Example #1
0
class PathPlanner():
    def __init__(self, CP):
        self.LP = LanePlanner()

        self.last_cloudlog_t = 0

        self.setup_mpc(CP.steerRateCost)
        self.solution_invalid_cnt = 0
        self.path_offset_i = 0.0
        self.mpc_frame = 0
        self.sR_delay_counter = 0
        self.steerRatio_new = 0.0
        self.sR_time = 1

        kegman = kegman_conf(CP)
        if kegman.conf['steerRatio'] == "-1":
            self.steerRatio = CP.steerRatio
        else:
            self.steerRatio = float(kegman.conf['steerRatio'])

        if kegman.conf['steerRateCost'] == "-1":
            self.steerRateCost = CP.steerRateCost
        else:
            self.steerRateCost = float(kegman.conf['steerRateCost'])

        self.sR = [
            float(kegman.conf['steerRatio']),
            (float(kegman.conf['steerRatio']) + float(kegman.conf['sR_boost']))
        ]
        self.sRBP = [
            float(kegman.conf['sR_BP0']),
            float(kegman.conf['sR_BP1'])
        ]

        self.steerRateCost_prev = self.steerRateCost
        self.setup_mpc(self.steerRateCost)

    def setup_mpc(self, steer_rate_cost):
        self.libmpc = libmpc_py.libmpc
        self.libmpc.init(MPC_COST_LAT.PATH, MPC_COST_LAT.LANE,
                         MPC_COST_LAT.HEADING, steer_rate_cost)

        self.mpc_solution = libmpc_py.ffi.new("log_t *")
        self.cur_state = libmpc_py.ffi.new("state_t *")
        self.cur_state[0].x = 0.0
        self.cur_state[0].y = 0.0
        self.cur_state[0].psi = 0.0
        self.cur_state[0].delta = 0.0

        self.angle_steers_des = 0.0
        self.angle_steers_des_mpc = 0.0
        self.angle_steers_des_prev = 0.0
        self.angle_steers_des_time = 0.0

    def update(self, sm, pm, CP, VM):

        v_ego = sm['carState'].vEgo
        angle_steers = sm['carState'].steeringAngle
        active = sm['controlsState'].active

        angle_offset = sm['liveParameters'].angleOffset

        self.LP.update(v_ego, sm['model'])

        # Run MPC
        self.angle_steers_des_prev = self.angle_steers_des_mpc
        VM.update_params(sm['liveParameters'].stiffnessFactor,
                         sm['liveParameters'].steerRatio)
        curvature_factor = VM.curvature_factor(v_ego)

        # Get steerRatio and steerRateCost from kegman.json every x seconds
        self.mpc_frame += 1
        if self.mpc_frame % 500 == 0:
            # live tuning through /data/openpilot/tune.py overrides interface.py settings
            kegman = kegman_conf()
            if kegman.conf['tuneGernby'] == "1":
                self.steerRateCost = float(kegman.conf['steerRateCost'])
                if self.steerRateCost != self.steerRateCost_prev:
                    self.setup_mpc(self.steerRateCost)
                    self.steerRateCost_prev = self.steerRateCost

                self.sR = [
                    float(kegman.conf['steerRatio']),
                    (float(kegman.conf['steerRatio']) +
                     float(kegman.conf['sR_boost']))
                ]
                self.sRBP = [
                    float(kegman.conf['sR_BP0']),
                    float(kegman.conf['sR_BP1'])
                ]
                self.sR_time = int(float(kegman.conf['sR_time'])) * 100

            self.mpc_frame = 0

        if v_ego > 11.111:
            # boost steerRatio by boost amount if desired steer angle is high
            self.steerRatio_new = interp(abs(angle_steers), self.sRBP, self.sR)

            self.sR_delay_counter += 1
            if self.sR_delay_counter % self.sR_time != 0:
                if self.steerRatio_new > self.steerRatio:
                    self.steerRatio = self.steerRatio_new
            else:
                self.steerRatio = self.steerRatio_new
                self.sR_delay_counter = 0
        else:
            self.steerRatio = self.sR[0]

        print("steerRatio = ", self.steerRatio)

        # TODO: Check for active, override, and saturation
        # if active:
        #   self.path_offset_i += self.LP.d_poly[3] / (60.0 * 20.0)
        #   self.path_offset_i = clip(self.path_offset_i, -0.5,  0.5)
        #   self.LP.d_poly[3] += self.path_offset_i
        # else:
        #   self.path_offset_i = 0.0

        # account for actuation delay
        self.cur_state = calc_states_after_delay(self.cur_state, v_ego,
                                                 angle_steers - angle_offset,
                                                 curvature_factor,
                                                 self.steerRatio,
                                                 CP.steerActuatorDelay)

        v_ego_mpc = max(v_ego, 5.0)  # avoid mpc roughness due to low speed
        self.libmpc.run_mpc(self.cur_state, self.mpc_solution,
                            list(self.LP.l_poly), list(self.LP.r_poly),
                            list(self.LP.d_poly), self.LP.l_prob,
                            self.LP.r_prob, curvature_factor, v_ego_mpc,
                            self.LP.lane_width)

        # reset to current steer angle if not active or overriding
        if active:
            delta_desired = self.mpc_solution[0].delta[1]
            rate_desired = math.degrees(self.mpc_solution[0].rate[0] *
                                        self.steerRatio)
        else:
            delta_desired = math.radians(angle_steers -
                                         angle_offset) / self.steerRatio
            rate_desired = 0.0

        self.cur_state[0].delta = delta_desired

        self.angle_steers_des_mpc = float(
            math.degrees(delta_desired * self.steerRatio) + angle_offset)

        #  Check for infeasable MPC solution
        mpc_nans = any(math.isnan(x) for x in self.mpc_solution[0].delta)
        t = sec_since_boot()
        if mpc_nans:
            self.libmpc.init(MPC_COST_LAT.PATH, MPC_COST_LAT.LANE,
                             MPC_COST_LAT.HEADING, self.steerRateCost)
            self.cur_state[0].delta = math.radians(
                angle_steers - angle_offset) / self.steerRatio

            if t > self.last_cloudlog_t + 5.0:
                self.last_cloudlog_t = t
                cloudlog.warning("Lateral mpc - nan: True")

        if self.mpc_solution[
                0].cost > 20000. or mpc_nans:  # TODO: find a better way to detect when MPC did not converge
            self.solution_invalid_cnt += 1
        else:
            self.solution_invalid_cnt = 0
        plan_solution_valid = self.solution_invalid_cnt < 2

        plan_send = messaging.new_message()
        plan_send.init('pathPlan')
        plan_send.valid = sm.all_alive_and_valid(service_list=[
            'carState', 'controlsState', 'liveParameters', 'model'
        ])
        plan_send.pathPlan.laneWidth = float(self.LP.lane_width)
        plan_send.pathPlan.dPoly = [float(x) for x in self.LP.d_poly]
        plan_send.pathPlan.lPoly = [float(x) for x in self.LP.l_poly]
        plan_send.pathPlan.lProb = float(self.LP.l_prob)
        plan_send.pathPlan.rPoly = [float(x) for x in self.LP.r_poly]
        plan_send.pathPlan.rProb = float(self.LP.r_prob)

        plan_send.pathPlan.angleSteers = float(self.angle_steers_des_mpc)
        plan_send.pathPlan.rateSteers = float(rate_desired)
        plan_send.pathPlan.angleOffset = float(
            sm['liveParameters'].angleOffsetAverage)
        plan_send.pathPlan.mpcSolutionValid = bool(plan_solution_valid)
        plan_send.pathPlan.paramsValid = bool(sm['liveParameters'].valid)
        plan_send.pathPlan.sensorValid = bool(sm['liveParameters'].sensorValid)
        plan_send.pathPlan.posenetValid = bool(
            sm['liveParameters'].posenetValid)

        pm.send('pathPlan', plan_send)

        if LOG_MPC:
            dat = messaging.new_message()
            dat.init('liveMpc')
            dat.liveMpc.x = list(self.mpc_solution[0].x)
            dat.liveMpc.y = list(self.mpc_solution[0].y)
            dat.liveMpc.psi = list(self.mpc_solution[0].psi)
            dat.liveMpc.delta = list(self.mpc_solution[0].delta)
            dat.liveMpc.cost = self.mpc_solution[0].cost
            pm.send('liveMpc', dat)
Example #2
0
class PathPlanner():
    def __init__(self, CP):
        self.LP = LanePlanner(shouldUseAlca=True)

        self.last_cloudlog_t = 0

        self.setup_mpc(CP.steerRateCost)
        self.solution_invalid_cnt = 0
        self.path_offset_i = 0.0

    def setup_mpc(self, steer_rate_cost):
        self.libmpc = libmpc_py.libmpc
        self.libmpc.init(MPC_COST_LAT.PATH, MPC_COST_LAT.LANE,
                         MPC_COST_LAT.HEADING, steer_rate_cost)

        self.mpc_solution = libmpc_py.ffi.new("log_t *")
        self.cur_state = libmpc_py.ffi.new("state_t *")
        self.cur_state[0].x = 0.0
        self.cur_state[0].y = 0.0
        self.cur_state[0].psi = 0.0
        self.cur_state[0].delta = 0.0

        self.angle_steers_des = 0.0
        self.angle_steers_des_mpc = 0.0
        self.angle_steers_des_prev = 0.0
        self.angle_steers_des_time = 0.0

    def update(self, sm, pm, CP, VM):
        v_ego = sm['carState'].vEgo
        angle_steers = sm['carState'].steeringAngle
        #angle_steers_des = sm['controlsState'].angleSteersDes
        active = sm['controlsState'].active

        angle_offset = sm['liveParameters'].angleOffset

        self.LP.update(v_ego, sm['model'], True)

        # Run MPC
        self.angle_steers_des_prev = self.angle_steers_des_mpc
        VM.update_params(sm['liveParameters'].stiffnessFactor,
                         sm['liveParameters'].steerRatio)
        curvature_factor = VM.curvature_factor(v_ego)

        # TODO: Check for active, override, and saturation
        # if active:
        #   self.path_offset_i += self.LP.d_poly[3] / (60.0 * 20.0)
        #   self.path_offset_i = clip(self.path_offset_i, -0.5,  0.5)
        #   self.LP.d_poly[3] += self.path_offset_i
        # else:
        #   self.path_offset_i = 0.0

        # account for actuation delay

        self.cur_state = calc_states_after_delay(self.cur_state, v_ego,
                                                 angle_steers - angle_offset,
                                                 curvature_factor, VM.sR,
                                                 CP.steerActuatorDelay)

        v_ego_mpc = max(v_ego, 5.0)  # avoid mpc roughness due to low speed
        self.libmpc.run_mpc(self.cur_state, self.mpc_solution,
                            list(self.LP.l_poly), list(self.LP.r_poly),
                            list(self.LP.d_poly), self.LP.l_prob,
                            self.LP.r_prob, curvature_factor, v_ego_mpc,
                            self.LP.lane_width)

        # reset to current steer angle if not active or overriding
        if active:
            delta_desired = self.mpc_solution[0].delta[1]
            rate_desired = math.degrees(self.mpc_solution[0].rate[0] * VM.sR)
        else:
            delta_desired = math.radians(angle_steers - angle_offset) / VM.sR
            rate_desired = 0.0

        self.cur_state[0].delta = delta_desired

        self.angle_steers_des_mpc = float(
            math.degrees(delta_desired * VM.sR) + angle_offset)

        #  Check for infeasable MPC solution
        mpc_nans = any(math.isnan(x) for x in self.mpc_solution[0].delta)
        t = sec_since_boot()
        if mpc_nans:
            self.libmpc.init(MPC_COST_LAT.PATH, MPC_COST_LAT.LANE,
                             MPC_COST_LAT.HEADING, CP.steerRateCost)
            self.cur_state[0].delta = math.radians(angle_steers -
                                                   angle_offset) / VM.sR

            if t > self.last_cloudlog_t + 5.0:
                self.last_cloudlog_t = t
                cloudlog.warning("Lateral mpc - nan: True")

        if self.mpc_solution[
                0].cost > 20000. or mpc_nans:  # TODO: find a better way to detect when MPC did not converge
            self.solution_invalid_cnt += 1
        else:
            self.solution_invalid_cnt = 0
        plan_solution_valid = self.solution_invalid_cnt < 2

        plan_send = messaging.new_message()
        plan_send.init('pathPlan')
        plan_send.valid = sm.all_alive_and_valid(service_list=[
            'carState', 'controlsState', 'liveParameters', 'model'
        ])
        plan_send.pathPlan.laneWidth = float(self.LP.lane_width)
        plan_send.pathPlan.dPoly = [float(x) for x in self.LP.d_poly]
        plan_send.pathPlan.lPoly = [float(x) for x in self.LP.l_poly]
        plan_send.pathPlan.lProb = float(self.LP.l_prob)
        plan_send.pathPlan.rPoly = [float(x) for x in self.LP.r_poly]
        plan_send.pathPlan.rProb = float(self.LP.r_prob)

        plan_send.pathPlan.angleSteers = float(self.angle_steers_des_mpc)
        plan_send.pathPlan.rateSteers = float(rate_desired)
        plan_send.pathPlan.angleOffset = float(
            sm['liveParameters'].angleOffsetAverage)
        plan_send.pathPlan.mpcSolutionValid = bool(plan_solution_valid)
        plan_send.pathPlan.paramsValid = bool(sm['liveParameters'].valid)
        plan_send.pathPlan.sensorValid = bool(sm['liveParameters'].sensorValid)
        plan_send.pathPlan.posenetValid = bool(
            sm['liveParameters'].posenetValid)

        pm.send('pathPlan', plan_send)

        if LOG_MPC:
            dat = messaging.new_message()
            dat.init('liveMpc')
            dat.liveMpc.x = list(self.mpc_solution[0].x)
            dat.liveMpc.y = list(self.mpc_solution[0].y)
            dat.liveMpc.psi = list(self.mpc_solution[0].psi)
            dat.liveMpc.delta = list(self.mpc_solution[0].delta)
            dat.liveMpc.cost = self.mpc_solution[0].cost
            pm.send('liveMpc', dat)