def test_add(): vecs = VectorStore(128) good = numpy.ndarray(shape=(vecs.nr_dim,), dtype='float32') vecs.add(good) bad = numpy.ndarray(shape=(vecs.nr_dim+1,), dtype='float32') with pytest.raises(AssertionError) as excinfo: vecs.add(bad)
def test_most_similar(): vecs = VectorStore(4) vecs.add(numpy.asarray([4, 2, 2, 2], dtype="float32")) vecs.add(numpy.asarray([4, 4, 2, 2], dtype="float32")) vecs.add(numpy.asarray([4, 4, 4, 2], dtype="float32")) vecs.add(numpy.asarray([4, 4, 4, 4], dtype="float32")) indices, scores = vecs.most_similar(numpy.asarray([4, 2, 2, 2], dtype="float32"), 4) print(list(scores)) assert list(indices) == [0, 1] indices, scores = vecs.most_similar(numpy.asarray([0.1, 1, 1, 1], dtype="float32"), 4) assert list(indices) == [4, 3]
def test_most_similar(): vecs = VectorStore(4) vecs.add(numpy.asarray([4,2,2,2], dtype='float32')) vecs.add(numpy.asarray([4,4,2,2], dtype='float32')) vecs.add(numpy.asarray([4,4,4,2], dtype='float32')) vecs.add(numpy.asarray([4,4,4,4], dtype='float32')) indices, scores = vecs.most_similar( numpy.asarray([4,2,2,2], dtype='float32'), 4) print(list(scores)) assert list(indices) == [0,1] indices, scores = vecs.most_similar( numpy.asarray([0.1,1,1,1], dtype='float32'), 4) assert list(indices) == [4,3]