Example #1
0
    def initialize_landcover_parameters(landcover_file,
                                        landcover_initial_fields_file,
                                        dst_dir):
        """generate initial landcover_init_param parameters"""
        lc_data_items = read_data_items_from_txt(landcover_initial_fields_file)
        # print lc_data_items
        field_names = lc_data_items[0]
        lu_id = -1
        for i, v in enumerate(field_names):
            if StringClass.string_match(v, 'LANDUSE_ID'):
                lu_id = i
                break
        data_items = lc_data_items[1:]
        replace_dicts = dict()
        for item in data_items:
            for i, v in enumerate(item):
                if i != lu_id:
                    if field_names[i].upper() not in replace_dicts.keys():
                        replace_dicts[field_names[i].upper()] = {
                            float(item[lu_id]): float(v)
                        }
                    else:
                        replace_dicts[field_names[i].upper()][float(
                            item[lu_id])] = float(v)
        # print replace_dicts

        # Generate GTIFF
        for item, v in replace_dicts.items():
            filename = dst_dir + SEP + item + '.tif'
            print(filename)
            RasterUtilClass.raster_reclassify(landcover_file, v, filename)
        return replace_dicts['LANDCOVER'].values()
 def initial_params_from_txt(cfg, maindb):
     """
     import initial calibration parameters from txt data file.
     Args:
         cfg: SEIMS config object
         maindb: MongoDB database object
     """
     # delete if existed, create if not existed
     c_list = maindb.collection_names()
     if not StringClass.string_in_list(DBTableNames.main_parameter, c_list):
         maindb.create_collection(DBTableNames.main_parameter)
     else:
         maindb.drop_collection(DBTableNames.main_parameter)
     # create bulk operator
     bulk = maindb[DBTableNames.main_parameter].initialize_ordered_bulk_op()
     # read initial parameters from txt file
     data_items = read_data_items_from_txt(cfg.paramcfgs.init_params_file)
     field_names = data_items[0][0:]
     # print (field_names)
     for i, cur_data_item in enumerate(data_items):
         if i == 0:
             continue
         # print cur_data_item
         # initial one default blank parameter dict.
         data_import = {ModelParamFields.name: '', ModelParamFields.desc: '',
                        ModelParamFields.unit: '', ModelParamFields.module: '',
                        ModelParamFields.value: DEFAULT_NODATA,
                        ModelParamFields.impact: DEFAULT_NODATA,
                        ModelParamFields.change: 'NC',
                        ModelParamFields.max: DEFAULT_NODATA,
                        ModelParamFields.min: DEFAULT_NODATA,
                        ModelParamFields.type: ''}
         for k, v in data_import.items():
             idx = field_names.index(k)
             if cur_data_item[idx] == '':
                 if StringClass.string_match(k, ModelParamFields.change_ac):
                     data_import[k] = 0
                 elif StringClass.string_match(k, ModelParamFields.change_rc):
                     data_import[k] = 1
                 elif StringClass.string_match(k, ModelParamFields.change_nc):
                     data_import[k] = 0
                 elif StringClass.string_match(k, ModelParamFields.change_vc):
                     data_import[k] = DEFAULT_NODATA  # Be careful to check NODATA when use!
             else:
                 if MathClass.isnumerical(cur_data_item[idx]):
                     data_import[k] = float(cur_data_item[idx])
                 else:
                     data_import[k] = cur_data_item[idx]
         bulk.insert(data_import)
     # execute import operators
     bulk.execute()
     # create index by parameter's type and name by ascending order.
     maindb[DBTableNames.main_parameter].create_index([(ModelParamFields.type, ASCENDING),
                                                       (ModelParamFields.name, ASCENDING)])
Example #3
0
 def variable_table(db, var_file):
     """Import variables table"""
     var_data_items = read_data_items_from_txt(var_file)
     var_flds = var_data_items[0]
     for i in range(1, len(var_data_items)):
         dic = {}
         for j in range(len(var_data_items[i])):
             if StringClass.string_match(var_flds[j], VariableDesc.type):
                 dic[VariableDesc.type] = var_data_items[i][j]
             elif StringClass.string_match(var_flds[j], VariableDesc.unit):
                 dic[VariableDesc.unit] = var_data_items[i][j]
         # If this item existed already, then update it, otherwise insert one.
         curfilter = {VariableDesc.type: dic[VariableDesc.type]}
         db[DBTableNames.var_desc].find_one_and_replace(curfilter, dic, upsert=True)
Example #4
0
    def read_crop_lookup_table(crop_lookup_file):
        """read crop lookup table"""
        FileClass.check_file_exists(crop_lookup_file)
        data_items = read_data_items_from_txt(crop_lookup_file)
        attr_dic = dict()
        fields = data_items[0]
        n = len(fields)
        for i in range(n):
            attr_dic[fields[i]] = dict()
        for items in data_items[1:]:
            cur_id = int(items[0])

            for i in range(n):
                dic = attr_dic[fields[i]]
                try:
                    dic[cur_id] = float(items[i])
                except ValueError:
                    dic[cur_id] = items[i]
        return attr_dic
Example #5
0
    def sites_table(hydro_clim_db, site_file, site_type):
        """Import HydroClimate sites table"""
        sites_loc = dict()
        site_data_items = read_data_items_from_txt(site_file)
        site_flds = site_data_items[0]
        for i in range(1, len(site_data_items)):
            dic = dict()
            for j in range(len(site_data_items[i])):
                if StringClass.string_match(site_flds[j], StationFields.id):
                    dic[StationFields.id] = int(site_data_items[i][j])
                elif StringClass.string_match(site_flds[j], StationFields.name):
                    # unicode(site_data_items[i][j], 'gb2312')
                    dic[StationFields.name] = site_data_items[i][j]
                elif StringClass.string_match(site_flds[j], StationFields.x):
                    dic[StationFields.x] = float(site_data_items[i][j])
                elif StringClass.string_match(site_flds[j], StationFields.y):
                    dic[StationFields.y] = float(site_data_items[i][j])
                elif StringClass.string_match(site_flds[j], StationFields.lon):
                    dic[StationFields.lon] = float(site_data_items[i][j])
                elif StringClass.string_match(site_flds[j], StationFields.lat):
                    dic[StationFields.lat] = float(site_data_items[i][j])
                elif StringClass.string_match(site_flds[j], StationFields.elev):
                    dic[StationFields.elev] = float(site_data_items[i][j])
                elif StringClass.string_match(site_flds[j], StationFields.outlet):
                    dic[StationFields.outlet] = float(site_data_items[i][j])
            dic[StationFields.type] = site_type
            curfilter = {StationFields.id: dic[StationFields.id],
                         StationFields.type: dic[StationFields.type]}
            hydro_clim_db[DBTableNames.sites].find_one_and_replace(curfilter, dic, upsert=True)

            if dic[StationFields.id] not in sites_loc.keys():
                sites_loc[dic[StationFields.id]] = SiteInfo(dic[StationFields.id],
                                                            dic[StationFields.name],
                                                            dic[StationFields.lat],
                                                            dic[StationFields.lon],
                                                            dic[StationFields.x],
                                                            dic[StationFields.y],
                                                            dic[StationFields.elev])
        hydro_clim_db[DBTableNames.sites].create_index([(StationFields.id, ASCENDING),
                                                        (StationFields.type, ASCENDING)])
        return sites_loc
    def calibrated_params_from_txt(cfg, maindb):
        """Read and update calibrated parameters."""
        # create bulk operator
        bulk = maindb[DBTableNames.main_parameter].initialize_ordered_bulk_op()
        # read initial parameters from txt file
        data_items = read_data_items_from_txt(cfg.modelcfgs.filecali)
        # print (field_names)
        for i, cur_data_item in enumerate(data_items):
            data_import = dict()
            cur_filter = dict()
            if len(cur_data_item) < 2:
                raise RuntimeError("param.cali at least contain NAME and IMPACT fields!")
            data_import[ModelParamFields.name] = cur_data_item[0]
            data_import[ModelParamFields.impact] = float(cur_data_item[1])
            cur_filter[ModelParamFields.name] = cur_data_item[0]
            if len(cur_data_item) >= 3:
                if cur_data_item[2] in [ModelParamFields.change_vc, ModelParamFields.change_ac,
                                        ModelParamFields.change_rc, ModelParamFields.change_nc]:
                    data_import[ModelParamFields.change] = cur_data_item[2]

            bulk.find(cur_filter).update({'$set': data_import})
        # execute import operators
        bulk.execute()
    def scenario_from_texts(cfg, main_db, scenario_db):
        """Import BMPs Scenario data to MongoDB
        Args:
            cfg: SEIMS configuration object
            main_db: climate database
            scenario_db: scenario database
        Returns:
            False if failed, otherwise True.
        """
        if not cfg.use_scernario:
            return False
        print ("Import BMP Scenario Data... ")
        bmp_files = FileClass.get_filename_by_suffixes(cfg.scenario_dir, ['.txt'])
        bmp_tabs = []
        bmp_tabs_path = []
        for f in bmp_files:
            bmp_tabs.append(f.split('.')[0])
            bmp_tabs_path.append(cfg.scenario_dir + SEP + f)

        # create if collection not existed
        c_list = scenario_db.collection_names()
        for item in bmp_tabs:
            if not StringClass.string_in_list(item.upper(), c_list):
                scenario_db.create_collection(item.upper())
            else:
                scenario_db.drop_collection(item.upper())
        # Read subbasin.tif and dist2Stream.tif
        subbasin_r = RasterUtilClass.read_raster(cfg.spatials.subbsn)
        dist2stream_r = RasterUtilClass.read_raster(cfg.spatials.dist2stream_d8)
        # End reading
        for j, bmp_txt in enumerate(bmp_tabs_path):
            bmp_tab_name = bmp_tabs[j]
            data_array = read_data_items_from_txt(bmp_txt)
            field_array = data_array[0]
            data_array = data_array[1:]
            for item in data_array:
                dic = {}
                for i, field_name in enumerate(field_array):
                    if MathClass.isnumerical(item[i]):
                        dic[field_name.upper()] = float(item[i])
                    else:
                        dic[field_name.upper()] = str(item[i]).upper()
                if StringClass.string_in_list(ImportScenario2Mongo._LocalX, dic.keys()) and \
                        StringClass.string_in_list(ImportScenario2Mongo._LocalY, dic.keys()):
                    subbsn_id = subbasin_r.get_value_by_xy(
                            dic[ImportScenario2Mongo._LocalX.upper()],
                            dic[ImportScenario2Mongo._LocalY.upper()])
                    distance = dist2stream_r.get_value_by_xy(
                            dic[ImportScenario2Mongo._LocalX.upper()],
                            dic[ImportScenario2Mongo._LocalY.upper()])
                    if subbsn_id is not None and distance is not None:
                        dic[ImportScenario2Mongo._SUBBASINID] = float(subbsn_id)
                        dic[ImportScenario2Mongo._DISTDOWN] = float(distance)
                        scenario_db[bmp_tab_name.upper()].find_one_and_replace(dic, dic,
                                                                               upsert=True)
                else:
                    scenario_db[bmp_tab_name.upper()].find_one_and_replace(dic, dic,
                                                                           upsert=True)
        # print 'BMP tables are imported.'
        # Write BMP database name into Model workflow database
        c_list = main_db.collection_names()
        if not StringClass.string_in_list(DBTableNames.main_scenario, c_list):
            main_db.create_collection(DBTableNames.main_scenario)

        bmp_info_dic = dict()
        bmp_info_dic[ImportScenario2Mongo._FLD_DB] = cfg.bmp_scenario_db
        main_db[DBTableNames.main_scenario].find_one_and_replace(bmp_info_dic, bmp_info_dic,
                                                                 upsert=True)
        return True
    def lookup_tables_as_collection_and_gridfs(cfg, maindb):
        """Import lookup tables (from txt file) as Collection and GridFS
        Args:
            cfg: SEIMS config object
            maindb: workflow model database
        """
        for tablename, txt_file in cfg.paramcfgs.lookup_tabs_dict.items():
            # import each lookup table as a collection and GridFS file.
            c_list = maindb.collection_names()
            if not StringClass.string_in_list(tablename.upper(), c_list):
                maindb.create_collection(tablename.upper())
            else:
                maindb.drop_collection(tablename.upper())
            # initial bulk operator
            bulk = maindb[tablename.upper()].initialize_ordered_bulk_op()
            # delete if the tablename gridfs file existed
            spatial = GridFS(maindb, DBTableNames.gridfs_spatial)
            if spatial.exists(filename=tablename.upper()):
                x = spatial.get_version(filename=tablename.upper())
                spatial.delete(x._id)

            # read data items
            data_items = read_data_items_from_txt(txt_file)
            field_names = data_items[0][0:]
            item_values = []  # import as gridfs file
            for i, cur_data_item in enumerate(data_items):
                if i == 0:
                    continue
                data_import = dict()  # import as Collection
                item_value = []  # import as gridfs file
                for idx, fld in enumerate(field_names):
                    if MathClass.isnumerical(cur_data_item[idx]):
                        tmp_value = float(cur_data_item[idx])
                        data_import[fld] = tmp_value
                        item_value.append(tmp_value)
                    else:
                        data_import[fld] = cur_data_item[idx]
                bulk.insert(data_import)
                if len(item_value) > 0:
                    item_values.append(item_value)
            bulk.execute()
            # begin import gridfs file
            n_row = len(item_values)
            # print (item_values)
            if n_row >= 1:
                n_col = len(item_values[0])
                for i in range(n_row):
                    if n_col != len(item_values[i]):
                        raise ValueError("Please check %s to make sure each item has "
                                         "the same numeric dimension. The size of first "
                                         "row is: %d, and the current data item is: %d" %
                                         (tablename, n_col, len(item_values[i])))
                    else:
                        item_values[i].insert(0, n_col)

                metadic = {ModelParamDataUtils.item_count: n_row,
                           ModelParamDataUtils.field_count: n_col}
                cur_lookup_gridfs = spatial.new_file(filename=tablename.upper(), metadata=metadic)
                header = [n_row]
                fmt = '%df' % 1
                s = pack(fmt, *header)
                cur_lookup_gridfs.write(s)
                fmt = '%df' % (n_col + 1)
                for i in range(n_row):
                    s = pack(fmt, *item_values[i])
                    cur_lookup_gridfs.write(s)
                cur_lookup_gridfs.close()
    def model_io_configuration(cfg, maindb):
        """
        Import Input and Output Configuration of SEIMS, i.e., file.in and file.out
        Args:
            cfg: SEIMS config object
            maindb: MongoDB database object
        """
        file_in_path = cfg.modelcfgs.filein
        file_out_path = cfg.paramcfgs.init_outputs_file
        # create if collection not existed
        c_list = maindb.collection_names()
        conf_tabs = [DBTableNames.main_filein, DBTableNames.main_fileout]
        for item in conf_tabs:
            if not StringClass.string_in_list(item, c_list):
                maindb.create_collection(item)
            else:
                maindb.drop_collection(item)
        file_in_items = read_data_items_from_txt(file_in_path)
        file_out_items = read_data_items_from_txt(file_out_path)

        for item in file_in_items:
            file_in_dict = dict()
            values = StringClass.split_string(StringClass.strip_string(item[0]), ['|'])
            if len(values) != 2:
                raise ValueError("One item should only have one Tag and one value string,"
                                 " split by '|'")
            file_in_dict[ModelCfgFields.tag] = values[0]
            file_in_dict[ModelCfgFields.value] = values[1]
            maindb[DBTableNames.main_filein].insert(file_in_dict)

        # begin to import initial outputs settings
        bulk = maindb[DBTableNames.main_fileout].initialize_unordered_bulk_op()
        out_field_array = file_out_items[0]
        out_data_array = file_out_items[1:]
        # print out_data_array
        for item in out_data_array:
            file_out_dict = dict()
            for i, v in enumerate(out_field_array):
                if StringClass.string_match(ModelCfgFields.mod_cls, v):
                    file_out_dict[ModelCfgFields.mod_cls] = item[i]
                elif StringClass.string_match(ModelCfgFields.output_id, v):
                    file_out_dict[ModelCfgFields.output_id] = item[i]
                elif StringClass.string_match(ModelCfgFields.desc, v):
                    file_out_dict[ModelCfgFields.desc] = item[i]
                elif StringClass.string_match(ModelCfgFields.unit, v):
                    file_out_dict[ModelCfgFields.unit] = item[i]
                elif StringClass.string_match(ModelCfgFields.type, v):
                    file_out_dict[ModelCfgFields.type] = item[i]
                elif StringClass.string_match(ModelCfgFields.stime, v):
                    file_out_dict[ModelCfgFields.stime] = item[i]
                elif StringClass.string_match(ModelCfgFields.etime, v):
                    file_out_dict[ModelCfgFields.etime] = item[i]
                elif StringClass.string_match(ModelCfgFields.interval, v):
                    file_out_dict[ModelCfgFields.interval] = item[i]
                elif StringClass.string_match(ModelCfgFields.interval_unit, v):
                    file_out_dict[ModelCfgFields.interval_unit] = item[i]
                elif StringClass.string_match(ModelCfgFields.filename, v):
                    file_out_dict[ModelCfgFields.filename] = item[i]
                elif StringClass.string_match(ModelCfgFields.use, v):
                    file_out_dict[ModelCfgFields.use] = item[i]
                elif StringClass.string_match(ModelCfgFields.subbsn, v):
                    file_out_dict[ModelCfgFields.subbsn] = item[i]
            if file_out_dict.keys() is []:
                raise ValueError("There are not any valid output item stored in file.out!")
            bulk.insert(file_out_dict)
        bulk.execute()

        # begin to import the desired outputs
        # create bulk operator
        bulk = maindb[DBTableNames.main_fileout].initialize_ordered_bulk_op()
        # read initial parameters from txt file
        data_items = read_data_items_from_txt(cfg.modelcfgs.fileout)
        # print (field_names)
        for i, cur_data_item in enumerate(data_items):
            data_import = dict()
            cur_filter = dict()
            # print (cur_data_item)
            if len(cur_data_item) == 7:
                data_import[ModelCfgFields.output_id] = cur_data_item[0]
                data_import[ModelCfgFields.type] = cur_data_item[1]
                data_import[ModelCfgFields.stime] = cur_data_item[2]
                data_import[ModelCfgFields.etime] = cur_data_item[3]
                data_import[ModelCfgFields.interval] = cur_data_item[4]
                data_import[ModelCfgFields.interval_unit] = cur_data_item[5]
                data_import[ModelCfgFields.subbsn] = cur_data_item[6]
                data_import[ModelCfgFields.use] = 1
                cur_filter[ModelCfgFields.output_id] = cur_data_item[0]
            else:
                raise RuntimeError("Items in file.out must have 7 columns, i.e., OUTPUTID,"
                                   "TYPE,STARTTIME,ENDTIME,INTERVAL,INTERVAL_UNIT,SUBBASIN.")

            bulk.find(cur_filter).update({'$set': data_import})
        # execute import operators
        bulk.execute()
    def data_from_txt(hydro_clim_db, obs_txts_list, sites_info_txts_list,
                      subbsn_file):
        """
        Read observed data from txt file
        Args:
            hydro_clim_db: hydro-climate dababase
            obs_txts_list: txt file paths of observed data
            sites_info_txts_list: txt file paths of site information
            subbsn_file: subbasin raster file

        Returns:
            True or False
        """
        # 1. Read monitor station information, and store variables information and station IDs
        variable_lists = []
        site_ids = []
        for site_file in sites_info_txts_list:
            site_data_items = read_data_items_from_txt(site_file)
            site_flds = site_data_items[0]
            for i in range(1, len(site_data_items)):
                dic = {}
                for j in range(len(site_data_items[i])):
                    if StringClass.string_match(site_flds[j],
                                                StationFields.id):
                        dic[StationFields.id] = int(site_data_items[i][j])
                        site_ids.append(dic[StationFields.id])
                    elif StringClass.string_match(site_flds[j],
                                                  StationFields.name):
                        dic[StationFields.name] = StringClass.strip_string(
                            site_data_items[i][j])
                    elif StringClass.string_match(site_flds[j],
                                                  StationFields.type):
                        types = StringClass.split_string(
                            StringClass.strip_string(site_data_items[i][j]),
                            ',')
                    elif StringClass.string_match(site_flds[j],
                                                  StationFields.lat):
                        dic[StationFields.lat] = float(site_data_items[i][j])
                    elif StringClass.string_match(site_flds[j],
                                                  StationFields.lon):
                        dic[StationFields.lon] = float(site_data_items[i][j])
                    elif StringClass.string_match(site_flds[j],
                                                  StationFields.x):
                        dic[StationFields.x] = float(site_data_items[i][j])
                    elif StringClass.string_match(site_flds[j],
                                                  StationFields.y):
                        dic[StationFields.y] = float(site_data_items[i][j])
                    elif StringClass.string_match(site_flds[j],
                                                  StationFields.unit):
                        dic[StationFields.unit] = StringClass.strip_string(
                            site_data_items[i][j])
                    elif StringClass.string_match(site_flds[j],
                                                  StationFields.elev):
                        dic[StationFields.elev] = float(site_data_items[i][j])
                    elif StringClass.string_match(site_flds[j],
                                                  StationFields.outlet):
                        dic[StationFields.outlet] = float(
                            site_data_items[i][j])

                for j, cur_type in enumerate(types):
                    site_dic = dict()
                    site_dic[StationFields.id] = dic[StationFields.id]
                    site_dic[StationFields.name] = dic[StationFields.name]
                    site_dic[StationFields.type] = cur_type
                    site_dic[StationFields.lat] = dic[StationFields.lat]
                    site_dic[StationFields.lon] = dic[StationFields.lon]
                    site_dic[StationFields.x] = dic[StationFields.x]
                    site_dic[StationFields.y] = dic[StationFields.y]
                    site_dic[StationFields.elev] = dic[StationFields.elev]
                    site_dic[StationFields.outlet] = dic[StationFields.outlet]
                    # Add SubbasinID field
                    matched, cur_subbsn_id = ImportObservedData.match_subbasin(
                        subbsn_file, site_dic)
                    if not matched:
                        break
                    cur_subbsn_id_str = ''
                    for tmp_id in cur_subbsn_id:
                        if tmp_id is not None:
                            cur_subbsn_id_str += str(tmp_id) + ','
                    cur_subbsn_id_str = cur_subbsn_id_str[:-1]
                    site_dic[StationFields.id] = cur_subbsn_id_str
                    curfilter = {
                        StationFields.id: site_dic[StationFields.id],
                        StationFields.type: site_dic[StationFields.type]
                    }
                    # print (curfilter)
                    hydro_clim_db[DBTableNames.sites].find_one_and_replace(
                        curfilter, site_dic, upsert=True)

                    var_dic = dict()
                    var_dic[StationFields.type] = types[j]
                    var_dic[StationFields.unit] = dic[StationFields.unit]
                    if var_dic not in variable_lists:
                        variable_lists.append(var_dic)
        site_ids = list(set(site_ids))
        # 2. Read measurement data and import to MongoDB
        bulk = hydro_clim_db[
            DBTableNames.observes].initialize_ordered_bulk_op()
        count = 0
        for measDataFile in obs_txts_list:
            # print measDataFile
            obs_data_items = read_data_items_from_txt(measDataFile)
            # If the data items is EMPTY or only have one header row, then goto
            # next data file.
            if obs_data_items == [] or len(obs_data_items) == 1:
                continue
            obs_flds = obs_data_items[0]
            required_flds = [
                StationFields.id, DataValueFields.y, DataValueFields.m,
                DataValueFields.d, DataValueFields.type, DataValueFields.value
            ]
            for fld in required_flds:
                if not StringClass.string_in_list(
                        fld, obs_flds):  # data can not meet the request!
                    raise ValueError(
                        "The %s can not meet the required format!" %
                        measDataFile)
            for i in range(1, len(obs_data_items)):
                dic = dict()
                cur_y = 0
                cur_m = 0
                cur_d = 0
                for j in range(len(obs_data_items[i])):
                    if StringClass.string_match(obs_flds[j], StationFields.id):
                        dic[StationFields.id] = int(obs_data_items[i][j])
                        # if current site ID is not included, goto next data item
                        if dic[StationFields.id] not in site_ids:
                            continue
                    elif StringClass.string_match(obs_flds[j],
                                                  DataValueFields.y):
                        cur_y = int(obs_data_items[i][j])
                    elif StringClass.string_match(obs_flds[j],
                                                  DataValueFields.m):
                        cur_m = int(obs_data_items[i][j])
                    elif StringClass.string_match(obs_flds[j],
                                                  DataValueFields.d):
                        cur_d = int(obs_data_items[i][j])
                    elif StringClass.string_match(obs_flds[j],
                                                  DataValueFields.type):
                        dic[DataValueFields.type] = obs_data_items[i][j]
                    elif StringClass.string_match(obs_flds[j],
                                                  DataValueFields.value):
                        dic[DataValueFields.value] = float(
                            obs_data_items[i][j])
                dt = datetime(cur_y, cur_m, cur_d, 0, 0)
                sec = time.mktime(dt.timetuple())
                utc_time = time.gmtime(sec)
                dic[DataValueFields.local_time] = dt
                dic[DataValueFields.time_zone] = time.timezone / 3600
                dic[DataValueFields.utc] = datetime(utc_time[0], utc_time[1],
                                                    utc_time[2], utc_time[3])
                curfilter = {
                    StationFields.id: dic[StationFields.id],
                    DataValueFields.type: dic[DataValueFields.type],
                    DataValueFields.utc: dic[DataValueFields.utc]
                }
                bulk.find(curfilter).replace_one(dic)
                count += 1
                if count % 500 == 0:
                    bulk.execute()
                    bulk = hydro_clim_db[
                        DBTableNames.observes].initialize_ordered_bulk_op()
                    # db[DBTableNames.observes].find_one_and_replace(curfilter, dic, upsert=True)
        if count % 500 != 0:
            bulk.execute()
        # 3. Add measurement data with unit converted
        # loop variables list
        added_dics = []
        for curVar in variable_lists:
            # print curVar
            # if the unit is mg/L, then change the Type name with the suffix "Conc",
            # and convert the corresponding data to kg if the discharge data is
            # available.
            cur_type = curVar[StationFields.type]
            cur_unit = curVar[StationFields.unit]
            # Find data by Type
            for item in hydro_clim_db[DBTableNames.observes].find(
                {StationFields.type: cur_type}):
                # print item
                dic = dict()
                dic[StationFields.id] = item[StationFields.id]
                dic[DataValueFields.value] = item[DataValueFields.value]
                dic[StationFields.type] = item[StationFields.type]
                dic[DataValueFields.local_time] = item[
                    DataValueFields.local_time]
                dic[DataValueFields.time_zone] = item[
                    DataValueFields.time_zone]
                dic[DataValueFields.utc] = item[DataValueFields.utc]

                if cur_unit == "mg/L":
                    # update the Type name
                    dic[StationFields.type] = cur_type + "Conc"
                    curfilter = {
                        StationFields.id: dic[StationFields.id],
                        DataValueFields.type: cur_type,
                        DataValueFields.utc: dic[DataValueFields.utc]
                    }
                    hydro_clim_db[DBTableNames.observes].find_one_and_replace(
                        curfilter, dic, upsert=True)
                    dic[StationFields.type] = cur_type

                # find discharge on current day
                cur_filter = {
                    StationFields.type: "Q",
                    DataValueFields.utc: dic[DataValueFields.utc],
                    StationFields.id: dic[StationFields.id]
                }
                q_dic = hydro_clim_db[DBTableNames.observes].find_one(
                    filter=cur_filter)

                q = -9999.
                if q_dic is not None:  # and q_dic.has_key(DataValueFields.value):
                    q = q_dic[DataValueFields.value]
                else:
                    continue
                if cur_unit == "mg/L":
                    # convert mg/L to kg
                    dic[DataValueFields.value] = round(
                        dic[DataValueFields.value] * q * 86400. / 1000., 2)
                elif cur_unit == "kg":
                    dic[StationFields.type] = cur_type + "Conc"
                    # convert kg to mg/L
                    dic[DataValueFields.value] = round(
                        dic[DataValueFields.value] / q * 1000. / 86400., 2)
                # add new data item
                added_dics.append(dic)
        # import to MongoDB
        for dic in added_dics:
            curfilter = {
                StationFields.id: dic[StationFields.id],
                DataValueFields.type: dic[DataValueFields.type],
                DataValueFields.utc: dic[DataValueFields.utc]
            }
            hydro_clim_db[DBTableNames.observes].find_one_and_replace(
                curfilter, dic, upsert=True)
    def daily_data_from_txt(climdb, data_txt_file, sites_info_dict):
        """Import climate data table"""
        # delete existed precipitation data
        climdb[DBTableNames.data_values].remove(
            {DataValueFields.type: DataType.m})

        clim_data_items = read_data_items_from_txt(data_txt_file)
        clim_flds = clim_data_items[0]
        # PHUCalDic is used for Calculating potential heat units (PHU)
        # for each climate station and each year.
        # format is {StationID:{Year1:[values],Year2:[Values]...}, ...}
        # PHUCalDic = {}
        # format: {StationID1: climateStats1, ...}
        hydro_climate_stats = {}
        required_flds = [
            DataValueFields.y, DataValueFields.m, DataValueFields.d,
            DataType.max_tmp, DataType.min_tmp, DataType.rm, DataType.ws
        ]
        for fld in required_flds:
            if not StringClass.string_in_list(fld, clim_flds):
                raise ValueError(
                    "Meteorological Daily data is invalid, please Check!")
        # Create bulk object
        bulk = climdb[DBTableNames.data_values].initialize_ordered_bulk_op()
        count = 0
        for i, cur_clim_data_item in enumerate(clim_data_items):
            if i == 0:
                continue
            dic = dict()
            cur_ssd = DEFAULT_NODATA
            cur_y = 0
            cur_m = 0
            cur_d = 0
            for j, clim_data_v in enumerate(cur_clim_data_item):
                if StringClass.string_match(clim_flds[j], DataValueFields.id):
                    dic[DataValueFields.id] = int(clim_data_v)
                elif StringClass.string_match(clim_flds[j], DataValueFields.y):
                    cur_y = int(clim_data_v)
                    dic[DataValueFields.y] = cur_y
                elif StringClass.string_match(clim_flds[j], DataValueFields.m):
                    cur_m = int(clim_data_v)
                elif StringClass.string_match(clim_flds[j], DataValueFields.d):
                    cur_d = int(clim_data_v)
                elif StringClass.string_match(clim_flds[j], DataType.mean_tmp):
                    dic[DataType.mean_tmp] = float(clim_data_v)
                elif StringClass.string_match(clim_flds[j], DataType.min_tmp):
                    dic[DataType.min_tmp] = float(clim_data_v)
                elif StringClass.string_match(clim_flds[j], DataType.max_tmp):
                    dic[DataType.max_tmp] = float(clim_data_v)
                elif StringClass.string_match(clim_flds[j], DataType.pet):
                    dic[DataType.pet] = float(clim_data_v)
                elif StringClass.string_match(clim_flds[j], DataType.sr):
                    dic[DataType.sr] = float(clim_data_v)
                elif StringClass.string_match(clim_flds[j], DataType.ws):
                    dic[DataType.ws] = float(clim_data_v)
                elif StringClass.string_match(clim_flds[j], DataType.rm):
                    dic[DataType.rm] = float(clim_data_v) * 0.01
                elif StringClass.string_match(clim_flds[j], DataType.ssd):
                    cur_ssd = float(clim_data_v)
            # Date transformation
            dt = datetime(cur_y, cur_m, cur_d, 0, 0)
            sec = time.mktime(dt.timetuple())
            utc_time = time.gmtime(sec)
            dic[DataValueFields.local_time] = dt
            dic[DataValueFields.time_zone] = time.timezone / 3600
            dic[DataValueFields.utc] = datetime(utc_time[0], utc_time[1],
                                                utc_time[2], utc_time[3])

            # Do if some of these data are not provided
            if DataType.mean_tmp not in dic.keys():
                dic[DataType.mean_tmp] = (dic[DataType.max_tmp] +
                                          dic[DataType.min_tmp]) / 2.
            if DataType.sr not in dic.keys():
                if cur_ssd == DEFAULT_NODATA:
                    raise ValueError(DataType.sr + " or " + DataType.ssd +
                                     " must be provided!")
                else:
                    if dic[DataValueFields.id] in sites_info_dict.keys():
                        cur_lon, cur_lat = sites_info_dict[dic[
                            DataValueFields.id]].lon_lat()
                        dic[DataType.sr] = round(
                            HydroClimateUtilClass.rs(DateClass.day_of_year(dt),
                                                     float(cur_ssd),
                                                     cur_lat * PI / 180.), 1)
            output_flds = [
                DataType.mean_tmp, DataType.max_tmp, DataType.min_tmp,
                DataType.rm, DataType.pet, DataType.ws, DataType.sr
            ]
            for fld in output_flds:
                cur_dic = dict()
                if fld in dic.keys():
                    cur_dic[DataValueFields.value] = dic[fld]
                    cur_dic[DataValueFields.id] = dic[DataValueFields.id]
                    cur_dic[DataValueFields.utc] = dic[DataValueFields.utc]
                    cur_dic[DataValueFields.time_zone] = dic[
                        DataValueFields.time_zone]
                    cur_dic[DataValueFields.local_time] = dic[
                        DataValueFields.local_time]
                    cur_dic[DataValueFields.type] = fld
                    # Old code, insert or update one item a time, which is quite inefficiency
                    # Update by using bulk operation interface. lj
                    bulk.insert(cur_dic)
                    count += 1
                    if count % 500 == 0:  # execute each 500 records
                        bulk.execute()
                        bulk = climdb[
                            DBTableNames.
                            data_values].initialize_ordered_bulk_op()

            if dic[DataValueFields.id] not in hydro_climate_stats.keys():
                hydro_climate_stats[dic[DataValueFields.id]] = ClimateStats()
            hydro_climate_stats[dic[DataValueFields.id]].add_item(dic)
        # execute the remained records
        if count % 500 != 0:
            bulk.execute()
        for item, cur_climate_stats in hydro_climate_stats.items():
            cur_climate_stats.annual_stats()
        # Create index
        climdb[DBTableNames.data_values].create_index([
            (DataValueFields.id, ASCENDING), (DataValueFields.type, ASCENDING),
            (DataValueFields.utc, ASCENDING)
        ])
        # prepare dic for MongoDB
        for s_id, stats_v in hydro_climate_stats.items():
            for YYYY in stats_v.Count.keys():
                cur_dic = dict()
                cur_dic[DataValueFields.value] = stats_v.PHUTOT[YYYY]
                cur_dic[DataValueFields.id] = s_id
                cur_dic[DataValueFields.y] = YYYY
                cur_dic[VariableDesc.unit] = "heat units"
                cur_dic[VariableDesc.type] = DataType.phu_tot
                curfilter = {
                    DataValueFields.id: s_id,
                    VariableDesc.type: DataType.phu_tot,
                    DataValueFields.y: YYYY
                }
                climdb[DBTableNames.annual_stats].find_one_and_replace(
                    curfilter, cur_dic, upsert=True)
                # import annual mean temperature
                cur_dic[VariableDesc.type] = DataType.mean_tmp
                cur_dic[VariableDesc.unit] = "deg C"
                cur_dic[DataValueFields.value] = stats_v.MeanTmp[YYYY]
                curfilter = {
                    DataValueFields.id: s_id,
                    VariableDesc.type: DataType.mean_tmp,
                    DataValueFields.y: YYYY
                }
                climdb[DBTableNames.annual_stats].find_one_and_replace(
                    curfilter, cur_dic, upsert=True)
            cur_dic[DataValueFields.value] = stats_v.PHU0
            cur_dic[DataValueFields.id] = s_id
            cur_dic[DataValueFields.y] = DEFAULT_NODATA
            cur_dic[VariableDesc.unit] = "heat units"
            cur_dic[VariableDesc.type] = DataType.phu0
            curfilter = {
                DataValueFields.id: s_id,
                VariableDesc.type: DataType.phu0,
                DataValueFields.y: DEFAULT_NODATA
            }
            climdb[DBTableNames.annual_stats].find_one_and_replace(curfilter,
                                                                   cur_dic,
                                                                   upsert=True)
            # import annual mean temperature
            cur_dic[VariableDesc.type] = DataType.mean_tmp0
            cur_dic[VariableDesc.unit] = "deg C"
            cur_dic[DataValueFields.value] = stats_v.MeanTmp0
            curfilter = {
                DataValueFields.id: s_id,
                VariableDesc.type: DataType.mean_tmp0,
                DataValueFields.y: DEFAULT_NODATA
            }
            climdb[DBTableNames.annual_stats].find_one_and_replace(curfilter,
                                                                   cur_dic,
                                                                   upsert=True)
def interpolate_observed_data_to_regular_interval(in_file, time_interval, start_time, end_time,
                                                  eliminate_zero=False,
                                                  time_sys_output='UTCTIME', day_divided_hour=0):
    """
    Interpolate not regular observed data to regular time interval data.
    Args:
        in_file: input data file, the basic format is as follows:
                 line 1: #<time_system> [<time_zone>], e.g., #LOCALTIME 8, #UTCTIME
                 line 2: DATETIME,field1,field2,...
                 line 3: YYYY-mm-dd HH:MM:SS,field1_value,field2_value,...
                 line 4: ...
                 ...
                 Field name can be PCP, FLOW, SED
                 the unit is mm/h, m3/s, g/L (i.e., kg/m3), respectively.
        time_interval: time interval, unit is minute, e.g., daily output is 1440
        start_time: start time, the format must be 'YYYY-mm-dd HH:MM:SS', and the time system
                    is based on time_sys.
        end_time: end time, see also start_time.
        eliminate_zero: Boolean flag. If true, the time interval without original records will
                        not be output.
        time_sys_output: time system of output time_system, the format must be
                  '<time_system> [<time_zone>]', e.g.,
                  'LOCALTIME'
                  'LOCALTIME 8'
                  'UTCTIME' (default)
        day_divided_hour: If the time_interval is equal to N*1440, this parameter should be
                          carefully specified. The value must range from 0 to 23. e.g.,
                          day_divided_hour ==> day ranges (all expressed as 2013-02-03)
                          0  ==> 2013-02-03 00:00:00 to 2013-02-03 23:59:59 (default)
                          8  ==> 2013-02-03 08:00:00 to 2013-02-04 07:59:59
                          20 ==> 2013-02-03 20:00:00 to 2013-02-04 19:59:59
    Returns:
        The output data files are located in the same directory with the input file.
        The nomenclature is: <field name>_<time system>_<time interval>_<nonzero>, e.g.,
        pcp_utctime_1440_nonzero.txt, flow_localtime_60.txt
    """
    FileClass.check_file_exists(in_file)
    time_sys_input, time_zone_input = HydroClimateUtilClass.get_time_system_from_data_file(in_file)
    data_items = read_data_items_from_txt(in_file)
    flds = data_items[0][:]
    data_items.remove(flds)
    if not 0 <= day_divided_hour <= 23:
        raise ValueError("Day divided hour must range from 0 to 23!")
    try:
        date_idx = flds.index('DATETIME')
        flds.remove('DATETIME')
    except ValueError:
        raise ValueError("DATETIME must be one of the fields!")
    # available field
    available_flds = ['FLOW', 'SED', 'PCP']

    def check_avaiable_field(cur_fld):
        """Check if the given field name is supported."""
        support_flag = False
        for fff in available_flds:
            if fff.lower() in cur_fld.lower():
                support_flag = True
                break
        return support_flag

    ord_data = OrderedDict()
    time_zone_output = time.timezone / -3600
    if time_sys_output.lower().find('local') >= 0:
        tmpstrs = StringClass.split_string(time_sys_output, [' '])
        if len(tmpstrs) == 2 and MathClass.isnumerical(tmpstrs[1]):
            time_zone_output = int(tmpstrs[1])
        time_sys_output = 'LOCALTIME'
    else:
        time_sys_output = 'UTCTIME'
        time_zone_output = 0
    for item in data_items:
        org_datetime = HydroClimateUtilClass.get_datetime_from_string(item[date_idx])
        if time_sys_input == 'LOCALTIME':
            org_datetime -= timedelta(hours=time_zone_input)
        # now, org_datetime is UTC time.
        if time_sys_output == 'LOCALTIME':
            org_datetime += timedelta(hours=time_zone_output)
        # now, org_datetime is consistent with the output time system
        ord_data[org_datetime] = []
        for i, v in enumerate(item):
            if i == date_idx:
                continue
            if MathClass.isnumerical(v):
                ord_data[org_datetime].append(float(v))
            else:
                ord_data[org_datetime].append(v)
    # print (ord_data)
    itp_data = OrderedDict()
    out_time_delta = timedelta(minutes=time_interval)
    sdatetime = HydroClimateUtilClass.get_datetime_from_string(start_time)
    edatetime = HydroClimateUtilClass.get_datetime_from_string(end_time)
    item_dtime = sdatetime
    if time_interval % 1440 == 0:
        item_dtime = sdatetime.replace(hour=0, minute=0, second=0) + \
                     timedelta(minutes=day_divided_hour * 60)
    while item_dtime <= edatetime:
        # print (item_dtime)
        # if item_dtime.month == 12 and item_dtime.day == 31:
        #     print ("debug")
        sdt = item_dtime  # start datetime of records
        edt = item_dtime + out_time_delta  # end datetime of records
        # get original data items
        org_items = []
        pre_dt = list(ord_data.keys())[0]
        pre_added = False
        for i, v in ord_data.items():
            if sdt <= i < edt:
                if not pre_added and pre_dt < sdt < i and sdt - pre_dt < out_time_delta:
                    # only add one item that less than sdt.
                    org_items.append([pre_dt] + ord_data.get(pre_dt))
                    pre_added = True
                org_items.append([i] + v)
            if i > edt:
                break
            pre_dt = i
        if len(org_items) > 0:
            org_items.append([edt])  # Just add end time for compute convenient
            if org_items[0][0] < sdt:
                org_items[0][0] = sdt  # set the begin datetime of current time interval
        # if eliminate time interval without original records
        # initial interpolated list
        itp_data[item_dtime] = [0.] * len(flds)
        if len(org_items) == 0:
            if eliminate_zero:
                itp_data.popitem()
            item_dtime += out_time_delta
            continue
        # core interpolation code
        flow_idx = -1
        for v_idx, v_name in enumerate(flds):
            if not check_avaiable_field(v_name):
                continue
            if 'SED' in v_name.upper():  # FLOW must be existed
                for v_idx2, v_name2 in enumerate(flds):
                    if 'FLOW' in v_name2.upper():
                        flow_idx = v_idx2
                        break
                if flow_idx < 0:
                    raise RuntimeError("To interpolate SED, FLOW must be provided!")
        for v_idx, v_name in enumerate(flds):
            if not check_avaiable_field(v_name):
                continue
            itp_value = 0.
            itp_auxiliary_value = 0.
            for org_item_idx, org_item_dtv in enumerate(org_items):
                if org_item_idx == 0:
                    continue
                org_item_dt = org_item_dtv[0]
                pre_item_dtv = org_items[org_item_idx - 1]
                pre_item_dt = pre_item_dtv[0]
                tmp_delta_dt = org_item_dt - pre_item_dt
                tmp_delta_secs = tmp_delta_dt.days * 86400 + tmp_delta_dt.seconds
                if 'SED' in v_name.upper():
                    itp_value += pre_item_dtv[v_idx + 1] * pre_item_dtv[flow_idx + 1] * \
                                 tmp_delta_secs
                    itp_auxiliary_value += pre_item_dtv[flow_idx + 1] * tmp_delta_secs
                else:
                    itp_value += pre_item_dtv[v_idx + 1] * tmp_delta_secs
            if 'SED' in v_name.upper():
                if MathClass.floatequal(itp_auxiliary_value, 0.):
                    itp_value = 0.
                    print ("WARNING: Flow is 0 for %s, please check!" %
                           item_dtime.strftime('%Y-%m-%d %H:%M:%S'))
                itp_value /= itp_auxiliary_value
            elif 'FLOW' in v_name.upper():
                itp_value /= (out_time_delta.days * 86400 + out_time_delta.seconds)
            elif 'PCP' in v_name.upper():  # the input is mm/h, and output is mm
                itp_value /= 3600.
            itp_data[item_dtime][v_idx] = round(itp_value, 4)
        item_dtime += out_time_delta

    # for i, v in itp_data.items():
    #     print (i, v)
    # output to files
    work_path = os.path.dirname(in_file)
    header_str = '#' + time_sys_output
    if time_sys_output == 'LOCALTIME':
        header_str = header_str + ' ' + str(time_zone_output)
    for idx, fld in enumerate(flds):
        if not check_avaiable_field(fld):
            continue
        file_name = fld + '_' + time_sys_output + '_' + str(time_interval)
        if eliminate_zero:
            file_name += '_nonzero'
        file_name += '.txt'
        out_file = work_path + os.sep + file_name
        f = open(out_file, 'w')
        f.write(header_str + '\n')
        f.write('DATETIME,' + fld + '\n')
        for i, v in itp_data.items():
            cur_line = i.strftime('%Y-%m-%d %H:%M:%S') + ',' + str(v[idx]) + '\n'
            f.write(cur_line)
        f.close()
Example #13
0
    def regular_data_from_txt(climdb, data_file):
        """Regular precipitation data from text file."""
        # delete existed precipitation data
        climdb[DBTableNames.data_values].remove(
            {DataValueFields.type: DataType.p})

        clim_data_items = read_data_items_from_txt(data_file)
        clim_flds = clim_data_items[0]
        station_id = []
        bulk = climdb[DBTableNames.data_values].initialize_ordered_bulk_op()
        count = 0
        for i in range(3, len(clim_flds)):
            station_id.append(clim_flds[i])
        for i, clim_data_item in enumerate(clim_data_items):
            if i == 0:
                continue
            dic = dict()
            precipitation = []
            cur_y = 0
            cur_m = 0
            cur_d = 0
            for j, clim_data_v in enumerate(clim_data_item):
                if StringClass.string_match(clim_flds[j], DataValueFields.y):
                    cur_y = int(clim_data_v)
                elif StringClass.string_match(clim_flds[j], DataValueFields.m):
                    cur_m = int(clim_data_v)
                elif StringClass.string_match(clim_flds[j], DataValueFields.d):
                    cur_d = int(clim_data_v)
                else:
                    for k, cur_id in enumerate(station_id):
                        if StringClass.string_match(clim_flds[j], cur_id):
                            precipitation.append(float(clim_data_v))

            dt = datetime(cur_y, cur_m, cur_d, 0, 0)
            sec = time.mktime(dt.timetuple())
            utc_time = time.gmtime(sec)
            dic[DataValueFields.local_time] = dt
            dic[DataValueFields.time_zone] = time.timezone / 3600.
            dic[DataValueFields.utc] = datetime(utc_time[0], utc_time[1],
                                                utc_time[2], utc_time[3])

            for j, cur_id in enumerate(station_id):
                cur_dic = dict()
                cur_dic[DataValueFields.value] = precipitation[j]
                cur_dic[DataValueFields.id] = int(cur_id)
                cur_dic[DataValueFields.type] = DataType.p
                cur_dic[DataValueFields.time_zone] = dic[
                    DataValueFields.time_zone]
                cur_dic[DataValueFields.local_time] = dic[
                    DataValueFields.local_time]
                cur_dic[DataValueFields.utc] = dic[DataValueFields.utc]
                bulk.insert(cur_dic)
                count += 1
                if count % 500 == 0:  # execute each 500 records
                    bulk.execute()
                    bulk = climdb[
                        DBTableNames.data_values].initialize_ordered_bulk_op()
        if count % 500 != 0:
            bulk.execute()
        # Create index
        climdb[DBTableNames.data_values].create_index([
            (DataValueFields.id, ASCENDING), (DataValueFields.type, ASCENDING),
            (DataValueFields.utc, ASCENDING)
        ])