Example #1
0
 def __plot(plot_basis, start_date, end_date, plot_type=None, df=None):
     # check if we've plotted this same plot in the past before
     kwargs = {}
     now = datetime.datetime.now().strftime(BankSchema.DATE_FORMAT2)
     title = ImageRegistry._make_plot_key_title(plot_basis, plot_type)
     plot_cache_result = PlotCache.hit(title, start_date, end_date, now)
     if plot_cache_result is None:
         logging.info(f'Plot cache miss for plot: {title}, replotting.')
         if plot_type and plot_type not in ImageRegistry.get_supported_plots(plot_basis):
             raise KeyError(f"Provided plot type {plot_type} is not supported.")
         kwargs['plot_type'] = plot_type
         kwargs['title'] = title
         kwargs['figsize'] = ImageRegistry.get_plot_figsize(plot_basis)
         with ImageRegistry.__global_lock:
             if df is not None:
                 fig_or_html = ImageRegistry.get_plot_func(plot_basis)(df, **kwargs)
             else:
                 # heatmap
                 fig_or_html = ImageRegistry.get_plot_func(plot_basis)(DateRange(start_date, end_date), **kwargs)
         # is figure
         if fig_or_html is not None and not isinstance(fig_or_html, str):
             stream_reader = StringIO()
             fig_or_html.savefig(stream_reader, format='svg', bbox_inches='tight')
             stream_reader.seek(0)
             html = stream_reader.getvalue()
             PlotCache.add_cache_miss(title, start_date, end_date, now, html)
         elif fig_or_html is None:
             logging.warning(f'Ignoring plot for {plot_basis}.')
         else:
             # heat-map plot
             PlotCache.add_cache_miss(title, start_date, end_date, now, fig_or_html)
     else:
         logging.info(f'Plot cache hit for plot: {title}, ignoring replotting.')
Example #2
0
def update_html_df():
    DataState.html_df = HTMLHelper.as_html_form_from_sql(
        BankSchema.BANK_TB_NAME,
        DateRange(State.date_range_start, State.date_range_end),
        DataState.order_by_column_name,
        DataState.order_by,
        table_id=ConstData.BANK_DATA_TABLE_ID)
Example #3
0
class InsightState(State):
    html_bank_summary = HTMLHelper.as_html_form_from_df(
        RawInsights.Dynammic.table_summary_statistics(
            BankSchema.BANK_TB_NAME,
            DateRange(State.date_range_start, State.date_range_end)),
        Insights.BANK_SUMMARY_TABLE_ID,
        replace_default_data_frame_class_with=Insights.INSIGHT_TABLE_CLASS)

    html_top_inc_cat = HTMLHelper.as_html_form_from_df(
        RawInsights.Dynammic.get_top_n_income_categories(
            DateRange(State.date_range_start, State.date_range_end),
            BankSchema.BANK_TB_NAME),
        Insights.TOP_INC_TABLE_ID,
        replace_default_data_frame_class_with=Insights.INSIGHT_TABLE_CLASS)

    html_top_exp_cat = HTMLHelper.as_html_form_from_df(
        RawInsights.Dynammic.get_top_n_expense_categories(
            DateRange(State.date_range_start, State.date_range_end),
            BankSchema.BANK_TB_NAME),
        Insights.TOP_EXP_TABLE_ID,
        replace_default_data_frame_class_with=Insights.INSIGHT_TABLE_CLASS)

    _static_clock = time.time()
    html_inc_and_exp_this_month_vs_last_month_summary = HTMLHelper.as_html_form_from_df(
        RawInsights.Static.get_money_gain_and_spent_this_month_vs_last_month(
            DateRange(State.date_range_start, State.date_range_end),
            BankSchema.BANK_TB_NAME,
            as_dataframe=True),
        Insights.SPENDING_VS_LAST_MONTH_TABLE_ID,
        replace_default_data_frame_class_with=Insights.INSIGHT_TABLE_CLASS)

    html_inc_and_exp_this_month_vs_last_month_summary_as_str = RawInsights.Static. \
        summarize_this_and_last_months_spending(
        DateRange(State.date_range_start, State.date_range_end), BankSchema.BANK_TB_NAME)
    spending_vs_last_month_pid = 'spending_vs_last_month_p'

    @staticmethod
    def as_dict():
        return State.as_dict_helper(InsightState, Insights)

    @staticmethod
    def get_clock():
        return InsightState._static_clock

    @staticmethod
    def set_clock(clock):
        InsightState._static_clock = clock
Example #4
0
def valid_dr(start, end):
    try:
        DateRange(start, end)
        return True
    except KeyError:
        flash(Flash.DATE_RANGE_FILTER_KEY_ERROR.msg,
              Flash.DATE_RANGE_FILTER_KEY_ERROR.type)
        return False
Example #5
0
def refresh_static_insights(ignore_clock=False):
    now = time.time()
    passed_minutes = now - InsightState.get_clock()
    # refresh only if a significant time has passed
    if ignore_clock or passed_minutes <= Insights.STATIC_TIME_CACHE_REFRESH_MINUTES:
        InsightState.html_inc_and_exp_this_month_vs_last_month_summary = HTMLHelper.as_html_form_from_df(
            RawInsights.Static.
            get_money_gain_and_spent_this_month_vs_last_month(
                DateRange(State.date_range_start, State.date_range_end),
                BankSchema.BANK_TB_NAME,
                as_dataframe=True),
            Insights.SPENDING_VS_LAST_MONTH_TABLE_ID,
            replace_default_data_frame_class_with=Insights.INSIGHT_TABLE_CLASS)

        InsightState.html_inc_and_exp_this_month_vs_last_month_summary_as_str = RawInsights.Static. \
            summarize_this_and_last_months_spending(
            DateRange(State.date_range_start, State.date_range_end),
            BankSchema.BANK_TB_NAME)
        # refresh the clock for next look up period
        InsightState.set_clock(time.time())
Example #6
0
def refresh_dynamic_insights():
    InsightState.html_bank_summary = HTMLHelper.as_html_form_from_df(
        RawInsights.Dynammic.table_summary_statistics(
            BankSchema.BANK_TB_NAME,
            DateRange(State.date_range_start, State.date_range_end)),
        Insights.BANK_SUMMARY_TABLE_ID,
        replace_default_data_frame_class_with=Insights.INSIGHT_TABLE_CLASS)

    InsightState.html_top_inc_cat = HTMLHelper.as_html_form_from_df(
        RawInsights.Dynammic.get_top_n_income_categories(
            DateRange(State.date_range_start, State.date_range_end),
            BankSchema.BANK_TB_NAME),
        Insights.TOP_INC_TABLE_ID,
        replace_default_data_frame_class_with=Insights.INSIGHT_TABLE_CLASS)

    InsightState.html_top_exp_cat = HTMLHelper.as_html_form_from_df(
        RawInsights.Dynammic.get_top_n_expense_categories(
            DateRange(State.date_range_start, State.date_range_end),
            BankSchema.BANK_TB_NAME),
        Insights.TOP_EXP_TABLE_ID,
        replace_default_data_frame_class_with=Insights.INSIGHT_TABLE_CLASS)
Example #7
0
class DataState(State):
    order_by_column_name = BankSchema.SCHEMA_BANK_DATE.name
    order_by = Defaults.ORDER_BY_DEFAULT

    html_df = HTMLHelper.as_html_form_from_sql(
        BankSchema.BANK_TB_NAME,
        DateRange(State.date_range_start, State.date_range_end),
        order_by_column_name,
        order_by,
        table_id=ConstData.BANK_DATA_TABLE_ID)

    @staticmethod
    def as_dict():
        return State.as_dict_helper(DataState, ConstData)
Example #8
0
def visuals_redraw():
    if request.method == 'POST':
        form = request.form
        drs, dre = form['start_query_name'], form['end_query_name']
        if not valid_dr(drs, dre):
            return _standard_render()
        State.date_range_start, State.date_range_end = drs, dre

        # update which visuals to draw and redraw them
        requested_plots_to_draw = set(ImageRegistry.get_all_plot_ids()) & set(form.keys())
        _update_requested_plots_to_draw(set(requested_plots_to_draw))
        df = Data.get_table_as_df(DateRange(State.date_range_start, State.date_range_end),
                                  table_name=BankSchema.BANK_TB_NAME)
        if df is None or df.shape[0] == 0:
            flash(f'No data int table {BankSchema.BANK_TB_NAME} produce diagrams.', 'warning')
        else:
            ImageRegistry.plot_all(list(requested_plots_to_draw), df, drs, dre)
    return _standard_render()
Example #9
0
def data_download():
    if request.method == 'POST':
        logger.info('Downloading bank data as csv file.')
        with tempfile.TemporaryDirectory() as tmpdir:
            dr = DateRange(State.date_range_start, State.date_range_end)
            bank_df = Data.get_table_as_df(dr, BankSchema.BANK_TB_NAME,
                                           DataState.order_by_column_name,
                                           DataState.order_by)
            if bank_df is None or bank_df.shape[0] == 0:
                flash(
                    f'{BankSchema.BANK_TB_NAME} table is empty. Nothing to download.',
                    'warning')
                return _standard_render()
            bank_df.to_csv(os.path.join(tmpdir, ConstData.FILE_NAME_DOWNLOAD),
                           index=False)
            return send_from_directory(directory=tmpdir,
                                       filename=ConstData.FILE_NAME_DOWNLOAD,
                                       as_attachment=True)
    return _standard_render()