dice[i, 1]) ax2.set_xlabel(text_str) ax2.set_title('Subject {}: Combined k-NN'.format(sub)) # Get predicted labels from my own method # all_data_matrix_bnb = np.empty([train_norm.shape[0], train_norm.shape[1], num_images]) # all_labels_matrix_bnb = np.empty([train_labels.size, num_images]) # for ii in all_subjects: # sub = i + 1 # task = 'brain' # train_data_bnb, train_labels_bnb, train_feature_labels_bnb = util.create_dataset(sub, train_slice, task) # train_norm_bnb, _ = seg.normalize_data(train_data_bnb) # Xpca, v, w, fraction_variance, ix = seg.mypca(train_norm_bnb) # relevant_labels_bnb = int(np.sum(fraction_variance < 0.95)) + 1 # train_norm_ord_bnb = train_norm_bnb[:, ix] # train_norm_bnb = train_norm_ord_bnb[:, :relevant_labels_bnb] # all_data_matrix_bnb[:, :, ii] = train_norm_bnb # all_labels_matrix_bnb[:, ii] = train_labels_bnb.flatten() # # qw, we, er = all_data_matrix.shape # for iii in np.arange(qw): # for j in np.arange(er): # if all_labels_matrix_bnb[iii, j] == 0: # for k in np.arange(we): # all_data_matrix[iii, k, j] = 0 # train_data_matrix = all_data_matrix[:, :, train_subjects] # test_data = all_data_matrix[:, :, i] train_data_matrix_kmeans = all_data_matrix_kmeans[:, :, train_subjects] train_labels_matrix_kmeans = all_labels_matrix[:, train_subjects] test_data_kmeans = all_data_matrix_kmeans[:, :, i] predicted_labels = segmentation_mymethod(train_data_matrix_kmeans, train_labels_matrix_kmeans, test_data_kmeans, task) all_errors[i, 2] = util.classification_error(test_labels, predicted_labels) all_dice[i, 2] = util.dice_multiclass(test_labels, predicted_labels) # Plot my own method predicted_mask_3 = predicted_labels.reshape(im_size[0], im_size[1]) ax3 = fig.add_subplot(153) ax3.imshow(test_shape_1, 'gray') ax3.imshow(predicted_mask_3, 'viridis', alpha=0.5) text_str = 'Err {:.4f}, dice {:.4f}'.format(all_errors[i, 2], all_dice[i, 2]) ax3.set_xlabel(text_str) ax3.set_title('Subject {}: My method'.format(sub)) ax4 = fig.add_subplot(154) ax4.imshow(predicted_mask_3, 'viridis') text_str = 'Err {:.4f}, dice {:.4f}'.format(all_errors[i, 2], all_dice[i, 2]) ax4.set_xlabel(text_str) ax4.set_title('Subject {}: My method'.format(sub)) ax5 = fig.add_subplot(155) ax5.imshow(test_shape_1, 'gray') text_str = 'Err {:.4f}, dice {:.4f}'.format(all_errors[i, 2], all_dice[i, 2]) ax5.set_xlabel(text_str) ax5.set_title('Subject {}: My method'.format(sub))