Example #1
0
def CreateMonoBag(imgs,bagname):
    '''Creates a bag file with camera images'''
    bag = rosbag.Bag(bagname, 'w')
    imgs = sorted(imgs)

    try:
        for i in range(len(imgs)):
            print("Adding %s" % imgs[i])
            fp = open( imgs[i], "r" )
            p = ImageFile.Parser()

            rgb_file = imgs[i]
            llim = rgb_file.rfind('/')
            rlim = rgb_file.rfind('.')
            rgb_ext = rgb_file[rlim:]
            msec = rgb_file[llim+1:rlim]
            sec = float(msec) / 1000 # msec to sec

            while 1:
                s = fp.read(1024)
                if not s:
                    break
                p.feed(s)

            im = p.close()

            # Stamp = rospy.rostime.Time.from_sec(time.time())
            Stamp = rospy.rostime.Time.from_sec(sec)
            Img = Image()
            Img.header.stamp = Stamp
            Img.width = im.size[0]
            Img.height = im.size[1]
            Img.encoding = "rgb8"
            Img.header.frame_id = "camera"
            Img_data = [pix for pixdata in im.getdata() for pix in pixdata]
            Img.data = Img_data

            bag.write('camera/rgb/image_color', Img, Stamp)

            #####
            d_file = rgb_file.replace(rgb_ext, '.txt')
            print("Adding %s" % d_file)
            fid = open(d_file, 'r')
            raw = fid.readlines()
            fid.close()
            #depth = numpy.reshape(raw, (im.size[1], im.size[0]))

            Img_depth = Image()
            Img_depth.header.stamp = Stamp
            Img_depth.width = im.size[0]
            Img_depth.height = im.size[1]
            Img_depth.encoding = "rgb8"
            Img_depth.header.frame_id = "camera"
            #Img_data = [pix for pixdata in im.getdata() for pix in pixdata]
            Img_depth.data = raw
            bag.write('camera/depth/image', Img, Stamp)
    finally:
        bag.close()       
Example #2
0
def CreateStereoBag(left_imgs, right_imgs, bagname):
    '''Creates a bag file containing stereo image pairs'''
    bag =rosbag.Bag(bagname, 'w')

    try:
        for i in range(len(left_imgs)):
            print("Adding %s" % left_imgs[i])
            fp_left = open( left_imgs[i], "r" )
            p_left = ImageFile.Parser()

            while 1:
                s = fp_left.read(1024)
                if not s:
                    break
                p_left.feed(s)

            im_left = p_left.close()

            fp_right = open( right_imgs[i], "r" )
            print("Adding %s" % right_imgs[i])
            p_right = ImageFile.Parser()

            while 1:
                s = fp_right.read(1024)
                if not s:
                    break
                p_right.feed(s)

            im_right = p_right.close()

            Stamp = roslib.rostime.Time.from_sec(time.time())

            Img_left = Image()
            Img_left.header.stamp = Stamp
            Img_left.width = im_left.size[0]
            Img_left.height = im_left.size[1]
            Img_left.encoding = "rgb8"
            Img_left.header.frame_id = "camera/left"
            Img_left_data = [pix for pixdata in im_left.getdata() for pix in pixdata]
            Img_left.data = Img_left_data
            Img_right = Image()
            Img_right.header.stamp = Stamp
            Img_right.width = im_right.size[0]
            Img_right.height = im_right.size[1]
            Img_right.encoding = "rgb8"
            Img_right.header.frame_id = "camera/right"
            Img_right_data = [pix for pixdata in im_right.getdata() for pix in pixdata]
            Img_right.data = Img_right_data

            bag.write('camera/left/image_raw', Img_left, Stamp)
            bag.write('camera/right/image_raw', Img_right, Stamp)
    finally:
        bag.close()
Example #3
0
def CreateMonoBag(imgs,bagname):
    '''Creates a bag file with camera images'''
    bag =rosbag.Bag(bagname, 'w')

    try:
        for i in range(len(imgs)):
            print("Adding %s" % imgs[i])
            fp = open( imgs[i], "r" )
            p = ImageFile.Parser()

            while 1:
                s = fp.read(1024)
                if not s:
                    break
                p.feed(s)

            im = p.close()

            Stamp = rospy.rostime.Time.from_sec(time.time())
            Img = Image()
            Img.header.stamp = Stamp
            Img.width = im.size[0]
            Img.height = im.size[1]
            Img.encoding = "rgb8"
            Img.header.frame_id = "camera"
            Img_data = [pix for pixdata in im.getdata() for pix in pixdata]
            Img.data = Img_data

            bag.write('camera/image_raw', Img, Stamp)
    finally:
        bag.close()       
Example #4
0
    def main_loop(self):
        img = Image()
        while not rospy.is_shutdown():
            #print "getting image..",
            image = self.camProxy.getImageRemote(self.nameId)
            #print "ok"
            # TODO: better time
            img.header.stamp = rospy.Time.now()
            img.header.frame_id = self.frame_id
            img.height = image[1]
            img.width = image[0]
            nbLayers = image[2]
            #colorspace = image[3]
            if image[3] == kYUVColorSpace:
                encoding = "mono8"
            elif image[3] == kRGBColorSpace:
                encoding = "rgb8"
            elif image[3] == kBGRColorSpace:
                encoding = "bgr8"
            else:
                rospy.logerror("Received unknown encoding: {0}".format(image[3]))

            img.encoding = encoding
            img.step = img.width * nbLayers
            img.data = image[6]
            self.info_.width = img.width
            self.info_.height = img.height
            self.info_.header = img.header
            self.pub_img_.publish(img)
            self.pub_info_.publish(self.info_)
            rospy.sleep(0.0001)# TODO: is this necessary?


        self.camProxy.unsubscribe(self.nameId)
Example #5
0
 def appendMessages(self, stamp, messages):
     if not self._image is None:
         # Build the image message and push it on the message list
         msg = Image()
         msg.header.stamp = stamp
         msg.header.frame_id = self._frameId
         msg.width = self._image.shape[0]
         msg.height = self._image.shape[1]
         if (len(self._image.shape) == 2) or (len(self._image.shape) == 3 and self._image.shape[2] == 1):
             # A gray image
             msg.encoding = '8UC1'
             stepMult = 1
         elif len(self._image.shape) == 3 and self._image.shape[2] == 3:
             # A color image
             msg.encoding = 'rgb8'
             stepMult = 3
         elif len(self._image.shape) == 3 and self._image.shape[2] == 4:
             # A color image
             msg.encoding = 'rgba8'
             stepMult = 3
         else:
             raise RuntimeError("The parsing of images is very simple. " +\
                                "Only 3-channel rgb (rgb8), 4 channel rgba " +\
                                "(rgba8) and 1 channel mono (mono8) are " +\
                                "supported. Got an image with shape " +\
                                "{0}".format(self._image.shape))
         msg.is_bigendian = False
         msg.step = stepMult * msg.width
         msg.data = self._image.flatten().tolist()
         messages.append((self._topic, msg))
def convert(data):
	width=data.info.width
	height=data.info.height
	pixelList = [0] *width*height
	
	imageMsg=Image()
	imageMsg.header.stamp = rospy.Time.now()
	imageMsg.header.frame_id = '1'
	imageMsg.height = height
	imageMsg.width = width
	imageMsg.encoding = 'mono8'
	imageMsg.is_bigendian = 0
	imageMsg.step = width
	
	for h in range(height):
		for w in range(width):
			if data.data[h*width+w]==-1:
				pixelList[h*width+w] = 150
			elif data.data[h*width+w]==0:
				pixelList[h*width+w] = 0
			elif data.data[h*width+w]==100:
				pixelList[h*width+w] = 255	
			else:
				pixelList[h*width+w]=data.data[h*width+w]
				print 'ERROR'
				
	imageMsg.data = pixelList
	imagePub.publish(imageMsg)
Example #7
0
    def process_frame(self,cam_id,buf,buf_offset,timestamp,framenumber):
        if have_ROS:
            msg = Image()
            msg.header.seq=framenumber
            msg.header.stamp=rospy.Time.from_sec(timestamp)
            msg.header.frame_id = "0"

            npbuf = np.array(buf)
            (height,width) = npbuf.shape

            msg.height = height
            msg.width = width
            msg.encoding = self.encoding
            msg.step = width
            msg.data = npbuf.tostring() # let numpy convert to string

            with self.publisher_lock:
                cam_info = self.camera_info
                cam_info.header.stamp = msg.header.stamp
                cam_info.header.seq = msg.header.seq
                cam_info.header.frame_id = msg.header.frame_id
                cam_info.width = width
                cam_info.height = height

                self.publisher.publish(msg)
                self.publisher_cam_info.publish(cam_info)
        return [],[]
Example #8
0
    def main_loop(self):
        img = Image()
        r = rospy.Rate(self.fps)
        while not rospy.is_shutdown():
            image = self.camProxy.getImageRemote(self.nameId)
            stampAL = image[4] + image[5]*1e-6
            #print image[5],  stampAL, "%lf"%(stampAL)
            img.header.stamp = rospy.Time(stampAL)
            img.header.frame_id = self.frame_id
            img.height = image[1]
            img.width = image[0]
            nbLayers = image[2]
            if image[3] == kYUVColorSpace:
                encoding = "mono8"
            elif image[3] == kRGBColorSpace:
                encoding = "rgb8"
            elif image[3] == kBGRColorSpace:
                encoding = "bgr8"
            elif image[3] == kYUV422ColorSpace:
                encoding = "yuv422" # this works only in ROS groovy and later
            else:
                rospy.logerror("Received unknown encoding: {0}".format(image[3]))

            img.encoding = encoding
            img.step = img.width * nbLayers
            img.data = image[6]
            infomsg = self.cim.getCameraInfo()
            infomsg.header = img.header
            self.pub_info_.publish(infomsg)
            self.pub_img_.publish(img)
            r.sleep()


        self.camProxy.unsubscribe(self.nameId)
Example #9
0
    def __init__(self):
        rospy.init_node('image_publish')
        name = sys.argv[1]
        image = cv2.imread(name)
        #cv2.imshow("im", image)
        #cv2.waitKey(5)

        hz = rospy.get_param("~rate", 1)
        frame_id = rospy.get_param("~frame_id", "map")
        use_image = rospy.get_param("~use_image", True)
        rate = rospy.Rate(hz)

        self.ci_in = None
        ci_sub = rospy.Subscriber('camera_info_in', CameraInfo,
                                  self.camera_info_callback, queue_size=1)

        if use_image:
            pub = rospy.Publisher('image', Image, queue_size=1)
        ci_pub = rospy.Publisher('camera_info', CameraInfo, queue_size=1)

        msg = Image()
        msg.header.stamp = rospy.Time.now()
        msg.header.frame_id = frame_id
        msg.encoding = 'bgr8'
        msg.height = image.shape[0]
        msg.width = image.shape[1]
        msg.step = image.shape[1] * 3
        msg.data = image.tostring()
        if use_image:
            pub.publish(msg)

        ci = CameraInfo()
        ci.header = msg.header
        ci.height = msg.height
        ci.width = msg.width
        ci.distortion_model ="plumb_bob"
        # TODO(lucasw) need a way to set these values- have this node
        # subscribe to an input CameraInfo?
        ci.D = [0.0, 0.0, 0.0, 0, 0]
        ci.K = [500.0, 0.0, msg.width/2, 0.0, 500.0, msg.height/2, 0.0, 0.0, 1.0]
        ci.R = [1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0]
        ci.P = [500.0, 0.0, msg.width/2, 0.0, 0.0, 500.0, msg.height/2, 0.0,  0.0, 0.0, 1.0, 0.0]
        # ci_pub.publish(ci)

        # TODO(lwalter) only run this is hz is positive,
        # otherwise wait for input trigger message to publish an image
        while not rospy.is_shutdown():
            if self.ci_in is not None:
                ci = self.ci_in

            msg.header.stamp = rospy.Time.now()
            ci.header = msg.header
            if use_image:
                pub.publish(msg)
            ci_pub.publish(ci)

            if hz <= 0:
                rospy.sleep()
            else:
                rate.sleep()
Example #10
0
 def publish( self ):
     # Get the image.
     image = self.__videoDeviceProxy.getImageRemote( self.__videoDeviceProxyName );
         
     # Create Image message.
     ImageMessage = Image();
     ImageMessage.header.stamp.secs = image[ 5 ];
     ImageMessage.width = image[ 0 ];
     ImageMessage.height = image[ 1 ];
     ImageMessage.step = image[ 2 ] * image[ 0 ];
     ImageMessage.is_bigendian = False;
     ImageMessage.encoding = 'bgr8';
     ImageMessage.data = image[ 6 ];
     
     self.__imagePublisher.publish( ImageMessage );
     
     # Create CameraInfo message.
     # Data from the calibration phase is hard coded for now.
     CameraInfoMessage = CameraInfo();
     CameraInfoMessage.header.stamp.secs = image[ 5 ];
     CameraInfoMessage.width = image[ 0 ];
     CameraInfoMessage.height = image[ 1 ];
     CameraInfoMessage.D = [ -0.0769218451517258, 0.16183180613612602, 0.0011626049774280595, 0.0018733894100460534, 0.0 ];
     CameraInfoMessage.K = [ 581.090096189648, 0.0, 341.0926325830606, 0.0, 583.0323248080421, 241.02441593704128, 0.0, 0.0, 1.0 ];
     CameraInfoMessage.R = [ 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0 ];
     CameraInfoMessage.P = [ 580.5918359588198, 0.0, 340.76398441334106, 0.0, 0.0, 582.4042541534321, 241.04182225157172, 0.0, 0.0, 0.0, 1.0, 0.0] ;
     CameraInfoMessage.distortion_model = 'plumb_bob';
     
     #CameraInfoMessage.roi.x_offset = self.__ROIXOffset;
     #CameraInfoMessage.roi.y_offset = self.__ROIYOffset;
     #CameraInfoMessage.roi.width = self.__ROIWidth;
     #CameraInfoMessage.roi.height = self.__ROIHeight;
     #CameraInfoMessage.roi.do_rectify = self.__ROIDoRectify;
     
     self.__cameraInfoPublisher.publish( CameraInfoMessage );
Example #11
0
def airpub():
    pub = rospy.Publisher("airsim/image_raw", Image, queue_size=1)
    rospy.init_node('image_raw', anonymous=True)
    rate = rospy.Rate(10) # 10hz

    # connect to the AirSim simulator 
    client = airsim.MultirotorClient()
    client.confirmConnection()

    while not rospy.is_shutdown():
         # get camera images from the car
        responses = client.simGetImages([
            airsim.ImageRequest("1", airsim.ImageType.Scene, False, False)])  #scene vision image in uncompressed RGBA array

        for response in responses:
            img_rgba_string = response.image_data_uint8

        # Populate image message
        msg=Image() 
        msg.header.stamp = rospy.Time.now()
        msg.header.frame_id = "frameId"
        msg.encoding = "rgba8"
        msg.height = 360  # resolution should match values in settings.json 
        msg.width = 640
        msg.data = img_rgba_string
        msg.is_bigendian = 0
        msg.step = msg.width * 4

        # log time and size of published image
        rospy.loginfo(len(response.image_data_uint8))
        # publish image message
        pub.publish(msg)
        # sleep until next cycle
        rate.sleep()
Example #12
0
def post_image(self, component_instance):
    """ Publish the data of the Camera as a ROS-Image message.

    """
    image_local = component_instance.local_data['image']
    if not image_local or image_local == '' or not image_local.image or not component_instance.capturing:
        return # press [Space] key to enable capturing

    parent_name = component_instance.robot_parent.blender_obj.name

    image = Image()
    image.header.stamp = rospy.Time.now()
    image.header.seq = self._seq
    # http://www.ros.org/wiki/geometry/CoordinateFrameConventions#Multi_Robot_Support
    image.header.frame_id = ('/' + parent_name + '/base_image')
    image.height = component_instance.image_height
    image.width = component_instance.image_width
    image.encoding = 'rgba8'
    image.step = image.width * 4
    # NOTE: Blender returns the image as a binary string encoded as RGBA
    # sensor_msgs.msg.Image.image need to be len() friendly
    # TODO patch ros-py3/common_msgs/sensor_msgs/src/sensor_msgs/msg/_Image.py
    # to be C-PyBuffer "aware" ? http://docs.python.org/c-api/buffer.html
    image.data = bytes(image_local.image)
    # RGBA8 -> RGB8 ? (remove alpha channel, save h*w bytes, CPUvore ?)
    # http://wiki.blender.org/index.php/Dev:Source/GameEngine/2.49/VideoTexture
    # http://www.blender.org/documentation/blender_python_api_2_57_release/bge.types.html#bge.types.KX_Camera.useViewport

    for topic in self._topics:
        # publish the message on the correct topic
        if str(topic.name) == str("/" + parent_name + "/" + component_instance.blender_obj.name):
            topic.publish(image)

    self._seq = self._seq + 1
Example #13
0
    def default(self, ci="unused"):
        if not self.component_instance.capturing:
            return  # press [Space] key to enable capturing

        image_local = self.data["image"]

        image = Image()
        image.header = self.get_ros_header()
        image.header.frame_id += "/base_image"
        image.height = self.component_instance.image_height
        image.width = self.component_instance.image_width
        image.encoding = "rgba8"
        image.step = image.width * 4

        # VideoTexture.ImageRender implements the buffer interface
        image.data = bytes(image_local)

        # fill this 3 parameters to get correcty image with stereo camera
        Tx = 0
        Ty = 0
        R = [1, 0, 0, 0, 1, 0, 0, 0, 1]

        intrinsic = self.data["intrinsic_matrix"]

        camera_info = CameraInfo()
        camera_info.header = image.header
        camera_info.height = image.height
        camera_info.width = image.width
        camera_info.distortion_model = "plumb_bob"
        camera_info.K = [
            intrinsic[0][0],
            intrinsic[0][1],
            intrinsic[0][2],
            intrinsic[1][0],
            intrinsic[1][1],
            intrinsic[1][2],
            intrinsic[2][0],
            intrinsic[2][1],
            intrinsic[2][2],
        ]
        camera_info.R = R
        camera_info.P = [
            intrinsic[0][0],
            intrinsic[0][1],
            intrinsic[0][2],
            Tx,
            intrinsic[1][0],
            intrinsic[1][1],
            intrinsic[1][2],
            Ty,
            intrinsic[2][0],
            intrinsic[2][1],
            intrinsic[2][2],
            0,
        ]

        self.publish(image)
        self.topic_camera_info.publish(camera_info)
def copy_Image_empty_data(image_old):
    image_new = Image()
    image_new.header = copy(image_old.header)
    image_new.height = copy(image_old.height)
    image_new.width = copy(image_old.width)
    image_new.encoding = copy(image_old.encoding)
    image_new.is_bigendian = copy(image_old.is_bigendian)
    image_new.step = copy(image_old.step)
    return image_new
	def publishCombined(self):
		#Enter Main Loop
		while not rospy.is_shutdown():
			
			#Convert to Numpy  Arrays
			map = []
			for i in range(0, self.numRobots):
				map.append(numpy.array(self.searchedData[i].data))
				
			combined2 = map[0]
			if self.numRobots > 1:
				#Find Minimum of all maps
				for i in range(1, self.numRobots):
					combined2 = numpy.minimum(combined2,map[i])
					
			#Pack Occupancy Grid Message
			mapMsg=OccupancyGrid()
			mapMsg.header.stamp=rospy.Time.now()
			mapMsg.header.frame_id=self.mapData.header.frame_id
			mapMsg.info.resolution=self.mapData.info.resolution
			mapMsg.info.width=self.mapData.info.width
			mapMsg.info.height=self.mapData.info.height
			mapMsg.info.origin=self.mapData.info.origin
			mapMsg.data=combined2.tolist()
			
			#Convert combined Occupancy grid values to grayscal image values
			combined2[combined2 == -1] = 150			#Unknown -1->150 		(gray)
			combined2[combined2 == 100] = 255			#Not_Searched 100->255	(white)
														#Searched=0				(black)
														
			#Calculate percentage of open area searched
			numNotSearched = combined2[combined2==255].size
			numSearched = combined2[combined2==0].size
			percentSearched = 100*float(numSearched)/(numNotSearched+numSearched)
			percentSearchedMsg = Float32()
			percentSearchedMsg.data = percentSearched
			self.percentPub.publish(percentSearchedMsg)
			
			#Pack Image Message
			imageMsg=Image()
			imageMsg.header.stamp = rospy.Time.now()
			imageMsg.header.frame_id = self.mapData.header.frame_id
			imageMsg.height = self.mapData.info.height
			imageMsg.width = self.mapData.info.width
			imageMsg.encoding = 'mono8'
			imageMsg.is_bigendian = 0
			imageMsg.step = self.mapData.info.width
			imageMsg.data = combined2.tolist()
			
			#Publish Combined Occupancy Grid and Image
			self.searchedCombinePub.publish(mapMsg)
			self.imagePub.publish(imageMsg)
			
			#Update Every 0.5 seconds
			rospy.sleep(1.0)
    def callback(self, data):
        #print "got some shit coming in"
        #if data is not None:
            #plane= data.pose.position
            #nrm= norm([plane.x, plane.y, plane.z])

            #normal= np.array([plane.x, plane.y, plane.z])/nrm

            #print "got here"

            ##replace with numpy array
            #plane= np.array([plane.x, plane.y, plane.z])

            ##get the rotation matrix
            #rmatrix= rotationMatrix(normal)

            ##print rmatrix

            ##for point in data.points:
                ##print point
                ##p= np.array([point.x, point.y, point.z])
                ##flattened_point= project(p, plane, normal)
                ##print flattened_point
                ##print np.dot(rmatrix,flattened_point)

        try:
            resp= self.seperation()
            print resp.result
            #self.pub.publish(resp.clusters[0])
            im= Image()
            im.header.seq= 72
            im.header.stamp.secs= 1365037570
            im.header.stamp.nsecs= 34077284
            im.header.frame_id= '/camera_rgb_optical_frame'
            im.height= 480
            im.width= 640
            im.encoding= '16UC1'
            im.is_bigendian= 0
            im.step= 1280
            im.data= [100 for n in xrange(1280*480)]

            for point in resp.clusters[0].points:
                x= point.x * 640
                y= point.y * 480
                im.data[y*1280 + x] = 10

            pub_image.publish(im)

        except Exception, e:
            print "service call failed"
            print e
Example #17
0
def numpy_to_image(arr, encoding):
	if not encoding in name_to_dtypes:
		raise TypeError('Unrecognized encoding {}'.format(encoding))

	im = Image(encoding=encoding)

	# extract width, height, and channels
	dtype_class, exp_channels = name_to_dtypes[encoding]
	dtype = np.dtype(dtype_class)
	if len(arr.shape) == 2:
		im.height, im.width, channels = arr.shape + (1,)
	elif len(arr.shape) == 3:
		im.height, im.width, channels = arr.shape
	else:
		raise TypeError("Array must be two or three dimensional")

	# check type and channels
	if exp_channels != channels:
		raise TypeError("Array has {} channels, {} requires {}".format(
			channels, encoding, exp_channels
		))
	if dtype_class != arr.dtype.type:
		raise TypeError("Array is {}, {} requires {}".format(
			arr.dtype.type, encoding, dtype_class
		))

	# make the array contiguous in memory, as mostly required by the format
	contig = np.ascontiguousarray(arr)
	im.data = contig.tostring()
	im.step = contig.strides[0]
	im.is_bigendian = (
		arr.dtype.byteorder == '>' or 
		arr.dtype.byteorder == '=' and sys.byteorder == 'big'
	)

	return im
Example #18
0
 def publish_image(self):
     # get the image from the Nao
     img = self.nao_cam.getImageRemote(self.proxy_name)
     # copy the data into the ROS Image
     ros_img = Image()
     ros_img.width = img[0]
     ros_img.height = img[1]
     ros_img.step = img[2] * img[0]
     ros_img.header.stamp.secs = img[5]
     ros_img.data = img[6]
     ros_img.is_bigendian = False
     ros_img.encoding = "rgb8"
     ros_img.data = img[6]
     # publish the image
     self.nao_cam_pub.publish(ros_img)
Example #19
0
def numpy_to_imgmsg(image, stamp=None):
    from sensor_msgs.msg import Image 
    rosimage = Image()
    rosimage.height = image.shape[0]
    rosimage.width = image.shape[1]
    if image.dtype == np.uint8:
        rosimage.encoding = '8UC%d' % image.shape[2]
        rosimage.step = image.shape[2] * rosimage.width
        rosimage.data = image.ravel().tolist()
    else:
        rosimage.encoding = '32FC%d' % image.shape[2]
        rosimage.step = image.shape[2] * rosimage.width * 4
        rosimage.data = np.array(image.flat, dtype=np.float32).tostring()
    if stamp is not None:
        rosimage.header.stamp = stamp
    return rosimage
def publish_state_image(state_from_env1, current_state_image_pub):
	current_state_image_msg = Image()
        current_state_image_msg.encoding = "mono8"
        current_state_image_msg.header.stamp = rospy.Time.now()
        current_state_image_msg.height = 68
        current_state_image_msg.width = 34
        current_state_image_msg.step = 68
        x = np.reshape(state_from_env1, (2,2312))
        idx_x = np.argwhere(x[0] == np.amax(x[0]))
        lx = idx_x.flatten().tolist()
        x[1][lx[0]] = 255
        x[1][lx[1]] = 255
        x[1][lx[2]] = 255
        y = x[1].tolist()
        current_state_image_msg.data = y
	current_state_image_pub.publish(current_state_image_msg)
Example #21
0
def depth_to_imgmsg(deptharray):
    """
    Converts an depth or disp image to a ROS image without using the cv_bridge package,
    for compatibility purposes.
    Depth array has the shape of [H, W, 1]
    """
    msg = Image()
    msg.height = deptharray.shape[0]
    msg.width = deptharray.shape[1]
    msg.encoding = '32FC1'
    if deptharray.dtype.byteorder == '>':
        msg.is_bigendian = True

    msg.data = deptharray.tostring()
    msg.step = len(msg.data) // msg.height

    return msg
Example #22
0
def talker():
    pub = rospy.Publisher('chatter', String, queue_size=10)
    pub2 = rospy.Publisher('test_image',Image, queue_size=10)
    rospy.init_node('talker', anonymous=True)
    rate = rospy.Rate(0.2) # 10hz
    while not rospy.is_shutdown():
        hello_str = "hello world %s" % rospy.get_time()
        #rospy.loginfo(hello_str)
        pub.publish(hello_str)
	test_image = Image()
	test_image.header.stamp = rospy.Time.now()
	test_image.height = 3
	test_image.width = 3
	test_image.data = [0,255,0,0,255,0,0,255,0]
	pub2.publish(test_image)
	
        rate.sleep()
Example #23
0
def main():
    global raw_image_msg

    rospy.init_node("object_tracing")
    rospy.Subscriber("/raw_image", Image, object_tracing_callback)

    image_pub = rospy.Publisher("/image", Image, queue_size=10)

    while raw_image_msg is None:
        continue

    image_array = list_to_array(raw_image_msg.data, raw_image_msg.height,
                                raw_image_msg.width)
    while np.all(image_array == 0):
        print("zeros!")
        image_array = list_to_array(raw_image_msg.data, raw_image_msg.height,
                                    raw_image_msg.width)
        continue

    tracker = Tracker(image_array)

    while not rospy.is_shutdown():
        image_array = list_to_array(raw_image_msg.data, raw_image_msg.height,
                                    raw_image_msg.width)
        # cv2.imwrite("./input.png", image_array)
        # print(image_array)

        # transform image_array to output
        pts, output = tracker.track(image_array, method="meanshift")
        # pts, output = tracker.track(image_array, method="camshift")
        print(pts)

        # print(np.all(output == 0))
        rgb_list, h, w = array_to_list(output)
        # print(rgb_list)
        image_msg = Image()
        image_msg.header.stamp = rospy.Time.now()
        image_msg.header.frame_id = 'a'
        image_msg.height = h
        image_msg.width = w
        image_msg.encoding = 'bgr8'
        image_msg.is_bigendian = 1
        image_msg.step = 3 * w
        image_msg.data = rgb_list

        image_pub.publish(image_msg)
Example #24
0
    def on_frame(self, frame):
        if self.pub is not None:
            msg = Image()
            msg.data = frame.to_rgb().planes[0].to_bytes()
            msg.width = frame.width
            msg.height = frame.height
            msg.step = frame.width * 3
            msg.is_bigendian = 0
            msg.encoding = 'rgb8'
            msg.header = Header()
            msg.header.seq = self.seq_num
            msg.header.stamp = rospy.get_rostime()
            msg.header.frame_id = "0"

            self.pub.publish(msg)

            self.seq_num += 1
    def cv2_to_imgmsg(self, cvim, encoding="passthrough"):
        """
        Convert an OpenCV :cpp:type:`cv::Mat` type to a ROS sensor_msgs::Image message.

        :param cvim:      An OpenCV :cpp:type:`cv::Mat`
        :param encoding:  The encoding of the image data, one of the following strings:

           * ``"passthrough"``
           * one of the standard strings in sensor_msgs/image_encodings.h

        :rtype:           A sensor_msgs.msg.Image message
        :raises CvBridgeError: when the ``cvim`` has a type that is incompatible with ``encoding``

        If encoding is ``"passthrough"``, then the message has the same encoding as the image's OpenCV type.
        Otherwise desired_encoding must be one of the standard image encodings

        This function returns a sensor_msgs::Image message on success, or raises :exc:`cv_bridge.CvBridgeError` on failure.
        """
        import cv2
        import numpy as np
        if not isinstance(cvim, (np.ndarray, np.generic)):
            raise TypeError('Your input type is not a numpy array')
        img_msg = Image()
        img_msg.height = cvim.shape[0]
        img_msg.width = cvim.shape[1]
        if len(cvim.shape) < 3:
            cv_type = self.dtype_with_channels_to_cvtype2(cvim.dtype, 1)
        else:
            cv_type = self.dtype_with_channels_to_cvtype2(
                cvim.dtype, cvim.shape[2])
        if encoding == "passthrough":
            img_msg.encoding = cv_type
        else:
            img_msg.encoding = encoding
            # Verify that the supplied encoding is compatible with the type of the OpenCV image
            if self.cvtype_to_name[self.encoding_to_cvtype2(
                    encoding)] != cv_type:
                raise CvBridgeError(
                    "encoding specified as %s, but image has incompatible type %s"
                    % (encoding, cv_type))
        if cvim.dtype.byteorder == '>':
            img_msg.is_bigendian = True
        img_msg.data = cvim.tostring()
        img_msg.step = len(img_msg.data) // img_msg.height

        return img_msg
Example #26
0
    def default(self, ci='unused'):
        if not self.component_instance.capturing:
            return  # press [Space] key to enable capturing

        image_local = self.data['image']

        image = Image()
        image.header = self.get_ros_header()
        image.height = self.component_instance.image_height
        image.width = self.component_instance.image_width
        image.encoding = self.encoding
        image.step = image.width * 4

        # VideoTexture.ImageRender implements the buffer interface
        image.data = bytes(image_local)

        # fill this 3 parameters to get correcty image with stereo camera
        Tx = 0
        Ty = 0
        R = [1, 0, 0, 0, 1, 0, 0, 0, 1]

        intrinsic = self.data['intrinsic_matrix']

        camera_info = CameraInfo()
        camera_info.header = image.header
        camera_info.height = image.height
        camera_info.width = image.width
        camera_info.distortion_model = 'plumb_bob'
        camera_info.D = [0]
        camera_info.K = [
            intrinsic[0][0], intrinsic[0][1], intrinsic[0][2], intrinsic[1][0],
            intrinsic[1][1], intrinsic[1][2], intrinsic[2][0], intrinsic[2][1],
            intrinsic[2][2]
        ]
        camera_info.R = R
        camera_info.P = [
            intrinsic[0][0], intrinsic[0][1], intrinsic[0][2], Tx,
            intrinsic[1][0], intrinsic[1][1], intrinsic[1][2], Ty,
            intrinsic[2][0], intrinsic[2][1], intrinsic[2][2], 0
        ]

        if self.pub_tf:
            self.publish_with_robot_transform(image)
        else:
            self.publish(image)
        self.topic_camera_info.publish(camera_info)
Example #27
0
def airpub():
    pub = rospy.Publisher("airsim/image_raw", Image, queue_size=1)
    rospy.init_node('image_raw', anonymous=True)
    rate = rospy.Rate(10)  # 10hz

    # connect to the AirSim simulator
    client = airsim.MultirotorClient()
    client.confirmConnection()
    rospy.loginfo("Connection confirmed")
    client.enableApiControl(True, "Drone1")
    client.enableApiControl(True, "Drone2")

    state1 = client.getMultirotorState(vehicle_name="Drone1")
    s = pprint.pformat(state1)
    rospy.loginfo("%s", s)

    while not rospy.is_shutdown():
        # get camera images from the car
        rospy.loginfo("Retrieving image")
        responses = client.simGetImages(
            [airsim.ImageRequest("1", airsim.ImageType.Scene, False, False)],
            vehicle_name="Drone1"
        )  #scene vision image in uncompressed RGBA array

        for response in responses:
            img_rgba_string = response.image_data_uint8

        rospy.loginfo("Populating image")
        # Populate image message
        msg = Image()
        msg.header.stamp = rospy.Time.now()
        msg.header.frame_id = "frameId"
        msg.encoding = "rgba8"
        msg.height = 360  # resolution should match values in settings.json
        msg.width = 640
        msg.data = img_rgba_string
        msg.is_bigendian = 0
        msg.step = msg.width * 4

        # log time and size of published image
        rospy.loginfo(len(response.image_data_uint8))
        # publish image message
        pub.publish(msg)
        rospy.loginfo("Published image")
        # sleep until next cycle
        rate.sleep()
 def OccupancyGridToNavImage(self, grid_map):
     img = Image()
     img.header = grid_map.header
     img.height = grid_map.info.height
     img.width = grid_map.info.width
     img.is_bigendian = 1
     img.step = grid_map.info.width
     img.encoding = "mono8"
     maxindex = img.height*img.width
     numpy.uint
     for i in range(0, maxindex, 1):
         if int(grid_map.data[i]) < 20:
             #img.data[i] = "0"
             data.append(0)
         else:
             img.data[i] = "255"
     return imgding
def load_image_to_ros_msg(filename):
    image_np = cv2.imread(filename, cv2.IMREAD_GRAYSCALE)

    timestamp_nsecs = os.path.splitext(os.path.basename(filename))[0]
    timestamp = rospy.Time(secs=int(timestamp_nsecs[0:-9]),
                           nsecs=int(timestamp_nsecs[-9:]))

    rosimage = Image()
    rosimage.header.stamp = timestamp
    rosimage.height = image_np.shape[0]
    rosimage.width = image_np.shape[1]
    # only with mono8! (step = width * byteperpixel * numChannels)
    rosimage.step = rosimage.width
    rosimage.encoding = "mono8"
    rosimage.data = image_np.tostring()

    return rosimage, timestamp
Example #30
0
 def publish_output(self, np_out, header):
     property_out = Image(encoding="32FC1")
     property_out.header = header
     property_out.height = self.shape[0]
     property_out.width = self.shape[1]
     if self.args.likelihood_loss:
         contig = np.ascontiguousarray(np_out[0])
         contig_std = np.ascontiguousarray(np_out[1])
     else:
         contig = np.ascontiguousarray(np_out)
     property_out.step = contig.strides[0]
     if self.args.likelihood_loss:
         std_out = property_out
         std_out.data = contig_std.tostring()
         self.std_pub.publish(std_out)
     property_out.data = contig.tostring()
     # Publish
     self.property_pub.publish(property_out)
Example #31
0
def target_map_sub(target_map):
    global pub
    ndata_f = target_map.data[1].data 

    ndata_f.resize(300,300)    
    ndata = ndata_f * 65535; 
    ndata = ndata.astype('int16')
    im = Image(encoding='mono16')
    im.height, im.width, channels = ndata.shape + (1,)

    contig = np.ascontiguousarray(ndata)
    im.data = contig.tostring()
    im.step = contig.strides[0]
    im.is_bigendian = (
        ndata.dtype.byteorder == '>' or 
        ndata.dtype.byteorder == '=' and sys.byteorder == 'big'
    )
    pub.publish(im)
Example #32
0
    def publish_inferenced_img(self, img: np.ndarray, boxes: np.ndarray,
                               cone_colors: np.ndarray):
        for box, cone_color in zip(boxes, cone_colors):
            x, y, w, h = box.astype(int)
            cv2.rectangle(img, (x, y), (x + w, y + h), self.colors[cone_color],
                          2)

        img_msg = Image()
        img_msg.header.stamp = rp.Time.now()
        img_msg.header.frame_id = "/fsds_utils/camera/inferenced_image"
        img_msg.height = img.shape[0]
        img_msg.width = img.shape[1]
        img_msg.encoding = "bgr8"
        img_msg.is_bigendian = 0
        img_msg.data = img.flatten().tostring()
        img_msg.step = len(img_msg.data) // img_msg.height

        self.inferenced_img_pub.publish(img_msg)
 def _publish_combined_global_poses(self, data: np.ndarray) -> None:
     resolution = (400, 400)
     pos0, w0, h0, pos1, w1, h1 = calculate_bounding_box(
         state=data, orientation=(0, 0, 1), resolution=resolution)
     frame = np.zeros(resolution)
     frame[pos0[1] - w0 // 2:pos0[1] + w0 // 2,
           pos0[0] - h0 // 2:pos0[0] + h0 // 2] = 255
     try:
         frame[pos1[1] - w1 // 2:pos1[1] + w1 // 2,
               pos1[0] - h1 // 2:pos1[0] + h1 // 2] = 125
     except TypeError:
         pass
     image = Image()
     image.data = frame.astype(np.uint8).flatten().tolist()
     image.height = resolution[0]
     image.width = resolution[1]
     image.encoding = 'mono8'
     self._publisher.publish(image)
Example #34
0
    def main_loop(self):
        img = Image()
        while not rospy.is_shutdown():
            #print "getting image..",
            images = self.camProxy.getImagesRemote  (self.nameId)
            #print "ok"
            # TODO: better time
            for i in [0,1]:
		#print len(images[i])
                image = images[i]
                img.header.stamp = rospy.Time.now()
                if image[7] == 0:
                    img.header.frame_id = "/CameraTop_frame"
                elif image[7] == 1:
                    img.header.frame_id = "/CameraBottom_frame"
                img.height = image[1]
                img.width = image[0]
                nbLayers = image[2]
                #colorspace = image[3]
                if image[3] == kYUVColorSpace:
                    encoding = "mono8"
                elif image[3] == kRGBColorSpace:
                    encoding = "rgb8"
                elif image[3] == kBGRColorSpace:
                    encoding = "bgr8"
                else:
                    rospy.logerror("Received unknown encoding: {0}".format(image[3]))
    
                img.encoding = encoding
                img.step = img.width * nbLayers
		if len(images) >= 2:
                	img.data = images[2][len(images[2])/2 * i:len(images[2])/2 *(i+1) + 1]
		else:
			img.data = []
			print "image with no data"
                self.info_[i].width = img.width
                self.info_[i].height = img.height
                self.info_[i].header = img.header
                self.pub_img_[i].publish(img)
                self.pub_info_[i].publish(self.info_[i])

	    self.camProxy.releaseImages(self.nameId)

        self.camProxy.unsubscribe(self.nameId)
Example #35
0
    def publish_image(self, imgdata, height, width, time=None):
        image_raw=Image_msg()
        header = Header(stamp=rospy.Time.now())
        header.frame_id = 'map'
        image_raw.height = height
        image_raw.width = width
        image_raw.encoding='rgb8'
        image_raw.data=np.array(imgdata).tostring()
        image_raw.header=header
        image_raw.step=1241*3
        self.image_pubulisher_raw.publish(image_raw)

        image_compressed = CompressedImage()
        image_compressed.header.stamp =rospy.Time.now()
        image_compressed.format = "jpeg"
        imgdata = cv2.cvtColor(imgdata, cv2.COLOR_BGR2RGB)

        image_compressed.data = np.array(cv2.imencode('.jpg', imgdata)[1]).tostring()
        self.image_pubulisher_compressed.publish(image_compressed)
Example #36
0
def publish_image():
    if drone.is_new_frame_ready():
        frame = drone.get_last_frame()
        #gray=cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY)
        #edged = cv2.Canny(gray, 30, 150)
        #cv2.imshow("image",frame)
        image_temp=Image()
        header = Header(stamp=rospy.Time.now())
        header.frame_id = 'map'
        image_temp.height=IMAGE_HEIGHT
        image_temp.width=IMAGE_WIDTH
        image_temp.encoding='rgb8'
        image_temp.data=np.array(frame).tostring()
    #print(imgdata)
    #image_temp.is_bigendian=True
        image_temp.header=header
        image_temp.step=960*3
        time.sleep(0.1)
        image_pubulish.publish(image_temp)
Example #37
0
    def convert_pil_to_ros_img(self, img):
        """Function for converting pillow to ros image

        Args:
            img (PIL.Image.Image): Pillow image that represents GUI

        Returns:
            sensor_msgs.msg._Image.Image: ROS image for image publisher
        """
        img = img.convert('RGB')
        msg = ROSImage()
        stamp = rospy.Time.now()
        msg.height = img.height
        msg.width = img.width
        msg.encoding = "rgb8"
        msg.is_bigendian = False
        msg.step = 3 * img.width
        msg.data = np.array(img).tobytes()
        return msg
Example #38
0
def update_power_meter(data, publisher):
    """Update the power meter with battery reading."""
    battery_percent = float(data.percentage)

    image = Image.new("1", (OLED_WIDTH, OLED_HEIGHT))
    draw = ImageDraw.Draw(image)

    draw.rectangle([(0, OLED_HEIGHT // 2),
                    (int(OLED_WIDTH * battery_percent), OLED_HEIGHT)],
                   fill=0xff)

    percent_text = str(int(battery_percent * 100))
    status_text = "Unknown"

    if data.power_supply_status == BatteryState.POWER_SUPPLY_STATUS_FULL:
        status_text = "Charged"
    elif data.power_supply_status == BatteryState.POWER_SUPPLY_STATUS_CHARGING:
        status_text = "Charging"
        percent_text = "??"
    elif data.power_supply_status == BatteryState.POWER_SUPPLY_STATUS_DISCHARGING:
        status_text = "Discharging"
    elif data.power_supply_status == BatteryState.POWER_SUPPLY_STATUS_NOT_CHARGING:
        status_text = "Slow Charging"
        percent_text = "??"

    draw.text((FONT_PADDING, FONT_PADDING),
              "Battery: " + percent_text + "%",
              font=FONT,
              fill=0xff)

    draw.text((FONT_PADDING, OLED_HEIGHT - 2 * FONT_PADDING - FONT_SIZE),
              status_text,
              font=FONT,
              fill=0x00)

    image_message = ImageMessage()
    image_message.data = image.convert("L").tobytes()
    image_message.width = image.width
    image_message.height = image.height
    image_message.step = image.width
    image_message.encoding = "mono8"

    publisher.publish(image_message)
Example #39
0
def CreateMonoBag(imgs,bagname,yamlName):
    '''Creates a bag file with camera images'''
    bag =rosbag.Bag(bagname, 'w')
    try:
        for i in range(len(imgs)):
            print("Adding %s" % imgs[i])
            fp = open( imgs[i], "rb" )
            p = ImageFile.Parser()

            while 1:
                s = fp.read(1024)
                if not s:
                    break
                p.feed(s)

            im = p.close()

            Stamp = rospy.rostime.Time.from_sec(time.time())
            Img = Image()
            Img.header.stamp = Stamp
            Img.width = im.size[0]
            Img.height = im.size[1]
            if im.mode=='RGB': #(3x8-bit pixels, true color)
              Img.encoding = "rgb8"
              Img.header.frame_id = "camera_rgb_optical_frame"
              Img.step = Img.width*3
              Img_data = [pix for pixdata in im.getdata() for pix in pixdata]
            elif im.mode=='L': #(8-bit pixels, black and white)
              Img.encoding = "mono8"
              Img.header.frame_id = "camera_gray_optical_frame"
              Img.step = Img.width
              Img_data=[pix for pixdata in [im.getdata()] for pix in pixdata]
            Img.data = Img_data
            [calib, cameraName]=yaml_to_CameraInfo(yamlName)
            calib.header.stamp = Stamp
            if im.mode=='RGB':
              calib.header.frame_id = "camera_rgb_optical_frame"
            elif im.mode=='L':
              calib.header.frame_id = "camera_gray_optical_frame"
            bag.write( cameraName + '/camera_info', calib, Stamp)
            bag.write( cameraName + '/image_raw', Img, Stamp)
    finally:
        bag.close()
Example #40
0
def CreateMonoBag(imgs, bagname):
    '''Creates a bag file with camera images'''
    bag = rosbag.Bag(bagname, 'w')

    try:
        for i in range(len(imgs)):
            print("Adding %s" % imgs[i])
            fp = open(imgs[i], "r")
            p = ImageFile.Parser()
            '''read image size'''
            imgpil = ImagePIL.open(imgs[0])
            width, height = imgpil.size
            # print "size:",width,height
            # width 1241, height 376

            while 1:
                s = fp.read(1024)
                if not s:
                    break
                p.feed(s)

            im = p.close()

            Stamp = rospy.rostime.Time.from_sec(time.time())
            '''set image information '''
            Img = Image()
            Img.header.stamp = Stamp
            Img.height = height
            Img.width = width
            Img.header.frame_id = "camera"
            '''for rgb8'''
            # Img.encoding = "rgb8"
            # Img_data = [pix for pixdata in im.getdata() for pix in pixdata]
            # Img.step = Img.width * 3
            '''for mono8'''
            Img.encoding = "mono8"
            Img_data = [pix for pixdata in [im.getdata()] for pix in pixdata]
            Img.step = Img.width

            Img.data = Img_data
            bag.write('camera/image_raw', Img)
    finally:
        bag.close()
Example #41
0
def flow_to_imgmsg(flowarray):
    """
    Converts an flow image to a ROS image without using the cv_bridge package,
    for compatibility purposes.
    flow array has the shape of [H, W, 2]
    """
    msg = Image()
    #print(flowarray.shape)
    msg.height = flowarray.shape[0]
    msg.width = flowarray.shape[1]
    msg.encoding = '32FC2'
    if flowarray.dtype.byteorder == '>':
        msg.is_bigendian = True

    msg.data = flowarray.tostring()
    #print(len(msg.data))
    msg.step = len(msg.data) // msg.height

    return msg
def main(args=None):
    rclpy.init(args=args)

    node = rclpy.create_node('client')

    cli = node.create_client(ImageDetection, 'image_detection')
    while not cli.wait_for_service(timeout_sec=1.0):
        print('service not available, waiting again...')


    #br = CvBridge()
    #dtype, n_channels = br.encoding_as_cvtype2('8UC3')

    IMG_PATH = "/root/ros2-tensorflow/data/dogs.jpg"
    img = cv2.imread(IMG_PATH, cv2.IMREAD_COLOR)

    #img_msg = br.cv2_to_imgmsg(img) 

    img_msg = Image()
    img_msg.height = img.shape[0]
    img_msg.width = img.shape[1]
    img_msg.encoding = "rgb8"
    img_msg.data = img.tostring()
    img_msg.step = len(img_msg.data) // img_msg.height
    img_msg.header.frame_id = "world"

    req = ImageDetection.Request()

    req.image = img_msg


    future = cli.call_async(req)
    rclpy.spin_until_future_complete(node, future)
    if future.result() is not None:
        node.get_logger().info('Result of classification: %r' % future.result().detections)
    else:
        node.get_logger().error('Exception while calling service: %r' % future.exception())




    node.destroy_node()
    rclpy.shutdown()
Example #43
0
    def default(self, ci='unused'):
        if not self.component_instance.capturing:
            return # press [Space] key to enable capturing

        image_local = self.data['image']

        image = Image()
        image.header = self.get_ros_header()
        image.height = self.component_instance.image_height
        image.width = self.component_instance.image_width
        image.encoding = self.encoding
        image.step = image.width * 4

        # VideoTexture.ImageRender implements the buffer interface
        image.data = bytes(image_local)

        # fill this 3 parameters to get correcty image with stereo camera
        Tx = 0
        Ty = 0
        R = [1, 0, 0, 0, 1, 0, 0, 0, 1]

        intrinsic = self.data['intrinsic_matrix']

        camera_info = CameraInfo()
        camera_info.header = image.header
        camera_info.height = image.height
        camera_info.width = image.width
        camera_info.distortion_model = 'plumb_bob'
        camera_info.D = [0]
        camera_info.K = [intrinsic[0][0], intrinsic[0][1], intrinsic[0][2],
                         intrinsic[1][0], intrinsic[1][1], intrinsic[1][2],
                         intrinsic[2][0], intrinsic[2][1], intrinsic[2][2]]
        camera_info.R = R
        camera_info.P = [intrinsic[0][0], intrinsic[0][1], intrinsic[0][2], Tx,
                         intrinsic[1][0], intrinsic[1][1], intrinsic[1][2], Ty,
                         intrinsic[2][0], intrinsic[2][1], intrinsic[2][2], 0]

        if self.pub_tf:
            self.publish_with_robot_transform(image)
        else:
            self.publish(image)
        self.topic_camera_info.publish(camera_info)
Example #44
0
def CreateBag(args):
    imgs = GetImages(args[0])
    if not imgs:
        print("No images found in %s" % dir)
        exit()

    rosbagfile = args[1]
    if (os.path.exists(rosbagfile)):
        os.remove(rosbagfile)

    bag = rosbag.Bag(rosbagfile, 'w')

    try:
        for filename in imgs:
            print("Adding %s" % filename)
            with open(filename, "rb") as image_data:
                parser = ImageFile.Parser()
                while 1:
                    raw_bytes = image_data.read(1024)
                    if not raw_bytes:
                        break
                    parser.feed(raw_bytes)

                parsed_image = parser.close()

                timestamp = rospy.Time.from_sec(time.time())

                image = Image()
                image.header.stamp = timestamp
                image.width = parsed_image.size[0]
                image.height = parsed_image.size[1]
                image.step = image.width * 4
                image.encoding = "rgba8"
                image.header.frame_id = "image_data/image"
                image.data = [
                    pix for pixdata in parsed_image.getdata()
                    for pix in pixdata
                ]

                bag.write('image_node/image_raw', image, timestamp)
    finally:
        bag.close()
Example #45
0
    def nparray_to_rosimg(self, array):
        """ @brief converts numpy 2D array to ROS image
            @param[in] 2D numpy array of integers
        """

        # Get min-max range
        array[array > 1E308] = 0
        array[array < 0] = 0
        min = np.min(array)
        max = np.max(array)
        array = ((array - min) / (max - min)) * 255
        # Scale values between 0 and 255
        image = Image()
        image.encoding = "mono8"
        image.is_bigendian = 0
        image.width = array.shape[0]
        image.height = array.shape[1]
        image.step = array.shape[0]
        image.data = [int(i) for i in array.flatten('F')]
        return image
    def _set_goal_state(self, array, bounds, color='cyan'):
        self.goal_array = array
        marker = self._make_state_marker(array, bounds, color=color)
        data, ev = self.network_handler.evaluate_array(self.goal_array)
        data = data.copy()
        data = data[:, ::-1, :]
        data = cv2.resize(data, (2 * 480, 480))
        bits = data.tobytes()

        goal_img_msg = Image(
            header=Header(0, rospy.Time.now(), 'table_center'))

        goal_img_msg.width = 2 * 480
        goal_img_msg.height = 480
        goal_img_msg.step = 3 * 2 * 480
        goal_img_msg.data = bits
        goal_img_msg.encoding = 'rgb8'
        self.mdn_goal_pub.publish(goal_img_msg)
        self.state_marker_pub.publish(marker)
        self.goal_img_msg = goal_img_msg
def main():
  if len(sys.argv) < 2:
    print("Usage: {} dataset_name".format(sys.argv[0]))
    exit(1)

  file_name = sys.argv[1]
  log_file = h5py.File('../dataset/log/{}.h5'.format(file_name))
  camera_file = h5py.File('../dataset/camera/{}.h5'.format(file_name))  

  zipped_log = izip(
    log_file['times'],
    log_file['fiber_accel'],
    log_file['fiber_gyro'])

  with rosbag.Bag('{}.bag'.format(file_name), 'w') as bag:
    bar = Bar('Camera', max=len(camera_file['X']))
    for i, img_data in enumerate(camera_file['X']):
      m_img = Image()
      m_img.header.stamp = rospy.Time.from_sec(0.01 * i)
      m_img.height = img_data.shape[1]
      m_img.width = img_data.shape[2]
      m_img.step = 3 * img_data.shape[2]
      m_img.encoding = 'rgb8'
      m_img.data = np.transpose(img_data, (1, 2, 0)).flatten().tolist()
      
      bag.write('/camera/image_raw', m_img, m_img.header.stamp)
      bar.next()
      
    bar.finish()

    bar = Bar('IMU', max=len(log_file['times']))
    for time, v_accel, v_gyro in zipped_log:
      m_imu = Imu()
      m_imu.header.stamp = rospy.Time.from_sec(time)
      [setattr(m_imu.linear_acceleration, c, v_accel[i]) for i, c in enumerate('xyz')]
      [setattr(m_imu.angular_velocity, c, v_gyro[i]) for i, c in enumerate('xyz')]

      bag.write('/fiber_imu', m_imu, m_imu.header.stamp)
      bar.next()

    bar.finish()
Example #48
0
def array_to_image(array):
    """Takes a NxMx3 array and converts it into a ROS image message.

    """
    # Sanity check the input array shape
    if len(array.shape) != 3 or array.shape[2] != 3:
        raise ValueError('Array must have shape MxNx3')

    # Ravel the array into a single buffer
    image_data = (array.astype(np.uint8)).tostring(order='C')

    # Create the image message
    image_msg = Image()
    image_msg.height = array.shape[0]
    image_msg.width = array.shape[1]
    image_msg.encoding = 'rgb8'
    image_msg.is_bigendian = 0
    image_msg.step = array.shape[1] * 3
    image_msg.data = image_data

    return image_msg
def run(data):
    frame = np.frombuffer(data.data,
                          dtype=np.uint8).reshape(data.height, data.width, -1)
    tstart = time.time()

    height = frame.shape[0]
    width = frame.shape[1]
    frame1 = cv.resize(frame, (576, 324))
    frame_np = frame1[:, :, [2, 1, 0]]

    # test
    img = Image()
    img.encoding = "bgr8"
    img.height = height
    img.width = width
    # img.step = (width) * sizeof(float)
    img.step = img.width * 8 * 3
    img.is_bigendian = 0
    img.data = np.asarray(frame, np.uint8).tostring()
    raw_video_pub.publish(img)
    print("in")
def array_to_image(array):
    """Takes a NxMx3 array and converts it into a ROS image message.

    """
    # Sanity check the input array shape
    if len(array.shape) != 3 or array.shape[2] != 3:
        raise ValueError('Array must have shape MxNx3')

    # Ravel the array into a single buffer
    image_data = (array.astype(np.uint8)).tostring(order='C')

    # Create the image message
    image_msg = Image()
    image_msg.height = array.shape[0]
    image_msg.width = array.shape[1]
    image_msg.encoding = 'rgb8'
    image_msg.is_bigendian = 0
    image_msg.step = array.shape[1] * 3
    image_msg.data = image_data

    return image_msg
Example #51
0
    def ros_sensor_image_from_matrix(self, mat, normalize=False):
        image_message = RosImage()
        image_message.header.stamp = rospy.Time.now()
        height = mat.ravel().astype(np.uint8).tolist()
        image_message.data = []
        if normalize:
            normalizer = matplotlib.colors.Normalize()
            normalizer.autoscale(height)
        for el in height:
            if normalize:
                image_message.data += np.array([
                    (255 * (1 - normalizer(el))), 0, (255 * normalizer(el))
                ]).astype(np.uint8).tolist()
            else:
                image_message.data += [255 - el, 0, el]

        image_message.height = len(mat)
        image_message.width = len(mat[0])
        image_message.is_bigendian = 0
        image_message.encoding = 'bgr8'
        return image_message
def get_snapshot():

    for i in range(0, 10):

        s = rospy.ServiceProxy("return_camera_image", ReturnImages)
        img_data = Image()

        img_data.width = s([]).width
        img_data.height = s([]).height
        img_data.encoding = s([]).encoding
        img_data.data = s([]).data

        bridge = CvBridge()
        cv_image = bridge.imgmsg_to_cv2(img_data, "passthrough")
        cv_resized = cv2.resize(cv_image, (125, 125),
                                interpolation=cv2.INTER_AREA)
        #cv2.imshow("Image window", cv_image)

        cv2.waitKey(1)

    return cv_resized
 def _receive_message(self,message):
     global my
     rospy.loginfo(rospy.get_caller_id() + " I heard a message of %s",self._message_type)
     rospy.loginfo(rospy.get_caller_id()  + " Time from previous message %s",(rospy.get_time()-my)  )#edw mou leei unicode type
     my=rospy.get_time()
     try:
         msg=Image()
         msg.header.seq=message['header']['seq']
         msg.header.stamp.secs=message['header']['stamp']['secs']
         msg.header.stamp.nsecs=message['header']['stamp']['nsecs'] 
         msg.header.frame_id=message['header']['frame_id']
         msg.height=message['height']
         msg.width=message['width']
         msg.encoding=str(message['encoding'])
         msg.is_bigendian=message['is_bigendian']
         msg.step=message['step']
         msg.data=message['data'].decode('base64')
         self._rosPub=rospy.Publisher(self._local_topic_name, Image, queue_size=10) #message type is String instead of msg_stds/String
         self._rosPub.publish(msg)
     except:
        print('Error')        
def main(args):
    FPS = 60
    B = 0
    dir = 1

    # Init ROS node
    rospy.init_node('image_publisher', anonymous=True)
    pub = rospy.Publisher("/ros/color/image_raw", Image, queue_size=1)

    rate = rospy.Rate(FPS)
    print("Begin Publishing")
    count = 0
    ts_start = time.perf_counter()
    IMG_WIDTH = 640
    IMG_HEIGHT = 480
    while not rospy.is_shutdown():
        image_np = np.zeros((IMG_HEIGHT, IMG_WIDTH, 3), dtype=np.uint8)
        B += 1 * dir
        if B == 255:
            dir = -1
        elif B == 0:
            dir = 1
        image_np[:, :, 0] = B
        # Create Image
        image_np = cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB)
        msg = Image()
        msg.header.stamp = rospy.Time.now()
        msg.height = image_np.shape[0]
        msg.width = image_np.shape[1]
        msg.encoding = "rgb8"
        # "bgr8" is not supported by Isaac SDK
        msg.data = image_np.tostring()
        # Publish new image
        pub.publish(msg)
        count += 1
        delta = time.perf_counter() - ts_start
        # Log
        print("Sent", count, "images in", round(delta), "seconds with",
              round(count / delta, 2), "FPS")
        rate.sleep()
def main():
    pub = rospy.Publisher('image_maker', Image)
    rospy.init_node('image_maker')
    #rospy.wait_for_service('tabletop_segmentation')
    im= Image()
    im.header.seq= 72
    im.header.stamp.secs= 1365037570
    im.header.stamp.nsecs= 34077284
    im.header.frame_id= '/camera_rgb_optical_frame'
    im.height= 480
    im.width= 640
    im.encoding= '16UC1'
    im.is_bigendian= 0
    im.step= 1280
    im.data= [100 for n in xrange(1280*480)]

    while not rospy.is_shutdown():
        try:
            pub.publish(im)
            sleep(.5)

        except Exception, e:
            print e
Example #56
0
def GetImageFromFile(im_path):
	fp = open( im_path, "r" )
	p = ImageFile.Parser()
	while 1:
		s = fp.read(307218) # trying to read a full file in one shot ...
		if not s:
		    break
		p.feed(s)
	im = p.close() # we should now have an image object
	im_stamp = os.path.basename(im_path).split(".")[0] #image timestamp is directly encoded in file name
	im_stamp =  float(im_stamp)/1000000.0
	Stamp = rospy.rostime.Time.from_sec(im_stamp)
	Img = Image()
	Img.header.stamp = Stamp
	Img.width = im.size[0]
	Img.height = im.size[1]
	Img.encoding = "mono8" #needs to be changed to rgb8 for rgb images
	Img.step=Img.width #some nodes may complains ...
	Img.header.frame_id = "camera"
	Img_data = list(im.getdata()) #works for mono channels images (grayscale)
	#Img_data = [pix for pix in im.getdata()]
	#  Img_data = [pix for pixdata in im.getdata() for pix in pixdata]
	Img.data = Img_data
	return (im_stamp, Stamp, Img)
Example #57
0
import numpy as np
import rospy
import sys
from sensor_msgs.msg import Image

if __name__ == '__main__': 
    rospy.init_node('image_publish')

    name = sys.argv[1]
    image = cv2.imread(name)
    #cv2.imshow("im", image)
    #cv2.waitKey(5)

    hz = rospy.get_param("~rate", 1)
    rate = rospy.Rate(hz)

    pub = rospy.Publisher('image', Image, queue_size=1)

    msg = Image()
    msg.header.stamp = rospy.Time.now()
    msg.encoding = 'bgr8'
    msg.height = image.shape[0]
    msg.width = image.shape[1]
    msg.step = image.shape[1] * 3
    msg.data = image.tostring()
    pub.publish(msg)

    while not rospy.is_shutdown():
        pub.publish(msg)
        rate.sleep()
Example #58
0
    def run(self):
        img = Image()
        r = rospy.Rate(self.config['frame_rate'])
        while self.is_looping():
            if self.pub_img_.get_num_connections() == 0:
                if self.nameId:
                    rospy.loginfo('Unsubscribing from camera as nobody listens to the topics.')
                    self.camProxy.unsubscribe(self.nameId)
                    self.nameId = None
                r.sleep()
                continue
            if self.nameId is None:
                self.reconfigure(self.config, 0)
                r.sleep()
                continue
            image = self.camProxy.getImageRemote(self.nameId)
            if image is None:
                continue
            # Deal with the image
            if self.config['use_ros_time']:
                img.header.stamp = rospy.Time.now()
            else:
                img.header.stamp = rospy.Time(image[4] + image[5]*1e-6)
            img.header.frame_id = self.frame_id
            img.height = image[1]
            img.width = image[0]
            nbLayers = image[2]
            if image[3] == kYUVColorSpace:
                encoding = "mono8"
            elif image[3] == kRGBColorSpace:
                encoding = "rgb8"
            elif image[3] == kBGRColorSpace:
                encoding = "bgr8"
            elif image[3] == kYUV422ColorSpace:
                encoding = "yuv422" # this works only in ROS groovy and later
            elif image[3] == kDepthColorSpace:
                encoding = "mono16"
            else:
                rospy.logerr("Received unknown encoding: {0}".format(image[3]))
            img.encoding = encoding
            img.step = img.width * nbLayers
            img.data = image[6]

            self.pub_img_.publish(img)

            # deal with the camera info
            if self.config['source'] == kDepthCamera and image[3] == kDepthColorSpace:
                infomsg = CameraInfo()
                # yes, this is only for an XTion / Kinect but that's the only thing supported by NAO
                ratio_x = float(640)/float(img.width)
                ratio_y = float(480)/float(img.height)
                infomsg.width = img.width
                infomsg.height = img.height
                # [ 525., 0., 3.1950000000000000e+02, 0., 525., 2.3950000000000000e+02, 0., 0., 1. ]
                infomsg.K = [ 525, 0, 3.1950000000000000e+02,
                              0, 525, 2.3950000000000000e+02,
                              0, 0, 1 ]
                infomsg.P = [ 525, 0, 3.1950000000000000e+02, 0,
                              0, 525, 2.3950000000000000e+02, 0,
                              0, 0, 1, 0 ]
                for i in range(3):
                    infomsg.K[i] = infomsg.K[i] / ratio_x
                    infomsg.K[3+i] = infomsg.K[3+i] / ratio_y
                    infomsg.P[i] = infomsg.P[i] / ratio_x
                    infomsg.P[4+i] = infomsg.P[4+i] / ratio_y

                infomsg.D = []
                infomsg.binning_x = 0
                infomsg.binning_y = 0
                infomsg.distortion_model = ""

                infomsg.header = img.header
                self.pub_info_.publish(infomsg)
            elif self.config['camera_info_url'] in self.camera_infos:
                infomsg = self.camera_infos[self.config['camera_info_url']]

                infomsg.header = img.header
                self.pub_info_.publish(infomsg)

            r.sleep()

        if (self.nameId):
            rospy.loginfo("unsubscribing from camera ")
            self.camProxy.unsubscribe(self.nameId)
Example #59
-1
    def default(self, ci='unused'):
        """ Publish the data of the Camera as a ROS Image message. """
        if not self.component_instance.capturing:
            return # press [Space] key to enable capturing

        image_local = self.data['image']

        image = Image()
        image.header = self.get_ros_header()
        image.header.frame_id += '/base_image'
        image.height = self.component_instance.image_height
        image.width = self.component_instance.image_width
        image.encoding = 'rgba8'
        image.step = image.width * 4

        # VideoTexture.ImageRender implements the buffer interface
        image.data = bytes(image_local)

        # sensor_msgs/CameraInfo [ http://ros.org/wiki/rviz/DisplayTypes/Camera ]
        # fill this 3 parameters to get correcty image with stereo camera
        Tx = 0
        Ty = 0
        R = [1, 0, 0, 0, 1, 0, 0, 0, 1]

        intrinsic = self.data['intrinsic_matrix']

        camera_info = CameraInfo()
        camera_info.header = image.header
        camera_info.height = image.height
        camera_info.width = image.width
        camera_info.distortion_model = 'plumb_bob'
        camera_info.K = [intrinsic[0][0], intrinsic[0][1], intrinsic[0][2],
                         intrinsic[1][0], intrinsic[1][1], intrinsic[1][2],
                         intrinsic[2][0], intrinsic[2][1], intrinsic[2][2]]
        camera_info.R = R
        camera_info.P = [intrinsic[0][0], intrinsic[0][1], intrinsic[0][2], Tx,
                         intrinsic[1][0], intrinsic[1][1], intrinsic[1][2], Ty,
                         intrinsic[2][0], intrinsic[2][1], intrinsic[2][2], 0]

        self.publish(image)
        self.topic_camera_info.publish(camera_info)